Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. (1/259)

Acylated homoserine lactone (AHL)-mediated gene expression controls phenotypes involved in colonization, often specifically of higher organisms, in both marine and terrestrial environments. The marine red alga Delisea pulchra produces halogenated furanones which resemble AHLs structurally and show inhibitory activity at ecologically realistic concentrations in AHL bioassays. Evidence is presented that halogenated furanones displace tritiated OHHL [N-3-(oxohexanoyl)-L-homoserine lactone] from Escherichia coli cells overproducing LuxR with potencies corresponding to their respective inhibitory activities in an AHL-regulated bioluminescence assay, indicating that this is the mechanism by which furanones inhibit AHL-dependent phenotypes. Alternative mechanisms for this phenomenon are also addressed. General metabolic disruption was assessed with two-dimensional PAGE, revealing limited non-AHL-related effects. A direct chemical interaction between the algal compounds and AHLs, as monitored by 1H NMR spectroscopy, was shown not to occur in vitro. These results support the contention that furanones, at the concentrations produced by the alga, can control bacterial colonization of surfaces by specifically interfering with AHL-mediated gene expression at the level of the LuxR protein.  (+info)

Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1. (2/259)

The newly isolated bacterial strain GP1 can utilize 1, 2-dibromoethane as the sole carbon and energy source. On the basis of 16S rRNA gene sequence analysis, the organism was identified as a member of the subgroup which contains the fast-growing mycobacteria. The first step in 1,2-dibromoethane metabolism is catalyzed by a hydrolytic haloalkane dehalogenase. The resulting 2-bromoethanol is rapidly converted to ethylene oxide by a haloalcohol dehalogenase, in this way preventing the accumulation of 2-bromoethanol and 2-bromoacetaldehyde as toxic intermediates. Ethylene oxide can serve as a growth substrate for strain GP1, but the pathway(s) by which it is further metabolized is still unclear. Strain GP1 can also utilize 1-chloropropane, 1-bromopropane, 2-bromoethanol, and 2-chloroethanol as growth substrates. 2-Chloroethanol and 2-bromoethanol are metabolized via ethylene oxide, which for both haloalcohols is a novel way to remove the halide without going through the corresponding acetaldehyde intermediate. The haloalkane dehalogenase gene was cloned and sequenced. The dehalogenase (DhaAf) encoded by this gene is identical to the haloalkane dehalogenase (DhaA) of Rhodococcus rhodochrous NCIMB 13064, except for three amino acid substitutions and a 14-amino-acid extension at the C terminus. Alignments of the complete dehalogenase gene region of strain GP1 with DNA sequences in different databases showed that a large part of a dhaA gene region, which is also present in R. rhodochrous NCIMB 13064, was fused to a fragment of a haloalcohol dehalogenase gene that was identical to the last 42 nucleotides of the hheB gene found in Corynebacterium sp. strain N-1074.  (+info)

Renal angiotensin I-converting enzyme as a mixture of sialo- and asialo-enzyme, and a rapid purification method. (3/259)

Angiotensin I-converting enzyme [EC 3.4.15.1] was rapidly and highly purified from a particulate fraction of hog kidney cortex with 13% yield. The procedure, which was rapid, included fractionation on DEAE-cellulose and calcium phosphate gel, chromatographies on DEAE-Sephadex A-50 and hydroxylapatite columns, and gel filtration on a Sephadex G-200 column. The purified enzyme preparation gave two protein bands on standard disc gel electrophoresis, but showed a single protein component on the gel after treatment with neuraminidase [EC 3.2.1.18]. The data strongly suggest that the purified enzyme preparation was a mixture of sialo- and asialo-enzyme. Sialic acid residues apparently do not contribute to the catalytic activity of the enzyme. The enzyme was activated more by chloride ions than by other halide ions tested, using Bz-Gly-Gly-Gly as a substrate. The dissociation constant for chloride ions was determined to be 2.2 mM. Chloride did not protect the enzyme against heat or low pH. The enzyme was resistant to inactivation by trypsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1].  (+info)

A possible effect of different light sources on pregnancy rates following gamete intra-fallopian transfer. (4/259)

A retrospective study of 34 sequential gamete intra-Fallopian transfer (GIFT) procedures suggested a significant effect on pregnancy rates associated with the different laparoscopic light sources, with a pregnancy rate of 50% in 22 cycles using a halogen light source and 9% in 12 cycles using a xenon light source. Other explanatory variables were explored, but none was to have a significant effect on the pregnancy rate. Further investigation revealed that the xenon light source emitted more ultraviolet light than the conventional halogen light source--suggesting a possible detrimental effect of ultraviolet light on the gametes in the GIFT procedure.  (+info)

Induction and prevention of micronuclei and chromosomal aberrations in cultured human lymphocytes exposed to the light of halogen tungsten lamps. (5/259)

Previous studies have shown that the light emitted by halogen tungsten lamps contains UV radiation in the UV-A, UV-B and UV-C regions, induces mutations and irreparable DNA damage in bacteria, enhances the frequency of micronuclei in cultured human lymphocytes and is potently carcinogenic to the skin of hairless mice. The present study showed that the light emitted by an uncovered, traditional halogen lamp induces a significant, dose-related and time-related increase not only in micronuclei but also in chromosome-type aberrations, such as breaks, and even more in chromatid-type aberrations, such as isochromatid breaks, exchanges and isochromatid/chromatid interchanges, all including gaps or not, in cultured human lymphocytes. All these genotoxic effects were completely prevented by shielding the same lamp with a silica glass cover, blocking UV radiation. A new model of halogen lamp, having the quartz bulb treated in order to reduce the output of UV radiation, was considerably less genotoxic than the uncovered halogen lamp, yet induction of chromosomal alterations was observed at high illuminance levels.  (+info)

DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 is a new class of dehalogenase catalyzing hydrolytic dehalogenation not involving enzyme-substrate ester intermediate. (6/259)

DL-2-Haloacid dehalogenase from Pseudomonas sp. 113 (DL-DEX 113) catalyzes the hydrolytic dehalogenation of D- and L-2-haloalkanoic acids, producing the corresponding L- and D-2-hydroxyalkanoic acids, respectively. Every halidohydrolase studied so far (L-2-haloacid dehalogenase, haloalkane dehalogenase, and 4-chlorobenzoyl-CoA dehalogenase) has an active site carboxylate group that attacks the substrate carbon atom bound to the halogen atom, leading to the formation of an ester intermediate. This is subsequently hydrolyzed, resulting in the incorporation of an oxygen atom of the solvent water molecule into the carboxylate group of the enzyme. In the present study, we analyzed the reaction mechanism of DL-DEX 113. When a single turnover reaction of DL-DEX 113 was carried out with a large excess of the enzyme in H(2)(18)O with a 10 times smaller amount of the substrate, either D- or L-2-chloropropionate, the major product was found to be (18)O-labeled lactate by ionspray mass spectrometry. After a multiple turnover reaction in H(2)(18)O, the enzyme was digested with trypsin or lysyl endopeptidase, and the molecular masses of the peptide fragments were measured with an ionspray mass spectrometer. No peptide fragments contained (18)O. These results indicate that the H(2)(18)O of the solvent directly attacks the alpha-carbon of 2-haloalkanoic acid to displace the halogen atom. This is the first example of an enzymatic hydrolytic dehalogenation that proceeds without producing an ester intermediate.  (+info)

Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. (7/259)

Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.  (+info)

Effect of Tn10/Tn5 transposons on the survival and mutation frequency of halogen light-irradiated AB1157 Escherichia coli K-12. (8/259)

We show here that the Tn10/Tn5 transposon when inserted into the chromosome of strain AB1157 makes the bacteria more sensitive to and less mutable by halogen light irradiation. These effects are most probably caused by depletion of UmuD and UmuC proteins since: (i) transformation of the transposon-bearing bacteria with plasmids harbouring umuD'C (or umuDC) leads to recovery of the original survival and mutation frequencies; (ii) insertion of Tn10/Tn5 into chromosomal DNA has no effect on the level of mutation induced by ethyl methane-sulphonate treatment, a mutagen whose activity is umuDC-independent; (iii) the decline in survival is in about the same range for Tn10-bearing bacteria as for bacteria with deleted umuDC. However, whereas transformation of bacteria deleted in umuDC with plasmids carrying umuD'C/umuDC leads to full recovery of halogen light-induced mutability, recovery of survival is poor. This suggests that the mechanisms leading to umuDC-dependent mutagenesis and umuDC-dependent protection of cell survival are different. None of these effects occurs in bacteria bearing the Tn9 transposon in their DNA.  (+info)