Depression of peripheral chemosensitivity by a dopaminergic mechanism in patients with obstructive sleep apnoea syndrome. (1/1202)

In the present study, respiratory drives to chemical stimuli and peripheral chemosensitivity were evaluated in patients with obstructive sleep apnoea (OSAS). The effects of oral administration of domperidone, a selective dopamine D2-receptor antagonist, were also examined, to study the respiratory effects of endogenous dopamine on peripheral chemoreceptors. Sixteen patients with OSAS and nine normal control subjects were studied. Respiratory responses to hypercapnia and hypoxia were measured using the rebreathing method and isocapnic progressive hypoxia method, respectively. The hypoxic withdrawal test, which measures the decrease in ventilation caused by two breaths of 100% O2 under mild hypercapnic hypoxic conditions (end-tidal oxygen and carbon dioxide tensions approximately 8.0 kPa and 5.3-6.7 kPa, respectively), was used to evaluate peripheral chemosensitivity. In the patients with OSAS, ventilatory responses to hypercapnia and hypoxia were significantly decreased compared with those of control subjects. Hypoxic withdrawal tests showed that peripheral chemosensitivity was significantly lower in patients with OSAS than in normal subjects. Hypercapnic ventilatory response and peripheral chemosensitivity were enhanced by administration of domperidone in the patients with OSAS, although no changes in either of these were observed in the control subjects. The hypoxic ventilatory response and peripheral chemosensitivity in the patients with OSAS were each significantly correlated with severity of hypoxia during sleep. These findings suggest that peripheral chemosensitivity in patients with obstructive sleep apnoea syndrome may be decreased as a result of abnormality in dopaminergic mechanisms and that the reduced chemosensitivity observed in patients with obstructive sleep apnoea syndrome may affect the severity of hypoxia during sleep.  (+info)

Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. (2/1202)

BACKGROUND: The chemoreflexes are an important mechanism for regulation of both breathing and autonomic cardiovascular function. Abnormalities in chemoreflex mechanisms may be implicated in increased cardiovascular stress in patients with obstructive sleep apnea (OSA). We tested the hypothesis that chemoreflex function is altered in patients with OSA. METHODS AND RESULTS: We compared ventilatory, sympathetic, heart rate, and blood pressure responses to hypoxia, hypercapnia, and the cold pressor test in 16 untreated normotensive patients with OSA and 12 normal control subjects matched for age and body mass index. Baseline muscle sympathetic nerve activity (MSNA) was higher in the patients with OSA than in the control subjects (43+/-4 versus 21+/-3 bursts per minute; P<0. 001). During hypoxia, patients with OSA had greater increases in minute ventilation (5.8+/-0.8 versus 3.2+/-0.7 L/min; P=0.02), heart rate (10+/-1 versus 7+/-1 bpm; P=0.03), and mean arterial pressure (7+/-2 versus 0+/-2 mm Hg; P=0.001) than control subjects. Despite higher ventilation and blood pressure (both of which inhibit sympathetic activity) in OSA patients, the MSNA increase during hypoxia was similar in OSA patients and control subjects. When the sympathetic-inhibitory influence of breathing was eliminated by apnea during hypoxia, the increase in MSNA in OSA patients (106+/-20%) was greater than in control subjects (52+/-23%; P=0.04). Prolongation of R-R interval with apnea during hypoxia was also greater in OSA patients (24+/-6%) than in control subjects (7+/-5%) (P=0.04). Autonomic, ventilatory, and blood pressure responses to hypercapnia and the cold pressor test in OSA patients were not different from those observed in control subjects. CONCLUSIONS: OSA is associated with a selective potentiation of autonomic, hemodynamic, and ventilatory responses to peripheral chemoreceptor activation by hypoxia.  (+info)

Hyperglycemia and focal brain ischemia. (3/1202)

The influence of hyperglycemic ischemia on tissue damage and cerebral blood flow was studied in rats subjected to short-lasting transient middle cerebral artery (MCA) occlusion. Rats were made hyperglycemic by intravenous infusion of glucose to a blood glucose level of about 20 mmol/L, and MCA occlusion was performed with the intraluminar filament technique for 15, 30, or 60 minutes, followed by 7 days of recovery. Normoglycemic animals received saline infusion. Perfusion-fixed brains were examined microscopically, and the volumes of selective neuronal necrosis and infarctions were calculated. Cerebral blood flow was measured autoradiographically at the end of 30 minutes of MCA occlusion and after 1 hour of recirculation in normoglycemic and hyperglycemic animals. In two additional groups with 30 minutes of MCA occlusion, CO2 was added to the inhaled gases to create a similar tissue acidosis as in hyperglycemic animals. In one group CBF was measured, and the second group was examined for tissue damage after 7 days. Fifteen and 30 minutes of MCA occlusion in combination with hyperglycemia produced larger infarcts and smaller amounts of selective neuronal necrosis than in rats with normal blood glucose levels, a significant difference in the total volume of ischemic damage being found after 30 minutes of MCA occlusion. After 60 minutes of occlusion, when the volume of infarction was larger, only minor differences between normoglycemic and hyperglycemic animals were found. Hypercapnic animals showed volumes of both selective neuronal necrosis and infarction that were almost identical with those observed in normoglycemic, normocapnic animals. When local CBF was measured in the ischemic core after 30 minutes of occlusion, neither the hyperglycemic nor the hypercapnic animals were found to be significantly different from the normoglycemic group. Brief focal cerebral ischemia combined with hyperglycemia leads to larger and more severe tissue damage. Our results do not support the hypothesis that the aggravated injury is caused by any disturbances in CBF.  (+info)

Spike generation from dorsal roots and cutaneous afferents by hypoxia or hypercapnia in the rat in vivo. (4/1202)

The present study aimed at investigating the responsiveness of different parts of the primary afferent neurones to a brief hypoxia, hypercapnia or ischaemia under in vivo conditions. Action potentials were recorded in separate groups of anaesthetized rats from (i) the peripheral end of the central stump of the cut L3, L4 or L5 dorsal root (dorsal root preparation); (ii) the central end of the peripheral stump of the cut saphenous nerve (saphenous-receptor preparation); (iii) the distal end of a segment of the saphenous nerve cut at both ends (axon preparation). In paralysed animals interruption of artificial ventilation for 20-60 s elicited or increased the frequency of action potentials in both the dorsal root and saphenous-receptor preparations. Activation of these preparations was also achieved by inspiration of gas mixtures containing 10-0% oxygen (mixed with nitrogen) or 20-50% carbon dioxide (mixed with oxygen) which elicited in the blood a decrease in PO2 or an increase in PCO2 with a fall in pH. Occlusion of the femoral artery for 3 min also caused spike generation in the saphenous-receptor preparations with little alteration in blood pressure. All these stimuli failed to evoke action potentials in the axon preparations. Systemic (300 mg kg-1 s.c.) or perineural (2%) capsaicin pretreatment failed to inhibit the effect of hypoxia, hypercapnia or ischaemia, indicating a significant contribution of capsaicin-insensitive neurones to the responses. It is concluded that central and peripheral terminals but not axons of primary afferent neurones are excited by a brief hypoxia or hypercapnia and the peripheral terminals by a short local ischaemia as well. Excitation of central terminals by hypoxia or hypercapnia revealed in this way an antidromic activation of dorsal roots in response to natural chemical stimuli.  (+info)

Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. (5/1202)

BACKGROUND: Respiratory failure is the commonest cause of death in patients with Duchenne muscular dystrophy (DMD). Life expectancy is less than one year once diurnal hypercapnia develops. This study examines the effects of nasal intermittent positive pressure ventilation (NIPPV) on survival in symptomatic Duchenne patients with established ventilatory failure. METHODS: Nocturnal NIPPV was applied in 23 consecutive patients with DMD of mean (SD) age 20.3 (3.4) years who presented with diurnal and nocturnal hypercapnia. RESULTS: One year and five year survival rates were 85% (95% CI 69 to 100) and 73% (95% CI 53 to 94), respectively. Early changes in arterial blood gas tensions following NIPPV occurred with mean (SD) PO2 increasing from 7.6 (2.1) kPa to 10.8 (1.3) kPa and mean (SD) PCO2 falling from 10.3 (4.5) kPa to 6.1 (1.0) kPa. Improvements in arterial blood gas tensions were maintained over five years. Health perception and social aspects of SF-36 health related quality of life index were reported as equivalent to other groups with nonprogressive disorders using NIPPV. CONCLUSIONS: Nasal ventilation is likely to increase survival in hypercapnic patients with Duchenne muscular dystrophy and should be considered as a treatment option when ventilatory failure develops.  (+info)

Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. (6/1202)

Protons are involved in gating Kir2.3. To identify the molecular motif in the Kir2.3 channel protein that is responsible for this process, experiments were performed using wild-type and mutated Kir2. 3 and Kir2.1. CO2 and low pHi strongly inhibited wild-type Kir2.3 but not Kir2.1 in whole cell voltage clamp and excised inside-out patches. This CO2/pH sensitivity was completely eliminated in a mutant Kir2.3 in which the N terminus was substituted with that in Kir2.1, whereas a similar replacement of its C terminus had no effect. Site-specific mutations of all titratable residues in the N terminus, however, did not change the CO2/pH sensitivity. Using several chimeras generated systematically in the N terminus, a 10-residue motif near the M1 region was identified in which only three amino acids are different between Kir2.3 and Kir2.1. Mutations of these residues, especially Thr53, dramatically reduced the pH sensitivity of Kir2.3. Introducing these residues or even a single threonine to the corresponding positions of Kir2.1 made the mutant channel pH-sensitive. Thus, a critical motif responsible for gating Kir2.3 by protons was identified in the N terminus, which contained about 10 residues centered by Thr53.  (+info)

Exertional dyspnoea in patients with airway obstruction, with and without CO2 retention. (7/1202)

BACKGROUND: Dyspnoea is a common and disabling symptom in patients with cardiopulmonary disease. Unfortunately the mechanisms that produce dyspnoea are still poorly understood. The relationship between dyspnoea and the load on the ventilatory muscles, chemical drive, and ventilatory indices was therefore assessed in patients with obstructive pulmonary disease during an incremental exercise test. METHODS: Fifty patients with a wide range of obstructive pulmonary disease (mean forced expiratory volume in one second (FEV1) 66.1 (28.8)% predicted) performed an incremental cycle ergometer test. A subdivision was made between subjects with CO2 retention (delta PaCO2 > or = 0, n = 22) and subjects without CO2 retention (delta PaCO2 < 0, n = 28) during exercise. During the test dyspnoea (Borg score), oesophageal pressures (mechanical load on the ventilatory muscles (time tension index (TTI), blood gas tensions, and minute ventilation were measured. Correlations for changes in mechanical and chemical factors with changes in dyspnoea score were calculated to assess relevant factors. An analysis of covariance was used to examine whether there was a relationship between dyspnoea score and each of these factors and whether this relationship was different between the subgroups with and without CO2 retention. Multiple regression analysis was used to assess the independent effect of each parameter on dyspnoea sensation. Furthermore, the amplitude of pleural pressure swing ((Pi + Pe)act) generated at maximal work load (Ptot, an indication of the load on all respiratory muscles) was calculated. Analysis of covariance was used to assess whether there was a relationship between tidal volume (VT) and Ptot and whether this relationship was different between the groups (slopes are an expression of the length-tension inappropriateness, LTI). RESULTS: In the total group and the group without CO2 retention a significant correlation between dyspnoea and the increase in the inspiratory time tension index (TTIi) was present. In the group with CO2 retention a significant correlation was seen between dyspnoea and delta PaCO2. The factors delta PaO2, delta VE%MVV and delta (VT/Ti) showed a correlation with a p value of < or = 0.10 both in the total group and in those without CO2 retention. In an analysis of covariance the relationship between dyspnoea score and delta PaCO2 appeared to be significantly different between the two subgroups, being more pronounced in the group with CO2 retention. No other relationships with change in dyspnoea score were found. There was no significant relationship between VT and Ptot in the total group nor in the two subgroups, indicating some length-tension inappropriateness in both groups. CONCLUSIONS: In patients with distinctive pulmonary disease who are normocapnic or hypocapnic the mechanical load (delta TTIi) and length-tension inappropriateness (LTI) on ventilatory muscles seem to be the main determinant of exertional dyspnoea. As soon as hypercapnia occurs, this seems to override all other inputs for dyspnoea.  (+info)

A low concentration of nitrous oxide reduces dyspnoea produced by a combination of hypercapnia and severe elastic load. (8/1202)

We have measured how a low concentration of nitrous oxide affected respiratory sensation and ventilation. Severe dyspnoea was induced in nine normal subjects by a combination of hypercapnia and inspiratory elastic load (50 cm H2O litre-1). Subjects were asked to rate their sensation of respiratory discomfort using a visual analogue scale (VAS) while breathing either 20% nitrous oxide or 20% nitrogen gas mixture. We compared the effects of each gas mixture on respiratory sensation and ventilation using steady-state values of ventilatory variables and VAS scores obtained before, during and after inhalation of each gas mixture. Inhalation of 20% nitrous oxide reduced the sensation of respiratory discomfort from a median VAS score of 6.5 (range 5.0-8.1) before inhalation to 3.6 (2.4-5.9) during inhalation (P < 0.05). There was no significant change in minute ventilation but tidal volume increased during inhalation of 20% nitrogen did not alter VAS scores or ventilatory variables. We found that a low concentration of nitrous oxide greatly alleviated the intensity of dyspnoea without changing respiratory load compensation.  (+info)