Histidinol phosphate phosphatase, catalyzing the penultimate step of the histidine biosynthesis pathway, is encoded by ytvP (hisJ) in Bacillus subtilis. (1/21)

The deduced product of the Bacillus subtilis ytvP gene is similar to that of ORF13, a gene of unknown function in the Lactococcus lactis histidine biosynthesis operon. A B. subtilis ytvP mutant was auxotrophic for histidine. The only enzyme of the histidine biosynthesis pathway that remained uncharacterized in B. subtilis was histidinol phosphate phosphatase (HolPase), catalyzing the penultimate step of this pathway. HolPase activity could not be detected in crude extracts of the ytvP mutant, while purified glutathione S-transferase-YtvP fusion protein exhibited strong HolPase activity. These observations demonstrated that HolPase is encoded by ytvP in B. subtilis and led us to rename this gene hisJ. Together with the HolPase of Saccharomyces cerevisiae and the presumed HolPases of L. lactis and Schizosaccharomyces pombe, HisJ constitutes a family of related enzymes that are not homologous to the HolPases of Escherichia coli, Salmonella typhimurium, and Haemophilus influenzae.  (+info)

Properties of a constitutive alkaline phosphatase from strain 74A of the mold Neurospora crassa. (2/21)

A constitutive alkaline phosphatase was purified to apparent homogeneity as determined by polyacrylamide gel electrophoresis from mycelia of the wild strain 74A of the mold Neurospora crassa, after growth on acetate and in the presence of saturating amounts of inorganic phosphate (Pi) for 72 h at 30 degrees C. The molecular mass was 58 kDa and 56 kDa as determined by exclusion chromatography and SDS-PAGE, respectively. This monomeric enzyme shows an apparent optimum pH ranging from 9.5 to 10.5 and Michaelis kinetics for the hydrolysis of p-nitrophenyl phosphate (the K(m) and Hill coefficient values were 0.35 mM and 1.01, respectively), alpha-naphthyl phosphate (the K(m) and Hill coefficient values were 0.44 mM and 0.97, respectively), beta-glycerol phosphate (the K(m) and Hill coefficient values were 2.46 mM and 1.01, respectively) and L-histidinol phosphate (the K(m) and Hill coefficient values were 0.47 mM and 0.94, respectively) at pH 8.9. The purified enzyme is activated by Mg(2+), Zn(2+) and Tris-HCl buffer, and is inhibited by Be(2+), histidine and EDTA. Also, 0.3 M Tris-HCl buffer protected the purified enzyme against heat inactivation at 70 degrees C (half-life of 19.0 min, k = 0.036 min(-1)) as compared to 0.3 M CHES (half-life of 2.3 min, k = 0.392 min(-1)) in the same experiment.  (+info)

Repression of the tyrosine, lysine, and methionine biosynthetic pathways in a hisT mutant of Salmonella typhimurium. (3/21)

A comparison was made of the repressibility of certain enzymes in the tyrosine, methionine, and lysine biosynthetic pathways in wild-type Salmonella typhimurium and a hisT mutant. The results show that (i) tyrosine represses the synthesis of the tyrosine-sensitive 3-deoxy-D-arabino-heptulsonic acid 7-phosphate synthetase and the tyrosine aminotransferase to the same extent in a hisT mutant as in wild type and (ii) there is no detectable alteration in the extent to which methionine represses O-succinylhomoserine synthetase or in the extent to which lysine represses the lysine-sensitive beta-aspartokinase as a result of the hisT mutation.  (+info)

The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit. (4/21)

The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.  (+info)

Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. (5/21)

BACKGROUND: Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. RESULTS: A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L-histidinol-phosphate phosphatase (EC in C. glutamicum. The cg0910 gene, renamed hisN, and its encoded enzyme have putative orthologs in almost all Actinobacteria, including mycobacteria and streptomycetes. CONCLUSION: The absence of regional and sequence preferences of IS6100-transposition demonstrate that the established system is suitable for efficient genome-scale random mutagenesis in the sequenced type strain C.glutamicum ATCC 13032. The identification of the hisN gene encoding histidinol-phosphate phosphatase in C. glutamicum closed the last gap in histidine synthesis in the Actinobacteria. The system might be a valuable genetic tool also in other bacteria due to the broad host-spectrum of IS6100.  (+info)

Structural snapshots of Escherichia coli histidinol phosphate phosphatase along the reaction pathway. (6/21)

HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).  (+info)

Novel monofunctional histidinol-phosphate phosphatase of the DDDD superfamily of phosphohydrolases. (7/21)


Characterization and site-directed mutagenesis of Wzb, an O-phosphatase from Lactobacillus rhamnosus. (8/21)