Pharmacodynamics of vancomycin for the treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. (1/478)

With the emergence of beta-lactam antibiotic resistance among strains of Streptococcus pneumoniae, vancomycin has assumed an important role in the treatment of bacterial meningitis. Using the rabbit meningitis model, we evaluated the pharmacokinetics and pharmacodynamics of vancomycin in this setting. Animals were given 80 mg/kg of body weight daily in two or four divided doses to determine the penetration and activity of vancomycin in cerebrospinal fluid (CSF); each regimen was administered with and without dexamethasone. Mean peak (2 h) concentrations in CSF that were four- to eightfold higher than the minimum bactericidal concentration (MBC; 0.5 microgram/ml) for the pathogen were adequate for bacterial clearance. In both groups concentrations in CSF remained higher than the MBC for greater than 80% of the respective dosing intervals, and the penetration of vancomycin into CSF was 20%. Mean concentrations in CSF at 24 to 36 h of therapy were lower than those achieved during the first 12 h, consistent with a decline in the level of antibiotic entry into CSF as inflammation wanes. Rates of bacterial clearance were similar for the two regimens, and for all animals cultures of CSF were sterile by 36 h. The coadministration of dexamethasone significantly reduced the penetration of vancomycin into CSF by 29% and significantly lowered the rate of bacterial clearance during the first 6 h in animals receiving 20-mg/kg doses of vancomycin. For animals receiving 40-mg/kg doses, therapeutic peak concentrations in CSF were obtained even with steroid use, suggesting that the effect of steroids may be circumvented by the use of larger daily doses of vancomycin.  (+info)

Trovafloxacin in combination with vancomycin against penicillin-resistant pneumococci in the rabbit meningitis model. (2/478)

Trovafloxacin, a new fluoroquinolone, produced bactericidal activity (-0.33 +/- 0.13 delta log10 CFU/ml.h; intravenously [i.v.] administered dose, 15 mg/kg) comparable to that of vancomycin (-0.39 +/- 0.18 delta log10 CFU/ml.h; i.v. admininistered dose, 20 mg/kg) in the treatment of experimental meningitis in rabbits due to a pneumococcal strain highly resistant to penicillin (MIC of penicillin G, 4 micrograms/ml). The combination of both drugs significantly increased (P < 0.05) the killing rate (-0.60 +/- 0.23 delta log10 CFU/ml.h) compared to that produced by either monotherapy. These results were also confirmed in vitro.  (+info)

Free sialic acid levels in the cerebrospinal fluid of patients with meningitis. (3/478)

The free and bound sialic acid content of cerebrospinal fluid from patients with positive evidence (by CSF culture) of pyogenic and tuberculous meningitis was determined. The free sialic acid content was significantly raised only in cases of pyogenic meningitis, but not in tuberculous or other types of the disease.  (+info)

Effects of polysaccharide fucoidin on cerebrospinal fluid interleukin-1 and tumor necrosis factor alpha in pneumococcal meningitis in the rabbit. (4/478)

The inflammatory response in bacterial meningitis is mediated by cytokines, such as tumor necrosis factor alpha (TNF-alpha) and interleukin-1 (IL-1), which are produced in the subarachnoid space by different cells, e.g., leukocytes, astrocytes, and microglia. The recruitment of leukocytes into the cerebrospinal fluid (CSF) has been shown to contribute to the neurological damage in this disease, a process which could be enhanced by treatment with antibiotics. In this study, we have used a rabbit meningitis model for two sets of experiments with intracisternal (i.c.) injections of Streptococcus pneumoniae. First, pneumococcal cell wall (PCW) components were injected i.c., inducing an inflammatory response with pleocytosis and increased levels of CSF TNF-alpha) and IL-1 at 6 and 12 h after PCW injection. Treatment with fucoidin, known to inhibit leukocyte rolling, abolished pleocytosis and inhibited the release of TNF-alpha and IL-1. In the second experiment, live pneumococcal bacteria were injected i.c. and treatment with one dose of ampicillin (40 mg/kg of body weight intravenously) was given 16 h after induction of meningitis, causing a sevenfold increase in CSF leukocytes over a 4-h period. CSF IL-1 levels at 16 h were high but did not increase further at 20 h. Also, CSF TNF-alpha levels were high at 16 h and tended to increase at 20 h. Fucoidin treatment prevented the antibiotic-induced increase of CSF leukocytes but had no effect on the TNF-alpha and IL-1 levels. Taken together, fucoidin reduced CSF TNF-alpha and IL-1 levels in acute bacterial meningitis induced by PCW fragments but had no effect later in the course of the disease, when live bacteria were used and an inflammatory increase was caused by a dose of antibiotics.  (+info)

Rifampin reduces early mortality in experimental Streptococcus pneumoniae meningitis. (5/478)

Compared with beta-lactam antibiotics, rifampin releases smaller quantities of proinflammatory cell wall products from Streptococcus pneumoniae in vitro. Mice infected intracerebrally with S. pneumoniae were treated subcutaneously with 2-mg doses of rifampin or ceftriaxone (n=43 each) every 12 h for 3 days and then observed for another 3 days. Rifampin reduced overall mortality from 49% to 26% (P=.04). Kaplan-Meyer analysis revealed a substantial reduction of mortality during the first 24 h in mice receiving rifampin (difference in survival time: P=.007). Eight h after receiving a single 2-mg dose of rifampin or ceftriaxone, rifampin-treated mice had lower serum and cerebrospinal fluid concentrations of lipoteichoic and teichoic acids than did ceftriaxone-treated mice (median serum level: <0.5 vs. 27.0 ng/mL, P=.02; median cerebrospinal fluid level of pooled specimens: 97.5 vs. 206.0 ng/mL). Thus, the use of rifampin appears promising for reducing the release of proinflammatory bacterial components and decreasing early mortality in bacterial meningitis.  (+info)

The epidemiology of pneumococcal infection in children in the developing world. (6/478)

Pneumonia causes about three million deaths a year in young children, nearly all of which are in developing countries. Streptococcus pneumoniae (the pneumococcus) is the most important bacterial cause of pneumonia in young children and so is likely to be responsible for a high proportion of these deaths. The pneumococcus is also responsible for a substantial proportion of the 100,000-500,000 deaths that occur from meningitis in children each year. The incidence of invasive pneumococcal disease in children in the developing world is several times higher than in industrialized countries. This discrepancy may, in part, be due to socio-economic differences but genetic factors may also play a role. Children with sickle cell disease have a substantially increased risk of invasive pneumococcal infection and a search is being made for other possible genetic risk factors. Infection with human immunodeficiency virus (HIV) also predisposes to invasive pneumococcal disease and so the incidence of this disease in young children is expected to rise as increasing numbers of African and Asian children are born with a perinatally acquired HIV infection. Until recently, pneumococcal infections could be treated effectively with penicillin, a cheap and safe antibiotic. However, pneumococci that are resistant to penicillin are becoming prevalent in many countries, necessitating a change to more costly antibiotics which may be beyond the reach of the health services of poor, developing countries. The spread of antibiotic resistance has provided an added stimulus to the development of vaccines that might be able to prevent pneumococcal disease in infants. Recently developed polysaccharide-protein conjugate vaccines show promise and are now undergoing field trials. How deployment of these vaccines will influence the balance between invasive pneumococcal infections and asymptomatic nasopharyngeal carriage of pneumococci is uncertain.  (+info)

Pretreatment with granulocyte colony-stimulating factor attenuates the inflammatory response but not the bacterial load in cerebrospinal fluid during experimental pneumococcal meningitis in rabbits. (7/478)

A possible immunomodulatory role of granulocyte colony-stimulating factor (G-CSF) was investigated in an experimental pneumococcal meningitis model in rabbits. Animals were pretreated with G-CSF (10 micrograms/kg subcutaneously twice a day) starting 48 h before in vivo and ex vivo experiments, causing a five- to six-fold increase in the peripheral leukocyte level. Meningitis was induced by intracisternal inoculation of approximately 4 x 10(5) CFU of Streptococcus pneumoniae type 3. Neutrophil pleocytosis and interleukin-8 (IL-8) levels were significantly attenuated in G-CSF-pretreated animals compared to untreated animals (P < 0.05). Furthermore, G-CSF pretreatment significantly delayed alterations in cerebrospinal fluid (CSF) tumor necrosis factor alpha and IL-1beta levels, as well as protein and glucose levels (P < 0.05). No difference in CSF bacterial concentrations was found, whereas the blood bacterial concentration was significantly decreased in G-CSF-pretreated animals (P < 0.05). Ex vivo chemotaxis of neutrophils isolated from G-CSF-pretreated animals was significantly decreased compared to that of neutrophils from untreated animals (P < 0.05). In conclusion, G-CSF pretreatment attenuates meningeal inflammation and enhances systemic bacterial killing. Further preclinical studies are required to investigate whether this may affect the clinical course of meningitis and thus whether G-CSF treatment may have a beneficial role in pneumococcal meningitis.  (+info)

Quinupristin/dalfopristin attenuates the inflammatory response and reduces the concentration of neuron-specific enolase in the cerebrospinal fluid of rabbits with experimental Streptococcus pneumoniae meningitis. (8/478)

The inflammatory response following initiation of antibiotic therapy and parameters of neuronal damage were compared during intravenous treatment with quinupristin/dalfopristin (100 mg/kg as either a short or a continuous infusion) and ceftriaxone (10 mg/kg/h) in a rabbit model of Streptococcus pneumoniae meningitis. With both modes of administration, quinupristin/dalfopristin was less bactericidal than ceftriaxone. However, the concentration of proinflammatory cell wall components (lipoteichoic acid (LTA) and teichoic acid (TA)) and the activity of tumour necrosis factor (TNF) in cerebrospinal fluid (CSF) were significantly lower in the two quinupristin/dalfopristin groups than in ceftriaxone-treated rabbits. The median LTA/TA concentrations (25th/75th percentiles) were as follows: (i) 14 h after infection: 133 (72/155) ng/mL for continuous infusion of quinupristin/dalfopristin and 193 (91/308) ng/mL for short duration infusion, compared with 455 (274/2042) ng/mL for ceftriaxone (P = 0.002 and 0.02 respectively); (ii) 17 h after infection: 116 (60/368) ng/mL for continuous infusion of quinupristin/dalfopristin and 117 (41/247) ng/mL for short duration infusion, compared with 694 (156/2173) ng/mL for ceftriaxone (P = 0.04 and 0.03 respectively). Fourteen hours after infection the median TNF activity (25th/75th percentiles) was 0.2 (0.1/1.9) U/mL for continuous infusion of quinupristin/dalfopristin and 0.1 (0.01/3.5) U/mL for short duration infusion, compared with 30 (4.6/180) U/mL for ceftriaxone (P = 0.02 for each comparison); 17 h after infection the TNF activity was 2.8 (0.2/11) U/mL (continuous infusion of quinupristin/dalfopristin) and 0.1 (0.04/6.1) U/mL (short duration infusion), compared with 48.6 (18/169) U/mL for ceftriaxone (P = 0.002 and 0.001). The concentration of neuron-specific enolase (NSE) 24 h after infection was significantly lower in animals treated with quinupristin/dalfopristin: 4.6 (3.3/5.7) microg/L (continuous infusion) and 3.6 (2.9/4.7) microg/L (short duration infusion) than in those treated with ceftriaxone (17.7 (8.8/78.2) microg/L) (P = 0.03 and 0.009 respectively). In conclusion, antibiotic treatment with quinupristin/dalfopristin attenuated the inflammatory response within the subarachnoid space after initiation of antibiotic therapy. The concentration of NSE in the CSF, taken as a measure of neuronal damage, was lower in quinupristin/dalfopristin-treated rabbits than in ceftriaxone-treated rabbits.  (+info)