Adhesion of adhesive resin to dental precious metal alloys. Part I. New precious metal alloys with base metals for resin bonding. (1/113)

New dental precious metal alloys for resin bonding without alloy surface modification were developed by adding base metals (In, Zn, or Sn). Before this, binary alloys of Au, Ag, Cu, or Pd containing In, Zn, or Sn were studied for water durability and bonding strength with 4-META resin. The adhesion ability of the binary alloys was improved by adding In equivalent to 15% of Au content, Zn equivalent to 20% of Ag content, and In, Zn, or Sn equivalent to 5% of Cu content. There was no addition effect of the base metals on Pd, however 15% of In addition improved adhesion with Pd-based alloys containing equi-atomic % of Cu and Pd. The alloy surfaces were analyzed by XPS and showed that oxides such as In2O3, ZnO, or SnO play an important role in improving the adhesive ability of the alloys.  (+info)

Adhesion of adhesive resin to dental precious metal alloys. Part II. The relationship between surface structure of Au-In alloys and adhesive ability with 4-META resin. (2/113)

Adhesion of 4-META to Au-In alloy was improved by adding In equivalent to .15% of Au content. On the basis of the results of Au-In alloys analyzed by XPS, the present study investigated the reason why adhesion of the Au-In alloy was improved. The O 1s spectrum could be separated into three oxygen chemical states, In2O3, chemisorbed H2O, and physisorbed H2O. The amount of chemisorbed H2O decreased remarkably with increasing amount of In. It is considered that the poor adhesive ability of the pure gold and alloys containing only small amounts of In was due to the chemisorbed H2O molecules and insufficient indium oxide on the alloy surface. It was established that excellent adhesion requires an oxide with chemical affinity for 4-META to cover at least 50% of the alloy surface.  (+info)

Phase transformations and age-hardening behaviors related to Au3Cu in Au-Cu-Pd alloys. (3/113)

Phase transformation behaviors in Au-Cu-Pd alloys were investigated by means of electrical resistivity measurements, hardness tests, X-ray diffraction and transmission electron microscopy. Anisothermal and isothermal annealing were performed. Two types of phase transformations were found, namely related to the single phase of Au3Cu and the coexistent phase of Au3Cu and AuCu I. The latter produced more remarkable hardening than the former. Hardening was brought about by the antiphase domain size effect of Au3Cu ordered phase in the single phase and by the formation of AuCu I ordered phase in the Au3Cu ordered matrix. There are three modes of phase transformation in the coexistent region depending on the composition. Each sequence is discussed.  (+info)

Phase transformation mechanisms in (AuCu)1-xPdx pseudobinary alloys by direct aging method. (4/113)

Phase transformation mechanisms in the AuCu-Pd pseudobinary system were studied by means of electrical resistivity measurements, hardness tests, X-ray diffraction and transmission electron microscopy. A direct aging method was employed to eliminate the otherwise unavoidable ordering that takes place rapidly during quenching into ice brine, hence it is important to distinguish the ordering processes with and without an incubation period. Three phase transformation modes occurred, namely; ordering at grain boundaries and in the grain interior with nucleation and growth mechanism after incubation, and spinodal ordering without any incubation period. The age-hardening of the alloys examined was attributed to AuCu I ordering. Nucleation and growth mechanism followed by twinning occurred in the specimens aged at higher temperatures, while spinodal ordering was seen in specimens aged in lower temperature. The spinodal ordering temperature of AuCu-Pd alloys increased according to Pd content.  (+info)

Isothermal age-hardening behaviour in a multi-purpose dental casting gold alloy. (5/113)

The isothermal age-hardening behaviour of a multi-purpose dental casting gold alloy was investigated by means of hardness testing, X-ray diffraction study, scanning electron microscopic observations and energy dispersive spectroscopy. By ageing of the solution-treated specimen at 400-500 degrees C, two phases of the Au-rich alpha 1 phase with an f.c.c. structure and the alpha 2 phase with an ordered f.c.c. structure based on Pt3In were transformed into three phases of the alpha 1 phase, the alpha 2 phase and the beta phase with an ordered f.c.t. structure based on PtZn. Hardening was attributed to the fine nodular precipitation resulting from the formation of the beta phase in the alpha 1 matrix. Softening was due to the coarsening of the fine nodular precipitates as the result of consumption of the alpha 2 phase.  (+info)

Isothermal age-hardening behaviour in a Au-1.6 wt% Ti alloy. (6/113)

This study describes research with a view to developing a new age-hardenable, high-carat dental gold alloy with better biocompatibility by addition of a small quantity of titanium to gold. The relationship between isothermal age-hardening and phase transformation of the Au-1.6 wt% Ti alloy was investigated by means of hardness testing, X-ray diffraction study, scanning electron microscopic observation and energy dispersive spectroscopy. The hardening in the initial stage of ageing seemed to be attributable to the continuous precipitation of the Au4Ti ordered phase in the supersaturated alpha solid solution matrix. The overaging with softening was attributed mainly to the formation of precipitates at the grain boundaries, which grew to bright lamellae and seemed to be composed of the Au4Ti phase.  (+info)

Gold alloys for resin bonding including small amount base metals--structural changes of alloy surface by the high-temperature oxidation. (7/113)

To achieve durable bonding with adhesive resin, the surface roughness and the kinds of oxides, respectively to increase mechanical retention to enhance the chemical affinity of adhesive monomer with the gold alloy, were regulated by high-temperature oxidation together with the addition of small amounts of base metals. Alloys containing 2 mass% of Ni, In, or Cr with Cu were oxidized at 800 degrees C for 20 min in air, pickled in thioglycolic acid, and subsequently oxidized at 500 degrees C for 10 min in air. The morphology of the internal oxidation zone changed markedly according to the added base metals. Although the internal oxide particle composed of only Cu2O was removed by pickling, NiO, In2O3, and chromium oxides could not removed and remained on the alloy surface. The surface roughness was increased by addition of Ni, In, or Cr. Applying the present method can control the roughness and chemical states on a gold alloy surface to increase its adhesive ability with adhesive resins.  (+info)

Influence of finishing on the electrochemical properties of dental alloys. (8/113)

Dental alloy surface finishing procedures of may influence their electrochemical behavior, which is used to evaluate their corrosion resistance. We examined the polarization resistance and potentiodynamic polarization profile of the precious-metal alloys, Type 4 gold alloy and silver-palladium alloy, and the base-metal alloys, nickel-chromium alloy, cobalt-chromium alloy, and CP-titanium. Three types of finishing procedure were examined: mirror-finishing using 0.05 micron alumina particles, polishing using #600 abrasive paper and sandblasting. Dissolution of the alloy elements in 0.9% NaCl solution was also measured and compared with the electrochemical evaluation. The corrosion resistance of the dental alloys was found to relate to finishing as follows: The polarization resistance and potentiodynamic polarization behavior revealed that the corrosion resistance improved in the order of sandblasting, #600-abrasive-paper polishing, and mirror-finishing. While the corrosion potential, critical current density and passive current density varied depending on the type of finishing, the transpassive potential remained unchanged. The influence of finishing on the corrosion resistance of precious-metal alloys was less significant than on that of base-metal alloys. A mirror-finishing specimen was recommended for use in evaluation of the corrosion resistance of various dental alloys.  (+info)