An extended association screen in multiple sclerosis using 202 microsatellite markers targeting apoptosis-related genes does not reveal new predisposing factors. (1/6908)

Apoptosis, the programmed death of cells, plays a distinct role in the etiopathogenesis of Multiple sclerosis (MS), a common disease of the central nervous system with complex genetic background. Yet, it is not clear whether the impact of apoptosis is due to altered apoptotic behaviour caused by variations of apoptosis-related genes. Instead, apoptosis in MS may also represent a secondary response to cellular stress during acute inflammation in the central nervous system. Here, we screened 202 apoptosis-related genes for association by genotyping 202 microsatellite markers in initially 160 MS patients and 160 controls, both divided in 4 sets of pooled DNA samples, respectively. When applying Bonferroni correction, no significant differences in allele frequencies were detected between MS patients and controls. Nevertheless, we chose 7 markers for retyping in individual DNA samples, thereby eliminating 6 markers from the list of candidates. The remaining candidate, the ERBB3 gene microsatellite, was genotyped in additional 245 MS patients and controls. No association of the ERBB3 marker with the disease was detected in these additional cohorts. In consequence, we did not find further evidence for apoptosis-related genes as predisposition factors in MS.  (+info)

Methods to test for association between a disease and a multi-allelic marker applied to a candidate region. (2/6908)

We report the analysis results of the Genetic Analysis Workshop 14 simulated microsatellite marker dataset, using replicate 50 from the Danacaa population. We applied several methods for association analysis of multi-allelic markers to case-control data to study the association between Kofendrerd Personality Disorder and multi-allelic markers in a candidate region previously identified by the linkage analysis. Evidence for association was found for marker D03S0127 (p < 0.01). The analyses were done without any prior knowledge of the answers.  (+info)

Identification of susceptibility loci for complex diseases in a case-control association study using the Genetic Analysis Workshop 14 dataset. (3/6908)

Although current methods in genetic epidemiology have been extremely successful in identifying genetic loci responsible for Mendelian traits, most common diseases do not follow simple Mendelian modes of inheritance. It is important to consider how our current methodologies function in the realm of complex diseases. The aim of this study was to determine the ability of conventional association methods to fine map a locus of interest. Six study populations were selected from 10 replicates (New York) from the Genetic Analysis Workshop 14 simulated dataset and analyzed for association between the disease trait and locus D2. Genotypes from 45 single-nucleotide polymorphisms in the telomeric region of chromosome 3 were analyzed by Pearson's chi-square tests for independence to test for association with the disease trait of interest. A significant association was detected within the region; however, it was found 3 cM from the documented location of the D2 disease locus. This result was most likely due to the method used for data simulation. In general, this study showed that conventional case-control association methods could detect disease loci responsible for the development of complex traits.  (+info)

Hierarchical modeling in association studies of multiple phenotypes. (4/6908)

The genetic study of disease-associated phenotypes has become common because such phenotypes are often easier to measure and in many cases are under greater genetic control than the complex disease itself. Some disease-associated phenotypes are rare, however, making it difficult to evaluate their effects due to small informative sample sizes. In addition, analyzing numerous phenotypes introduces the issue of multiple comparisons. To address these issues, we have developed a hierarchical model (HM) for multiple phenotypes that provides more accurate effect estimates with a lower false-positive rate. We evaluated the validity and power of HM in association studies of multiple phenotypes using randomly selected cases and controls from the simulated data set in the Genetic Analysis Workshop 14. In particular, we first analyzed the association between each of the 12 subclinical phenotypes and single-nucleotide polymorphisms within the known causal loci using a conventional logistic regression model (LRM). Then we added a second-stage model by regressing all of the logistic coefficients of the phenotypes obtained from LRM on a Z matrix that incorporates the clinical correlation of the phenotypes. Specially, the 12 phenotypes were grouped into 3 clusters: 1) communally shared emotions; 2) behavioral related; and 3) anxiety related. A semi-Bayes HM effect estimate for each phenotype was calculated and compared with those from LRM. We observed that using HM to evaluate the association between SNPs and multiple related phenotypes slightly increased power for detecting the true associations and also led to fewer false-positive results.  (+info)

Selecting cases from nuclear families for case-control association analysis. (5/6908)

We examine the efficiency of a number of schemes to select cases from nuclear families for case-control association analysis using the Genetic Analysis Workshop 14 simulated dataset. We show that with this simulated dataset comparing all affected siblings with unrelated controls is considerably more powerful than all of the other approaches considered. We find that the test statistic is increased by almost 3-fold compared to the next best sampling schemes of selecting all affected sibs only from families with affected parents (AF aff), one affected sib with most evidence of allele-sharing from each family (SF), and all affected sibs from families with evidence for linkage (AF L). We consider accounting for biological relatedness of samples in the association analysis to maintain the correct type I error. We also discuss the relative efficiencies of increasing the ratio of unrelated cases to controls, methods to confirm associations and issues to consider when applying our conclusions to other complex disease datasets.  (+info)

Robust trend tests for genetic association in case-control studies using family data. (6/6908)

We studied a trend test for genetic association between disease and the number of risk alleles using case-control data. When the data are sampled from families, this trend test can be adjusted to take into account the correlations among family members in complex pedigrees. However, the test depends on the scores based on the underlying genetic model and thus it may have substantial loss of power when the model is misspecified. Since the mode of inheritance will be unknown for complex diseases, we have developed two robust trend tests for case-control studies using family data. These robust tests have relatively good power for a class of possible genetic models. The trend tests and robust trend tests were applied to a dataset of Genetic Analysis Workshop 14 from the Collaborative Study on the Genetics of Alcoholism.  (+info)

Effects of population structure on genetic association studies. (7/6908)

Population-based case-control association is a promising approach for unravelling the genetic basis of complex diseases. One potential problem of this approach is the presence of population structure in the samples. Using the Collaborative Study on the Genetics of Alcoholism (COGA) single-nucleotide polymorphism (SNP) datasets, we addressed three questions: How can the degree of population structure be quantified, and how does the population structure affect association studies? How accurate and efficient is the genomic control method in correcting for population structure? The amount of population structure in the COGA SNP data was found to inflate the p-value in association tests. Genomic control was found to be effective only when the appropriate number of markers was used in the control group in order to correctly calibrate the test. The approach presented in this paper could be used to select the appropriate number of markers for use in the genomic control method of correcting population structure.  (+info)

A new family-based association test via a least-squares method. (8/6908)

To test the association between a dichotomous phenotype and genetic marker based on family data, we propose a least-squares method using the vector of phenotypes and their cross products within each family. This new approach allows covariate adjustment and is numerically much simpler to implement compared to likelihood- based methods. The new approach is asymptotically equivalent to the generalized estimating equation approach with a diagonal working covariance matrix, thus avoiding some difficulties with the working covariance matrix reported previously in the literature. When applied to the data from Collaborative Study on the Genetics of Alcoholism, this new method shows a significant association between the marker rs1037475 and alcoholism.  (+info)