Modulation of host cell membrane fluidity: a novel mechanism for preventing bacterial adhesion. (1/88)

Adhesion of bacterial enteropathogens to host mucosal surfaces is a critical primary step in the pathogenesis of diarrheal disease. We investigated the effects of altering the physical properties of eukaryotic cells on bacterial adhesion with the use of a series of three structurally dissimilar membrane fluidizers and several Escherichia coli as test strains. Lipid fluidity of the cell plasma membrane was measured by steady-state fluorescence anisotropy employing the probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3, 5-hexatriene. There was a dose-dependent and reversible inhibition of bacterial adhesion with increasing membrane fluidity. Time course experiments indicated that increasing membrane fluidity during the early stages of bacterial adhesion was essential for inhibition of attachment. None of the fluidizers affected the viability of either eukaryotic or prokaryotic cells. These findings demonstrate, for the first time, that changes in plasma membrane physical properties of epithelial cells can prevent microbial adhesion. This also suggests that altering the membrane properties of host cells could form a basis for novel strategies to prevent bacterial adhesion during infection in vivo.  (+info)

Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. (2/88)

The protein assumed to be associated with bacteriochlorophyll (BChl) a in chlorosomes from the photosynthetic green filamentous bacterium Chloroflexus aurantiacus was investigated by alkaline treatment, proteolytic digestion and a new treatment using 1-hexanol, sodium cholate and Triton X-100. Upon alkaline treatment, only the 5.7 kDa CsmA protein was removed from the chlorosomes among six proteins detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, concomitantly with the disappearance of BChl a absorption at 795 nm. Trypsin treatment removed two proteins with molecular masses of 11 and 18 kDa (CsmN and CmsM), whereas the spectral properties of BChl a and BChl c were not changed. By the new hexanol-detergent (HD) treatment, most BChl c and all of the detected proteins except CsmA were removed from the chlorosomes without changing the BChl a spectral properties. Subsequent proteinase K treatment of these HD-treated chlorosomes caused digestion of CsmA and a simultaneous decrease of the BChl a absorption band. Based on these results, we suggest that CsmA is associated with BChl a in the chlorosomes. This suggestion was supported by the measured stoichiometric ratio of BChl a to CsmA in isolated chlorosomes, which was estimated to be between 1.2 and 2.7 by amino acid analysis of the SDS-PAGE-resolved protein bands.  (+info)

A kinetic model of the transient phase in the response of olfactory receptor neurons. (3/88)

A model is presented that predicts the instantaneous spike rate of an olfactory receptor neuron (ORN) in response to the quality and concentration of an odor stimulus. The model accounts for the chemical kinetics of ligand-receptor binding and activation processes, and implicitly the initiation of second messenger cascades that lead to depolarization and/or hyperpolarization of the ORN membrane. Both of these polarizing processes are included in the most general form of the model, as well as a process that restores the voltage to its negative resting state. The spike rate is assumed to be linearly proportional to the level of voltage depolarization above a critical negative voltage level. The model includes the simplifying assumption that activation of bound ligand-receptor complexes by G-proteins and other enabling molecules follows a Monod function that has the ratio of enabling molecules to bound unactivated ligand-receptor complexes as its argument. Parameters are selected that provide an excellent fit of the model to previously published empirical data on the response of cockroach ORNs to pulsed 1-hexanol stimuli. The sensitivity of model output to various model parameters is investigated and changes to parameters are discussed that would improve the ability of ORNs to follow rapidly pulsed stimuli.  (+info)

Alkanols inhibit respiration of intact mitochondria and display cutoff similar to that measured in vivo. (4/88)

Primary aliphatic alcohols from hexanol to pentadecanol were tested for their effects on the succinate-supported respiration of intact mitochondria isolated from rat liver. Alkanols were found to inhibit State 3 and uncoupled respiration. The ADP/oxygen ratios, a measure of the efficiency of oxidative phosphorylation, also were lowered, but to a lesser degree when compared on the basis of percentage of controls. Given each alkanol's nearly identical effect on State 3 and uncoupled respiration, action is not directly on ATP synthase, but earlier in the respiratory process. In agreement with many other studies of the homologous series of alkanols, potency increased with number of carbons in the chain until reaching a peak, in this case at undecanol, then tapered off to tridecanol before reaching a cutoff, at tetradecanol. If tetradecanol or longer homologs have activity, it is only after a lag phase of >15-min preincubation. All alkanols up to tridecanol also acted as uncouplers. At higher doses, hexanol inhibited State 4 rates, whereas longer chain alkanols did not, even at doses that completely eliminated respiratory control. Hexanol and decanol also were assayed against freeze-thawed (broken) mitochondria to distinguish effects on the mitochondrial substrate carrier from those on the electron transport chain. Both compounds were only weak inhibitors of respiration in broken mitochondria, suggesting that inhibition originates from interference with the dicarboxylate carrier, which must transport succinate across the mitochondrial membranes before it can be fed into complex II, rather than affecting the electron transport chain itself.  (+info)

Blocking and the detection of odor components in blends. (5/88)

Recent studies of olfactory blocking have revealed that binary odorant mixtures are not always processed as though they give rise to mixture-unique configural properties. When animals are conditioned to one odorant (A) and then conditioned to a mixture of that odorant with a second (X), the ability to learn or express the association of X with reinforcement appears to be reduced relative to animals that were not preconditioned to A. A recent model of odor-based response patterns in the insect antennal lobe predicts that the strength of the blocking effect will be related to the perceptual similarity between the two odorants, i.e. greater similarity should increase the blocking effect. Here, we test that model in the honeybee Apis mellifera by first establishing a generalization matrix for three odorants and then testing for blocking between all possible combinations of them. We confirm earlier findings demonstrating the occurrence of the blocking effect in olfactory learning of compound stimuli. We show that the occurrence and the strength of the blocking effect depend on the odorants used in the experiment. In addition, we find very good agreement between our results and the model, and less agreement between our results and an alternative model recently proposed to explain the effect.  (+info)

Effects of normal alcohols and isoflurane on lipid headgroup dynamics in nicotinic acetylcholine receptor-rich lipid vesicles. (6/88)

The trend of evidence suggests that general anesthetics act directly on proteins in the neural membrane. However, the fact that the functions of nicotinic acetylcholine receptor (sodium permeability, desensitization rate) are modulated by the composition of the membrane in which it is reconstituted has been thought to be a result of the variation of interactions between acetylcholine receptor and membrane. In this study, protein-lipid interaction at the level of the lipid headgroup was investigated using electron paramagnetic resonance (EPR) and headgroup spin label. Lipid headgroup mobility was evaluated with rotational correlation time from the EPR spectrum. Protein-lipid interaction at headgroup depth was demonstrated from the motionally restricted component of the spectrum. Rotational correlation time increased to 13 ns from 7 ns due to protein-lipid interaction. The effect of anesthetic (ethanol, 1-hexanol, and isoflurane) on protein-lipid interaction was investigated, and the correlation time was 13 ns. It is concluded that the anesthetics used in this study did not alter protein-lipid interaction at the level of the lipid headgroup, so far as observed by rotational correlation time, without excluding the possibility that anesthetics that perturb protein-lipid interactions modulate receptor functions via this mechanism.  (+info)

Defensive function of herbivore-induced plant volatile emissions in nature. (7/88)

Herbivore attack is known to increase the emission of volatiles, which attract predators to herbivore-damaged plants in the laboratory and agricultural systems. We quantified volatile emissions from Nicotiana attenuata plants growing in natural populations during attack by three species of leaf-feeding herbivores and mimicked the release of five commonly emitted volatiles individually. Three compounds (cis-3-hexen-1-ol, linalool, and cis-alpha-bergamotene) increased egg predation rates by a generalist predator; linalool and the complete blend decreased lepidopteran oviposition rates. As a consequence, a plant could reduce the number of herbivores by more than 90% by releasing volatiles. These results confirm that indirect defenses can operate in nature.  (+info)

Phthalates rapidly increase production of reactive oxygen species in vivo: role of Kupffer cells. (8/88)

The role of oxidants in the mechanism of tumor promotion by peroxisome proliferators remains controversial. The idea that induction of acyl-coenzyme A oxidase leads to increased production of H(2)O(2), which damages DNA, seems unlikely; still, free radicals might be important in signaling in specialized cell types such as Kupffer cells, which produce mitogens. Because hard evidence for increased oxidant production in vivo after treatment with peroxisome proliferators is lacking, the spin-trapping technique and electron spin resonance spectroscopy were used. Rats were given di(2-ethylhexyl) phthalate (DEHP) acutely. The spin trapping agent alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone was also given and bile samples were collected for 4 h. Under these conditions, the intensity of the six-line radical adduct signal increased to a maximum value of 2.5-fold 2 h after administration of DEHP, before peroxisomal oxidases were induced. Furthermore, DEHP given with [(13)C(2)]dimethyl sulfoxide produced a 12-line electron spin resonance spectrum, providing evidence that DEHP stimulates (*)OH radical formation in vivo. Furthermore, when rats were pretreated with dietary glycine, which inactivates Kupffer cells, DEHP did not increase radical signals. Moreover, similar treatments were performed in knockout mice deficient in NADPH oxidase (p47(phox) subunit). Importantly, DEHP increased oxidant production in wild-type but not in NADPH oxidase-deficient mice. These data provide evidence for the hypothesis that the molecular source of free radicals induced by peroxisome proliferators is NADPH oxidase in Kupffer cells. On the contrary, radical adduct formation was not affected in peroxisome proliferator-activated receptor alpha knockout mice. These observations represent the first direct, in vivo evidence that phthalates increase free radicals in liver before peroxisomal oxidases are induced.  (+info)