Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3'-end formation. (1/856)

Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrplp is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrpl p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrpl p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.  (+info)

Heterogeneous nuclear ribonucleoprotein D0B is a sequence-specific DNA-binding protein. (2/856)

Complement receptor 2 (CR2) is important in the regulation of the B lymphocyte response; the regulation of its expression is therefore of central importance. We recently reported that a 42 kDa heterogeneous nuclear ribonucleoprotein (hnRNP) is involved in the transcriptional regulation of the human CR2 gene [Tolnay, Lambris and Tsokos (1997) J. Immunol. 159, 5492-5501]. We cloned the cDNA encoding this protein and found it to be identical with hnRNP D0B, a sequence-specific RNA-binding protein. By using a set of mutated oligonucleotides, we demonstrated that the recombinant hnRNP D0B displays sequence specificity for double-stranded oligonucleotide defined by the CR2 promoter. We conducted electrophoretic mobility-shift assays to estimate the apparent Kd of hnRNP D0B for the double-stranded DNA motif and found it to be 59 nM. Interestingly, hnRNP D0B displayed affinities of 28 and 18 nM for the sense and anti-sense strands of the CR2 promoter-defined oligonucleotide respectively. The significantly greater binding affinity of hnRNP D0B for single-stranded DNA than for double-stranded DNA suggests that the protein might melt the double helix. The intranuclear concentration of sequence-specific protein was estimated to be 250-400 nM, indicating that the protein binds to the CR2 promoter in vivo. Co-precipitation of a complex formed in vivo between hnRNP D0B and the TATA-binding protein demonstrates that hnRNP D0B interacts with the basal transcription apparatus. Our results suggest a new physiological role for hnRNP D0B that involves binding to double- and single-stranded DNA sequences in a specific manner and functioning as a transcription factor.  (+info)

hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3'NTR of the HCV RNA genome. (3/856)

Like other members of the Flaviviridae family, the 3' non-translated region (NTR) of the hepatitis C virus (HCV) is believed to function in the initiation and regulation of viral RNA replication by interacting with components of the viral replicase complex. To inves-tigate the possibility that host components may also participate in this process, we used UV cross-linking assays to determine if any cellular proteins could bind specifically to the 3'NTR RNA. We demonstrate the specific interaction of two host proteins with the extensive pyrimidine-rich region within the HCV 3'NTR. One host protein migrates as a doublet with a molecular weight of 57 kDa and is immunoreactive with antisera specific for polypyrimidine tract-binding protein (PTB), and the other protein (35 kDa) is recognized by a monoclonal antibody specific for heterogeneous nuclear ribonucleoprotein C (hnRNP C). These results suggest that recognition of the large pyrimidine-rich region by PTB and hnRNP C may play a role in the initiation and/or regulation of HCV RNA replication.  (+info)

Identification of the poly(C) binding protein in the complex associated with the 3' untranslated region of erythropoietin messenger RNA. (4/856)

Hypoxia regulates expression of erythropoietin (EPO), a glycoprotein that stimulates erythrocytosis, at the level of transcription and also possibly at the level of messenger RNA (mRNA) stability. A pyrimidine-rich region within the EPO mRNA 3' untranslated region was implicated in regulation of EPO mRNA stability element and shown to bind protein factors. In the present study we wished to identify the protein factor binding to the pyrimidine-rich sequence in the EPO mRNA stability element. Using mobility shift assays, ultraviolet light cross-linking, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electroelution of protein factors from the gel slices corresponding to the ribonucleoprotein complexes, we found that two isoforms of a 40 kD poly(C) binding protein (PCBP, also known as alphaCP or hnRNPE), PCBP1, and PCBP2 are present in that complex. In Hep3B or HepG2 cells hypoxia induces neither expression of PCBP nor formation of the ribonucleoprotein complex associated with EPO mRNA that involves PCBP.  (+info)

Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. (5/856)

In the rat beta-tropomyosin (beta-TM) gene, exons 6 and 7 are spliced alternatively in a mutually exclusive manner. Exon 6 is included in mRNA encoding nonmuscle TM-1, whereas exon 7 is used in mRNA encoding skeletal muscle beta-TM. Previously, we demonstrated that a six nucleotide mutation at the 5' end of exon 7, designated as ex-1, activated exon 7 splicing in nonmuscle cells. In this study, we show that the activating effect of this mutation is not the result of creating an exonic splicing enhancer (ESE) or disrupting a putative secondary structure. The sequence in exon 7 acts as a bona fide exonic splicing silencer (ESS), which is bound specifically by a trans-acting factor. Isolation and peptide sequencing reveal that this factor is hnRNP H, a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family. Binding of hnRNP H correlates with the ESS activity. Furthermore, addition of antibodies that specifically recognizes hnRNP H to the splicing reactions or partial depletion of hnRNP H from nuclear extract activates exon 7 splicing in vitro and this effect can be reversed by addition of purified recombinant hnRNP H. These results indicate that hnRNP H participates in exclusion of exon 7 in nonmuscle cells. The involvement of hnRNP H in the activity of an ESS may represent a prototype for the regulation of tissue- and developmental-specific alternative splicing.  (+info)

Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. (6/856)

Initiation of translation of the animal picornavirus RNAs is via a mechanism of direct internal ribosome entry, which requires a substantial segment of the viral 5'-untranslated region, generally known as the IRES (for "internal ribosome entry site"). Because, however, translation of the RNAs of members of the enterovirus, and more especially, the rhinovirus subgroups of the Picornaviridae is restricted in the reticulocyte lysate system, but is greatly stimulated by the addition of HeLa cell extracts, the implication is that, in these cases, internal initiation also requires cellular trans-acting factors that are more abundant in HeLa cell extracts than in rabbit reticulocytes. This was used as the basis of a functional assay for the purification of the HeLa cell factors required for translation dependent on the human rhinovirus-2 (HRV) IRES. There are two such HeLa cell factors separable by ion-exchange chromatography, each of which is individually active in the assay, although their combined effect is synergistic. One of these activities is shown to be polypyrimidine-tract binding protein (PTB) on the grounds that (1) the activity copurifies to homogeneity with PTB and (2) recombinant PTB expressed in Escherichia coli stimulates HRV IRES-dependent translation with a specific activity similar to that of the purified HeLa cell factor. Furthermore, it is shown that recombinant PTB also stimulates the translation of RNAs bearing the poliovirus type 1 (Mahoney) IRES.  (+info)

Identification of chURP, a nuclear calmodulin-binding protein related to hnRNP-U. (7/856)

In a screen for myosin-like proteins in embryonic chicken brain, we have identified a novel nuclear protein structurally related to hnRNP-U (heterogeneous nuclear ribonuclear protein U). We have called this protein chURP, for chicken U-related protein. In this screen, chURP was immunoreactive with two myosin antibodies and, in common with the unconventional myosins, bound calmodulin in vitro in both the presence and absence of calcium ions. Determination of 757 amino acids of the chURP sequence revealed that it shares 41% amino acid identity with human and rat hnRNP-U, although chURP and hnRNP-U appear not to be orthologous proteins. ChURP is ubiquitously expressed in the nuclei of all chick tissues and, as one of a growing number of calmodulin-binding proteins to be identified in the nucleus, further highlights the potential of calmodulin as a regulator of nuclear metabolism.  (+info)

Heterogeneous nuclear ribonucleoprotein B1 as a new marker of early detection for human lung cancers. (8/856)

Heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 is an RNA binding protein that is required for maturation of mRNA precursor. Tockman et al. previously reported that hnRNP A2/B1 with a M(r) of 31,000 is overexpressed from the early clinical stage of human lung cancer (M. S. Tockman et al., J. Clin. Oncol., 6: 1685-1693, 1988). However, when hnRNP A2/B1 mRNA and hnRNP B1 mRNA were separately studied, we found unique evidence that hnRNP B1 mRNA, which is a splicing variant of hnRNP A2 mRNA, was more significantly elevated in lung cancer tissues than hnRNP A2/B1 mRNA. Our hnRNP B1-specific polyclonal antibody specifically recognized hnRNP B1 protein as a M(r) 37,000 nuclear protein by Western blotting but did not recognize hnRNP A2 protein. Immunohistochemical staining with the hnRNP B1 antibody revealed that hnRNP B1 protein was specifically stained in the nuclei of human cancer cells, and in squamous cell carcinomas in particular, but not in those of normal adjacent lung epithelial cells. We think that hnRNP B1 protein of M(r) 37,000, not hnRNP A2, is well qualified as a biomarker for the detection of human lung cancer.  (+info)