Nerve palsy after leg lengthening in total replacement arthroplasty for developmental dysplasia of the hip. (1/284)

We reviewed 508 consecutive total hip replacements in 370 patients with old developmental dysplasia of the hip, to relate the amount of leg lengthening to the incidence of nerve palsies after operation. There were eight nerve palsies (two femoral, six sciatic), two complete and six incomplete. We found no statistical correlation between the amount of lengthening and the incidence of nerve damage (p = 0.47), but in seven of the eight hips, the surgeon had rated the intervention as difficult because of previous surgery, severe deformity, a defect of the acetabular roof, or considerable flexion deformity. The correlation between difficulty and nerve palsy was significant (p = 0.041). We conclude that nerve injury is most commonly caused by direct or indirect mechanical trauma and not by limb lengthening on its own.  (+info)

Sciatic nerve compression following bone marrow harvest. (2/284)

We describe a donor who suffered pain secondary to sacral plexus and sciatic nerve compression post bone marrow harvest. Haematoma was demonstrated by magnetic resonance image (MRI) scanning. To our knowledge, this is the first reported case of compression neuropathy post bone marrow harvest documented by MRI scanning. Given the increasing number of bone marrow transplants being performed and the paramount importance of donor safety, compressive neuropathies need to be remembered as rare but debilitating complications of bone marrow harvesting. MRI scanning is a useful modality to investigate severe or neuropathic pain post bone marrow harvest.  (+info)

Antagonism of the melanocortin system reduces cold and mechanical allodynia in mononeuropathic rats. (3/284)

The presence of both pro-opiomelanocortin-derived peptides and melanocortin (MC) receptors in nociception-associated areas in the spinal cord suggests that, at the spinal level, the MC system might be involved in nociceptive transmission. In the present study, we demonstrate that a chronic constriction injury (CCI) to the rat sciatic nerve, a lesion that produces neuropathic pain, results in changes in the spinal cord MC system, as shown by an increased binding of (125)I-NDP-MSH to the dorsal horn. Furthermore, we investigated whether intrathecal administration (in the cisterna magna) of selective MC receptor ligands can affect the mechanical and cold allodynia associated with the CCI. Mechanical and cold allodynia were assessed by measuring withdrawal responses of the affected limb to von Frey filaments and withdrawal latencies upon immersion in a 4.5 degrees C water bath, respectively. We show that treatment with the MC receptor antagonist SHU9119 has a profound anti-allodynic effect, suggesting that the endogenous MC system has a tonic effect on nociception. In contrast, administration of the MC4 receptor agonists MTII and d-Tyr-MTII primarily increases the sensitivity to mechanical and cold stimulation. No antinociceptive action was observed after administration of the selective MC3 receptor agonist Nle-gamma-MSH. Together, our data suggest that the spinal cord MC system is involved in neuropathic pain and that the effects of MC receptor ligands on the responses to painful stimuli are exerted through the MC4 receptor. In conclusion, antagonism of the spinal melanocortin system might provide a new approach in the treatment of neuropathic pain.  (+info)

Resistance to Marek's disease herpesvirus-induced lymphoma is multiphasic and dependent on host genotype. (4/284)

Genotype-dependent differences in Marek's disease (MD) susceptibility were identified using 14-day-old line N and 6(1) (resistant) and 151 and 7(2) (susceptible) inbred chickens infected with HPRS-16 MD virus (MDV). All line 72 chickens developed progressive MD. Line 15I had fluctuating MD-specific clinical signs and individuals recovered. A novel histologic scoring system enabled indices to be calculated for lymphocyte infiltration into nonlymphoid organs. All genotypes had increased mean lesion scores (MLSs) and mean total lesion scores after MDV infection. These differed quantitatively and qualitatively between the genotypes. Lines 6(1) and 7(2) had a similar MLS distribution in the cytolytic phase, although scores were greater in line 7(2). At the time lymphomas were visible in line 7(2), histologic lesions in line 6(1) were regressing. AV37+ cells were present in similar numbers in all genotypes in the cytolytic phase, suggesting that neoplastically transformed cells were present in all genotypes regardless of MD susceptibility. After the cytolytic phase, AV37+ cell numbers increased in lines 7(2) and 15I but decreased in lines 6(1) and N. In the cytolytic and latent phases, in all genotypes, most infiltrating cells were CD4+. After this time, line 7(2) and 15I lesions increased in size and most cells were CD4+; line 6(1) and N lesions decreased in size and most cells were CD8+. In all genotypes, AV37 immunostaining was weak in lesions with many CD8+ cells, suggesting that AV37 antigen expression or AV37+ cells were controlled by CD8+ cells. The rank order, determined by clinical signs and pathology, for MD susceptibility (highest to lowest) was 7(2) > 15I > 6(1) > N.  (+info)

Functional reorganization of sensory pathways in the rat spinal dorsal horn following peripheral nerve injury. (5/284)

Functional reorganization of sensory pathways in the rat spinal dorsal horn following sciatic nerve transection was examined using spinal cord slices with an attached dorsal root. Slices were obtained from animals whose sciatic nerve had been transected 2-4 weeks previously and compared to sham-operated controls. Whole-cell recordings from substantia gelatinosa neurones in sham-operated rats, to which nociceptive information was preferentially transmitted, revealed that dorsal root stimulation sufficient to activate A afferent fibres evoked a mono- and/or polysynaptic EPSC in 111 of 131 (approximately 85%) neurones. This is in contrast to the response following A fibre stimulation, where monosynaptic EPSCs were observed in 2 of 131 (approximately 2%) neurones and polysynaptic EPSCs were observed in 18 of 131 (approximately 14%) neurones. In sciatic nerve-transected rats, however, a polysynaptic EPSC following stimulation of A afferents was elicited in 30 of 37 (81%) neurones and a monosynaptic EPSC evoked by A afferent stimulation was detected in a subset of neurones (4 of 37, approximately 11%). These observations suggest that, following sciatic nerve transection, large myelinated A afferent fibres establish synaptic contact with interneurones and transmit innocuous information to substantia gelatinosa. This functional reorganization of the sensory circuitry may constitute an underlying mechanism, at least in part, for sensory abnormalities following peripheral nerve injuries.  (+info)

The value of MR neurography for evaluating extraspinal neuropathic leg pain: a pictorial essay. (6/284)

SUMMARY: Fifteen patients with neuropathic leg pain referable to the lumbosacral plexus or sciatic nerve underwent high-resolution MR neurography. Thirteen of the patients also underwent routine MR imaging of the lumbar segments of the spinal cord before undergoing MR neurography. Using phased-array surface coils, we performed MR neurography with T1-weighted spin-echo and fat-saturated T2-weighted fast spin-echo or fast spin-echo inversion recovery sequences, which included coronal, oblique sagittal, and/or axial views. The lumbosacral plexus and/or sciatic nerve were identified using anatomic location, fascicular morphology, and signal intensity as discriminatory criteria. None of the routine MR imaging studies of the lumbar segments of the spinal cord established the cause of the reported symptoms. Conversely, MR neurography showed a causal abnormality accounting for the clinical findings in all 15 cases. Detected anatomic abnormalities included fibrous entrapment, muscular entrapment, vascular compression, posttraumatic injury, ischemic neuropathy, neoplastic infiltration, granulomatous infiltration, neural sheath tumor, postradiation scar tissue, and hypertrophic neuropathy.  (+info)

Induction of the plasminogen activator system accompanies peripheral nerve regeneration after sciatic nerve crush. (7/284)

Peripheral nerve regeneration is dependent on the ability of regenerating neurites to migrate through cellular debris and altered extracellular matrix at the injury site, grow along the residual distal nerve sheath conduit, and reinnervate synaptic targets. In cell culture, growth cones of regenerating axons secrete proteases, specifically plasminogen activators (PAs), which are believed to facilitate growth cone movement by digesting extracellular matrices and cell adhesions. In this study, the PA system was shown to be specifically activated in sensory neurons after sciatic nerve crush in adult mice. The number of sensory neurons expressing urokinase PA receptor (uPAR) mRNA levels increased above sham levels by 8 hr after crush, whereas the number of sensory neurons expressing uPA and tissue PA (tPA) mRNAs was significantly increased by 3 d after crush. PA mRNA levels were also increased at the crush site, with uPA mRNA elevated by 8 hr after crush and tPA and uPAR mRNA levels markedly increased by 7 d. PA-dependent enzymatic activity was significantly increased from 1 to 7 d after crush in nerves that had been crushed compared with uncrushed nerves. Immunohistochemistry showed that tPA was localized within regenerating axons of the sciatic nerve. There were no significant changes in plasminogen activator inhibitor 1 activity between crush and sham after the injury. These results clearly demonstrated that after injury the PA system was rapidly induced in sensory neurons, where it may play an important role in nerve regeneration in vivo.  (+info)

Mice lacking tPA, uPA, or plasminogen genes showed delayed functional recovery after sciatic nerve crush. (8/284)

Axonal outgrowth during peripheral nerve regeneration relies on the ability of growth cones to traverse through an environment that has been altered structurally and along a basal lamina sheath to reinnervate synaptic targets. To promote migration, growth cones secrete proteases that are thought to dissolve cell-cell and cell-matrix adhesions. These proteases include the plasminogen activators (PAs), tissue PA (tPA) and urokinase PA (uPA), and their substrate, plasminogen. PA expression and secretion are upregulated in regenerating mammalian sensory neurons in culture. After sciatic nerve crush in mice, there was an induction of PA mRNAs in the sensory neurons contributing to the crushed nerve and an upregulation of PA-dependent activity in crushed nerve compared with sham counterparts during nerve regeneration. To further assess the role of the PA system during peripheral nerve regeneration, PA-dependent activity as well as recovery of sensory and motor function in the injured hindlimb were assessed in wild-type, tPA, uPA, and plasminogen knock-out mice. Protease activity visualized by gel zymography showed that after nerve crush, the upregulation of PA activity in the tPA and uPA knock-out mice was delayed compared with wild-type mice. Recovery of sensory function was assessed by toe pinch, footpad prick, and the toe-spreading reflex. All knock-out mice demonstrated a significant delay in hindlimb response to these sensory stimuli compared with wild-type mice. For each modality tested, the uPA knock-out mice were the most dramatically affected, showing the longest delay to initiate a response. These studies clearly showed that PAs were necessary for timely functional recovery by regenerating peripheral nerves.  (+info)