Subunit dissociation in fish hemoglobins. (1/2908)

The tetramer-dimer dissociation equilibria (K 4,2) of several fish hemoglobins have been examined by sedimentation velocity measurements with a scanner-computer system for the ultracentrifuge and by flash photolysis measurements using rapid kinetic methods. Samples studied in detail included hemoglobins from a marine teleost, Brevoortia tyrannus (common name, menhaden); a fresh water teleost, Cyprinus carpio, (common name, carp); and an elasmobranch Prionace glauca (common name, blue shark). For all three species in the CO form at pH 7, in 0.1 M phosphate buffer, sedimentation coefficients of 4.3 S (typical of tetrameric hemoglobin) are observed in the micromolar concentration range. In contrast, mammalian hemoglobins dissociate appreciably to dimers under these conditions. The inability to detect dissociation in three fish hemoglobins at the lowest concentrations examined indicates that K 4,2 must have a value of 10(-8) M or less. In flash photolysis experiments on very dilute solutions in long path length cells, two kinetic components were detected with their proportions varying as expected for an equilibrium between tetramers (the slower component) and dimers (the faster component); values of K 4,2 for the three fish hemoglobins in the range 10(-9) to 10(-8) M were calculated from these data. Thus, the values of K 4,2 for liganded forms of the fish hemoglobins appear to be midway between the value for liganded human hemoglobin (K 4,2 approximately 10(-6) M) and unliganded human hemoglobin (K 4,2 approximately 10(-12) M). This conclusion is supported by measurements on solutions containing guanidine hydrochloride to enhance the degree of dissociation. All three fish hemoglobins are appreciably dissociated at guanidine concentrations of about 0.8 M, which is roughly midway between the guanidine concentrations needed to cause comparable dissociation of liganded human hemoglobin (about 0.4 M) and unliganded human hemoglobin (about 1.6 M). Kinetic measurements on solutions containing guanidine hydrochloride indicated that there are changes in both the absolute rates and the proportions of the fast and slow components, which along with other factors complicated the analysis of the data in terms of dissociation constants. Measurements were also made in solutions containing urea to promote dissociation, but with this agent very high concentrations (about 6 M) were required to give measureable dissociation and the fish hemoglobins were unstable under these conditions, with appreciable loss of absorbance spectra in both the sedimentation and kinetic experiments.  (+info)

Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding. (2/2908)

BACKGROUND: Advanced glycation end-products (AGEs) have been implicated in the pathogenesis of diabetic nephropathy, and aminoguanidine (AG) has been shown to decrease the accumulation of AGEs in the diabetic kidney. METHODS: This study investigates changes in AGE binding associated with diabetes in the rat kidney using in vitro and in vivo autoradiographic techniques. Male Sprague-Dawley rats were randomized into control and diabetic groups with and without AG treatment and were sacrificed after three weeks. Frozen kidney sections (20 microm) were incubated with [125I]-AGE-RNase or [125I]-AGE-BSA. To localize the AGE binding site, in vivo autoradiography was performed by injection of 15 microCi of [125I]-AGE-BSA into the abdominal aorta of the rat. RESULTS: Low-affinity binding sites specific for AGEs in the renal cortex (IC50 = 0.28 microm) were detected by in vitro autoradiography. There was a significant increase in [125I]-AGE binding in the diabetic kidney, which was prevented by AG treatment. Emulsion autoradiography revealed that binding was localized primarily to proximal tubules in the renal cortex. Renal AGE levels, as assessed by fluorescence or by radioimmunoassay, were increased after three weeks of diabetes. This increase was attenuated by AG therapy. CONCLUSIONS: AGE binding sites are present within the proximal tubules of the kidney and appear to be modulated by endogenous AGE levels. It remains to be determined if these binding sites represent receptors involved in clearance of AGEs or are linked to pathogenic pathways that lead to the development of diabetic nephropathy.  (+info)

Prevention of neointimal formation by a serine protease inhibitor, FUT-175, after carotid balloon injury in rats. (3/2908)

BACKGROUND AND PURPOSE: In vivo and vitro studies revealed the activation of thrombin and the complement system in vascular lesion formation during the process of atherosclerosis, along with pathological proliferation of smooth muscle cells. We examined the effect of the synthetic serine protease inhibitor FUT-175 (developed as a potent inhibitor of thrombin and the complement system) on vascular lesions using balloon dilatation-induced neointimal formation in the carotid artery of rats. METHODS: Sprague-Dawley (SD) rats underwent balloon dilatation injury of the left carotid artery to induce neointimal formation. Three groups of these rats (n=8, each) were treated with daily intraperitoneal injections of 1 of the following doses of FUT-175: 0.5, 1.0, or 2.0 mg/d in 1 mL of saline for 7 consecutive days. The control group (n=8) was similarly treated with 1 mL of saline for 7 days. The injections were started immediately after balloon injury. Two weeks after the injury, the left carotid arteries were perfusion-fixed, and the areas of the neointimal and medial layer were analyzed under a microscope. RESULTS: A morphometric analysis revealed that there were significant differences in the intima-media ratio between the 4 groups treated with vehicle (saline) or a low, medium, or high dose of FUT-175 (1.45+/-0.11, 1.08+/-0.06, 0.71+/-0.04, or 0.32+/-0.04, respectively). This suppression was achieved in a dose-dependent manner by the administration of FUT-175 after balloon injury. In the histological study, it was demonstrated that FUT-175 suppresses the production of platelet-derived growth factor (PDGF)-BB in the neointima and the medial smooth muscle cell layer. CONCLUSIONS: After balloon injury activated proteases that were inhibited by FUT-175 were demonstrated to have an essential role in the development of the pathological thickening of the arterial wall.  (+info)

Adenosine inhibits the transfected Na+-H+ exchanger NHE3 in Xenopus laevis renal epithelial cells (A6/C1). (4/2908)

1. Adenosine influences the vectorial transport of Na+ and HCO3- across kidney epithelial cells. However, its action on effector proteins, such as the Na+-H+ exchanger NHE3, an epithelial brush border isoform of the Na+-H+ exchanger (NHE) gene family, is not yet defined. 2. The present study was conducted in Xenopus laevis distal nephron A6 epithelia which express both an apical adenosine receptor of the A1 type (coupled to protein kinase C (PKC)) and a basolateral receptor of the A2 type (coupled to protein kinase A (PKA)). The untransfected A6 cell line expresses a single NHE type (XNHE) which is restricted to the basolateral membrane and which is activated by PKA. 3. A6 cell lines were generated which express exogenous rat NHE3. Measurements of side-specific pHi recovery from acid loads in the presence of HOE694 (an inhibitor with differential potency towards individual NHE isoforms) detected an apical resistant Na+-H+ exchange only in transfected cell lines. The sensitivity of the basolateral NHE to HOE694 was unchanged, suggesting that exogenous NHE3 was restricted to the apical membrane. 4. Stimulation of the apical A1 receptor with N 6-cyclopentyladenosine (CPA) inhibited both apical NHE3 and basolateral XNHE. These effects were mimicked by the addition of the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and partially prevented by the PKC inhibitor calphostin C which also blocked the effect of PMA. 5. Stimulation of the basolateral A2 receptor with CPA inhibited apical NHE3 and stimulated basolateral XNHE. These effects were mimicked by 8-bromo-cAMP and partially prevented by the PKA inhibitor H89 which entirely blocked the effect of 8-bromo-cAMP. 6. In conclusion, CPA inhibits rat NHE3 expressed apically in A6 epithelia via both the apical PKC-coupled A1 and the basolateral PKA-coupled A2 adenosine receptors.  (+info)

Modulation of human airway smooth muscle proliferation by type 3 phosphodiesterase inhibition. (5/2908)

Elevation in cell cAMP content can inhibit mitogenic signaling in cultured human airway smooth muscle (HASM) cells. We studied the effects of the type 3-selective phosphodiesterase inhibitor siguazodan, the type 4-selective phosphodiesterase inhibitor rolipram, and the nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) on proliferation of cultured HASM cells. At concentrations selective for the type 3 phosphodiesterase isoform, siguazodan inhibited both [3H]thymidine incorporation (IC50 2 microM) and the increase in cell number (10 microM; 64% reduction) induced by platelet-derived growth factor-BB (20 ng/ml). These effects were mimicked by IBMX. At concentrations selective for type 4 phosphodiesterase inhibition, rolipram was without effect. A 20-min exposure to siguazodan and rolipram did not increase whole cell cAMP levels. However, in HASM cells transfected with a cAMP-responsive luciferase reporter (p6CRE/Luc), increases in cAMP-driven luciferase expression were seen with siguazodan (3.9-fold) and IBMX (16.5-fold). These data suggest that inhibition of the type 3 phosphodiesterase isoform present in airway smooth muscle results in inhibition of mitogenic signaling, possibly through an increase in cAMP-driven gene expression.  (+info)

Effects of prostaglandin F2 alpha on intracellular pH, intracellular calcium, cell shortening and L-type calcium currents in rat myocytes. (6/2908)

OBJECTIVE: We have studied the mechanisms underlying the positive inotropic action of prostaglandin F2 alpha (PGF2 alpha) by monitoring intracellular calcium transients, intracellular pH, L-type calcium currents and cell shortening in isolated ventricular myocytes. METHODS: Rat myocytes were loaded with fura-2AM for intracellular calcium measurements, or BCECF-AM for pH measurements. Cell shortening was recorded using an edge detection system, and L-type calcium currents measured using whole cell patch clamping. RESULTS: PGF2 alpha (3 nmol l-1-3 mumol l-1 increased single myocyte shortening and reduced resting cell length in a concentration-dependent manner. While myocyte shortening was increased by PGF2 alpha, this was not associated with any change in the amplitude of intracellular calcium transients, diastolic calcium, or L-type calcium currents. However, the same myocytes were capable of responding to catecholamines with increases in calcium transient amplitude and L-type calcium currents. PGF2 alpha (3 mumol l-1 caused a reversible rise in intracellular pH of 0.08 +/- 0.01 pH units (n = 5, p < 0.05). The Na(+)-H+ exchanger inhibitor, HOE 694 (10 mumol l-1, abolished the PGF2 alpha-induced rise in pH and the increase in cell shortening. PGF2 alpha-induced increases in cell shortening and intracellular pH were also attenuated by the protein kinase C (PKC) inhibitor, chelerythrine (2 mumol l-1. CONCLUSION: The positive inotropic action of PGF2 alpha appears to be mediated via activation of the Na(+)-H+ exchanger with the possible involvement of PKC. This suggests that PGF2 alpha-produces intracellular alkalosis, which then sensitizes cardiac myofilaments to calcium.  (+info)

Potentiation of anti-cancer drug activity at low intratumoral pH induced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) and its analogue benzylguanidine (BG). (7/2908)

Tumour-selective acidification is of potential interest for enhanced therapeutic gain of pH sensitive drugs. In this study, we investigated the feasibility of a tumour-selective reduction of the extracellular and intracellular pH and their effect on the tumour response of selected anti-cancer drugs. In an in vitro L1210 leukaemic cell model, we confirmed enhanced cytotoxicity of chlorambucil at low extracellular pH conditions. In contrast, the alkylating drugs melphalan and cisplatin, and bioreductive agents mitomycin C and its derivative EO9, required low intracellular pH conditions for enhanced activation. Furthermore, a strong and pH-independent synergism was observed between the pH-equilibrating drug nigericin and melphalan, of which the mechanism is unclear. In radiation-induced fibrosarcoma (RIF-1) tumour-bearing mice, the extracellular pH was reduced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) or its analogue benzylguanidine (BG) plus glucose. To simultaneously reduce the intracellular pH, MIBG plus glucose were combined with the ionophore nigericin or the Na+/H+ exchanger inhibitor amiloride and the Na+-dependent HCO3-/Cl- exchanger inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). Biochemical studies confirmed an effective reduction of the extracellular pH to approximately 6.2, and anti-tumour responses to the interventions indicated a simultaneous reduction of the intracellular pH below 6.6 for at least 3 h. Combined reduction of extra- and intracellular tumour pH with melphalan increased the tumour regrowth time to 200% of the pretreatment volume from 5.7 +/- 0.6 days for melphalan alone to 8.1 +/- 0.7 days with pH manipulation (P < 0.05). Mitomycin C related tumour growth delay was enhanced by the combined interventions from 3.8 +/- 0.5 to 5.2 +/- 0.5 days (P < 0.05), but only in tumours of relatively large sizes. The interventions were non-toxic alone or in combination with the anti-cancer drugs and did not affect melphalan biodistribution. In conclusion, we have developed non-toxic interventions for sustained and selective reduction of extra- and intracellular tumour pH which potentiated the tumour responses to selected anti-cancer drugs.  (+info)

Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning. (8/2908)

Neuroprotection against cerebral ischemia can be realized if the brain is preconditioned by previous exposure to a brief period of sublethal ischemia. The present study was undertaken to test the hypothesis that nitric oxide (NO) produced from the neuronal isoform of NO synthase (NOS) serves as a necessary signal for establishing an ischemia-tolerant state in brain. A newborn rat model of hypoxic preconditioning was used, wherein exposure to sublethal hypoxia (8% oxygen) for 3 hours renders postnatal day (PND) 6 animals completely resistant to a cerebral hypoxic-ischemic insult imposed 24 hours later. Postnatal day 6 animals were treated 0.5 hour before preconditioning hypoxia with the nonselective NOS inhibitor L-nitroarginine (2 mg/kg intraperitoneally). This treatment, which resulted in a 67 to 81% inhibition of calcium-dependent constitutive NOS activity 0.5 to 3.5 hours after its administration, completely blocked preconditioning-induced protection. However, administration of the neuronal NOS inhibitor 7-nitroindazole (40 mg/kg intraperitoneally) before preconditioning hypoxia, which decreased constitutive brain NOS activity by 58 to 81%, was without effect on preconditioning-induced cerebroprotection, as was pretreatment with the inducible NOS inhibitor aminoguanidine (400 mg/kg intraperitoneally). The protective effects of preconditioning were also not blocked by treating animals with competitive [3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate; 5 mg/kg intraperitoneally] or noncompetitive (MK-801; 1 mg/kg intraperitoneally) N-methyl-D-aspartate receptor antagonists prior to preconditioning hypoxia. These findings indicate that NO production and activity are critical to the induction of ischemic tolerance in this model. However, the results argue against the involvement of the neuronal NOS isoform, activated secondary to a hypoxia-induced stimulation of N-methyl-D-aspartate receptors, and against the involvement of the inducible NOS isoform, but rather suggest that NO produced by the endothelial NOS isoform is required to mediate this profound protective effect.  (+info)