Mistletoe lectin A-chain unfolds during the intracellular transport. (57/1338)

Protein conformation during intracellular routing and translocation of the ribosome-inactivating proteins was investigated on hybridomas producing monoclonal antibodies (monAbs) against mistletoe lectin (ML). Decrease in the toxin activity towards these hybridomas is accounted for by the intracellular interaction of monAbs and the toxin resulting in the interruption of enzymatic subunit translocation into the cytosol. Obtained monAbs interacted with denatured ML A-chain (MLA) and a panel of MLA synthetic octapeptides linked to the surface of polyethylene pins. Enzyme-linked immunosorbent assay (ELISA) shows that monAbs recognize five epitopes in denatured MLA. Treatment of MLA by 3 M of guanidine hydrochloride leads to appearance of the epitopes. Hybridoma TA7 has been shown to be insensitive to cytotoxic action of ML. TA7 monAb as we have shown recognizes epitope 101-105, FTGTT, and inhibits the liposome aggregation induced by MLA. A study of the cytotoxicity of ML and ricin for the hybridomas revealed that the unfolding of A-chain is probably required for intracellular transport and cytotoxic activity of ML.  (+info)

Denaturant-induced movement of the transition state of protein folding revealed by high-pressure stopped-flow measurements. (58/1338)

The small all-beta protein tendamistat folds and unfolds with two-state kinetics. We determined the volume changes associated with the folding process by performing kinetic and equilibrium measurements at variable pressure between 0.1 and 100 MPa (1 to 1, 000 bar). GdmCl-induced equilibrium unfolding transitions reveal that the volume of the native state is increased by 41.4 +/- 2.0 cm(3)/mol relative to the unfolded state. This value is virtually independent of denaturant concentration. The use of a high-pressure stopped-flow instrument enabled us to measure the activation volumes for the refolding (DeltaVo/f) and unfolding reaction (DeltaVo/u) over a broad range of GdmCl concentrations. The volume of the transition state is 60% native-like (DeltaVo/f) = 25.0 +/- 1.2 cm(3)/mol) in the absence of denaturant, indicating partial solvent accessibility of the core residues. The volume of the transition state increases linearly with denaturant concentration and exceeds the volume of the native state above 6 M GdmCl. This result argues for a largely desolvated transition state with packing deficiencies at high denaturant concentrations and shows that the structure of the transition state depends strongly on the experimental conditions.  (+info)

Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. (59/1338)

Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 +/- 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol.  (+info)

Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae. (60/1338)

The cytoplasmic heritable determinant [PSI(+)] of the yeast Saccharomyces cerevisiae reflects the prion-like properties of the chromosome-encoded protein Sup35p. This protein is known to be an essential eukaryote polypeptide release factor, namely eRF3. In a [PSI(+)] background, the prion conformer of Sup35p forms large oligomers, which results in the intracellular depletion of functional release factor and hence inefficient translation termination. We have investigated the process by which the [PSI(+)] determinant can be efficiently eliminated from strains, by growth in the presence of the protein denaturant guanidine hydrochloride (GuHCl). Strains are "cured" of [PSI(+)] by millimolar concentrations of GuHCl, well below that normally required for protein denaturation. Here we provide evidence indicating that the elimination of the [PSI(+)] determinant is not derived from the direct dissolution of self-replicating [PSI(+)] seeds by GuHCl. Although GuHCl does elicit a moderate stress response, the elimination of [PSI(+)] is not enhanced by stress, and furthermore, exhibits an absolute requirement for continued cell division. We propose that GuHCl inhibits a critical event in the propagation of the prion conformer and demonstrate that the kinetics of curing by GuHCl fit a random segregation model whereby the heritable [PSI(+)] element is diluted from a culture, after the total inhibition of prion replication by GuHCl.  (+info)

Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria. (61/1338)

The equilibrium denaturation and unfolding kinetics of the domains V(L) and V(H) have been compared with those of the Fv and single-chain Fv (scFv) fragment of an engineered variant of the antibody McPC603 in the presence and absence of the antigen phosphorylcholine. The scFv fragment is significantly more stable than the isolated constituting domains. Antigen binding stabilizes the heterodimeric assembly even further. Domain dissociation and domain unfolding are coupled processes, giving rise to a highly cooperative unfolding transition. For the Fv fragment, cooperative unfolding is only observed in the presence of antigen. At low protein concentrations and in the absence of antigen, the Fv fragment is significantly destabilized, leading to quantitative domain dissociation before significant domain unfolding takes place. The kinetic unfolding of V(H), V(L) and the scFv fragment is monophasic. Unfolding of the scFv fragment is much slower, when extrapolated to zero denaturant, than either of the isolated domains, suggesting that the higher thermodynamic stability of the scFv fragment is at least partially due to a high-energy transition state for unfolding. These studies emphasize the enormous importance of mutual domain stabilization in engineering stable antibodies.  (+info)

Effect of hydrostatic pressure on unfolding of alpha-lactalbumin: volumetric equivalence of the molten globule and unfolded state. (62/1338)

The effect of pressure on the unfolding of bovine alpha-lactalbumin was investigated by ultraviolet absorption methods. The change of molar volume associated with unfolding, deltaV, was measured in the presence or absence of guanidine hydrochloride at pH 7. The deltaV was estimated to be -63 cm3/mol in the absence of a chemical denaturant. While in the presence of guanidine hydrochloride (GuHCl), it was found that deltaV was -66 cm3/mol at 25 degrees C and was independent of the concentration of GuHCl, despite the fact that the molten globule fraction in the total unfolding product decreased with the increase of GuHCl concentration. The results indicate that the volume of alpha-lactalbumin only changes at the transition from a native to a molten globule state, and almost no volume change has been found during the transition from a molten globule to the unfolded state.  (+info)

The spectral and thermodynamic properties of staphylococcal enterotoxin A, E, and variants suggest that structural modifications are important to control their function. (63/1338)

The superantigens staphylococcal enterotoxin A and E (SEA and SEE) can activate a large number of T-cells. SEA and SEE have approximately 80% sequence identity but show some differences in their biological function. Here, the two superantigens and analogues were characterized biophysically. SEE was shown to have a substantially higher thermal stability than SEA. Both SEA and SEE were thermally stabilized by 0.1 mM Zn(2+) compared with Zn(2+)-reduced conditions achieved using 1 mM EDTA or specific replacements that affect Zn(2+) coordination. The higher stability of SEE was only partly caused by the T-cell receptor (TCR) binding regions, whereas regions in the vicinity of the major histocompatibility complex class II binding sites affected the stability to a greater extent. SEE exhibited a biphasic denaturation between pH 5.0-6.5, influenced by residues in the TCR binding regions. Interestingly, enzyme-linked immunosorbent assay, isoelectric focusing, and circular dichroism analysis indicated that conformational changes had occurred in the SEA/E chimerical constructs relative to SEA and SEE. Thus, it is proposed that the Zn(2+) binding site is very important for the stability and potency of SEA and SEE, whereas residues in the TCR binding site have a substantial influence on the molecular conformation to control specificity and function.  (+info)

alpha-crystallin assists the renaturation of glyceraldehyde-3-phosphate dehydrogenase. (64/1338)

alpha-Crystallin, a major lens protein, has many of the properties of a molecular chaperone, but its ability to assist refolding of proteins has been less certain. In the present work it was shown that alpha-crystallin specifically increased the reactivation of guanidine-denatured glyceraldehyde-3-phosphate dehydrogenase with most of the activity being recovered. In the incubation mixture the recovered enzyme activity was partly free but mostly it appeared in a protective complex with alpha-crystallin. The aggregation of the denatured enzyme on dilution from the guanidine solution was prevented. Thus alpha-crystallin not only protects against aggregation and inactivation of enzymes during denaturation, but can also prevent aggregation and assist recovery of the native structure during renaturation.  (+info)