Humoral immune responses to Neisseria meningitidis in children. (1/612)

An understanding of the nature of immunity to serogroup B meningococci in childhood is necessary in order to establish the reasons for poor responses to candidate vaccines in infancy. We sought to examine the nature of humoral immune responses following infection in relation to age. Serum bactericidal activity was poor in children under 12 months of age despite recent infection with Neisseria meningitidis. The highest levels of bactericidal activity were seen in children over 10 years of age. However, infants produced levels of total immunoglobulin G (IgG) and IgG subclass antibodies similar to those in older children in a meningococcal enzyme-linked immunosorbent assay. Most antibody was of the IgG1 and IgG3 subclasses. This striking age dependency of bactericidal antibody response following infection is not apparently due to failure of class switching in infants but might be due to qualitative differences in antibody specificity or affinity.  (+info)

Cellular immune responses to Neisseria meningitidis in children. (2/612)

There is an urgent need for effective vaccines against serogroup B Neisseria meningitidis. Current experimental vaccines based on the outer membrane proteins (OMPs) of this organism provide a measure of protection in older children but have been ineffective in infants. We postulated that the inability of OMP vaccines to protect infants might be due to age-dependent defects in cellular immunity. We measured proliferation and in vitro production of gamma interferon (IFN-gamma), tumor necrosis factor alpha, and interleukin-10 (IL-10) in response to meningococcal antigens by peripheral blood mononuclear cells (PBMCs) from children convalescing from meningococcal disease and from controls. After meningococcal infection, the balance of cytokine production by PBMCs from the youngest children was skewed towards a TH1 response (low IL-10/IFN-gamma ratio), while older children produced more TH2 cytokine (higher IL-10/IFN-gamma ratio). There was a trend to higher proliferative responses by PBMCs from older children. These responses were not influenced by the presence or subtype of class 1 (PorA) OMP or by the presence of class 2/3 (PorB) or class 4 OMP. Even young infants might be expected to develop adequate cellular immune responses to serogroup B N. meningitidis vaccines if a vaccine preparation can be formulated to mimic the immune stimulus of invasive disease, which may include stimulation of TH2 cytokine production.  (+info)

Human opsonins induced during meningococcal disease recognize outer membrane proteins PorA and PorB. (3/612)

Human opsonins directed against specific meningococcal outer membrane structures in sera obtained during meningococcal disease were quantified with a recently developed antigen-specific, opsonin-dependent phagocytosis and oxidative burst assay. Outer membrane vesicles (OMVs) and PorA (class 1) and PorB (class 3) proteins purified from mutants of the same strain (44/76; B:15:P1.7. 16) were adsorbed to fluorescent beads, opsonized with acute- and convalescent-phase sera from 40 patients with meningococcal disease, and exposed to human leukocytes. Flow cytometric quantitation of the resulting leukocyte phagocytosis products (PPs) demonstrated that disease-induced serum opsonins recognized meningococcal OMV components and both porins. The PPPorA and PPPorB values induced by convalescent-phase sera correlated positively with the PPOMV values. However, the PPPorB values were higher than the PPPorA values in convalescent-phase sera (medians [ranges] of 754 [17 to 1,057] and 107 [4 to 458], respectively) (P < 0.0001) and correlated positively with higher levels of immunoglobulin G against PorB than against PorA as evaluated by enzyme-linked immunosorbent assay. Extensive individual variations in the anti-OMV and antiporin serum opsonic activities between patients infected by serotypes and serosubtypes homologous and heterologous to the target antigens were observed. Simultaneously measured oxidative burst activity correlated with the opsonophagocytosis, an indication that both of these important steps in the in vitro phagocytic elimination of meningococci are initiated by opsonins directed against OMV components, including PorA and PorB. In conclusion, human patient opsonins against meningococcal OMV components and in particular PorB epitopes were identified by this new method, which might facilitate selection of opsonin-inducing meningococcal antigens for inclusion in future vaccines.  (+info)

Ultrasound-enhanced latex immunoagglutination and PCR as complementary methods for non-culture-based confirmation of meningococcal disease. (4/612)

Preadmission administration of antibiotics to patients with suspected meningococcal infection has decreased the likelihood of obtaining an isolate and has stimulated development of rapid and reliable non-culture-based diagnostic methods. The sensitivity of the conventional test card latex agglutination test (TCLAT) for detection of capsular polysaccharide has been reported to be suboptimal. In the United Kingdom meningococcal DNA detection by PCR has become readily available and is now used as a first-line investigation. Recently, the performance of latex antigen detection has been markedly improved by ultrasound enhancement. Three tests for laboratory confirmation of meningococcal infection, (i) PCR assays, (ii) TCLAT, and (iii) ultrasound-enhanced latex agglutination test (USELAT), were compared in a retrospective study of 125 specimens (serum, plasma, and cerebrospinal fluid specimens) from 90 patients in whom meningococcal disease was suspected on clinical grounds. Samples were from patients with (i) culture-confirmed meningococcal disease, (ii) culture-negative but PCR-confirmed meningococcal disease, and (iii) clinically suspected but non-laboratory-confirmed meningococcal disease. USELAT was found to be nearly five times more sensitive than TCLAT. Serogroup characterization was obtained by both PCR and USELAT for 44 samples; all results were concordant and agreed with the serogroups determined for the isolates when the serogroups were available. For 12 samples negative by USELAT, the serogroup was determined by PCR; however, for 12 other specimens for which PCR had failed to indicate the serogroup, USELAT gave a result. USELAT is a rapid, low-cost method which can confirm a diagnosis, identify serogroups, and guide appropriate management of meningococcal disease contacts. A complementary non-culture-based confirmation strategy of USELAT for local use supported by a centralized PCR assay service for detection of meningococci would give the benefits of timely information and improved epidemiological data.  (+info)

Use of Dorset egg medium for maintenance and transport of Neisseria meningitidis and Haemophilus influenzae type b. (5/612)

Studies of bacterial meningitis are hampered by the inability to maintain the viability of etiological agents during transport to reference laboratories. The long-term survival rate of 20 isolates of Neisseria meningitidis and Haemophilus influenzae type b (Hib) on Dorset egg medium, supplemented Columbia agar base medium, chocolate agar, and Amies medium was compared with that on 70% GC agar (chocolate) transport medium. N. meningitidis isolates were also inoculated onto 5% horse blood agar, and Hib was inoculated onto Haemophilus test medium. All of the N. meningitidis isolates remained viable on Dorset egg medium for 21 days; viability on the other media was poor after only 7 days. Recovery rates of Hib isolates were similar on Dorset egg and Haemophilus test media (100% after 21 days) and significantly better than on the other media. Dorset egg medium is inexpensive and easy to make and may be invaluable for studies of bacterial meningitis in developing countries.  (+info)

Meningitis caused by Neisseria meningitidis serogroup 135. (6/612)

The first descriptions of meningitis in childhood caused by Neisseria meningitidis serogroup 135 are presented. Difficulties with identification of unusual serogroups of N. meningitidis are discussed.  (+info)

Differential expression of matrix metalloproteinases in bacterial meningitis. (7/612)

Matrix metalloproteinases (MMPs) are implicated in the pathogenesis of various inflammatory diseases of the central nervous system. Evidence is accumulating that gelatinase B (MMP-9) might be involved in the pathogenesis of meningitis, but the spectrum of different MMPs involved in the inflammatory reaction of this disease has not been determined. We investigated the temporal and spatial mRNA expression pattern of gelatinase B in experimental meningococcal meningitis in rats. In contrast to controls, increased mRNA levels with peak values 6 h after injection with menigococci were found in brain specimens of the animals. Elevated MMP-9 mRNA expression was accompanied by enhanced proteolytic activity, as demonstrated by gelatin zymography, and positive immunoreactivity. The mRNA expression pattern of six other MMPs was investigated. Collagenase-3 and stromelysin-1 mRNAs were also found to be upregulated. In contrast, mRNA levels for gelatinase A, matrilysin, stromelysin-2 and stromelysin-3 remained unchanged. As evidenced by significantly increased intracranial pressure and by leakage of intravenously injected Evans blue through the blood vessel walls into the brain parenchyma, the animals injected with meningococci revealed signs of blood-brain barrier disruption. Augmented proteolytic activity of MMP-9 could also be demonstrated in CSF samples obtained from patients with bacterial meningitis, underlining the clinical relevance of our experimental findings. Our data indicate that gelatinase B, collagenase-3 and stromelysin-1 are selectively upregulated in bacterial meningitis and thus may contribute to the pathogenesis of this infectious disease of the central nervous system.  (+info)

The epidemiological impact of antimeningococcal B vaccination in Cuba. (8/612)

The incidence of invasive meningococcal disease (IMD) before (1984-1988) and after (1989-1994), a nationwide intervention with VA-MENGOC-BC vaccination started in 1989, was compared. The prevaccination period incidence density (ID> 8.8/10(5) year-person) was higher than the postvaccination ID (ID< 6.5/10(5) year-person). The percentage proportional differences from the start to the end of each period of ID in the vaccinal period was higher (87%) than the prevaccinal (37%) with significant differences among vaccinated groups (< 25 years old). A break-point (Chow test) was confirmed by the decrease in the ID between 1989 and 1990 in children under 1 year old, 5-9, 10-14, 15-19 and 50-54 years. Comparison of ID using maps showed a decrease in IMD in all municipalities during the postvaccination period. These findings support the epidemiological impact of VA-MENGOC-BC vaccination in the reduction of IMD morbidity.  (+info)