Characterization of human MMTV-like (HML) elements similar to a sequence that was highly expressed in a human breast cancer: further definition of the HML-6 group. (17/8470)

Previously, we found a retroviral sequence, HML-6.2BC1, to be expressed at high levels in a multifocal ductal breast cancer from a 41-year-old woman who also developed ovarian carcinoma. The sequence of a human genomic clone (HML-6.28) selected by high-stringency hybridization with HML-6.2BC1 is reported here. It was 99% identical to HML-6.2BC1 and gave the same restriction fragments as total DNA. HML-6.28 is a 4.7-kb provirus with a 5'LTR, truncated in RT. Data from two similar genomic clones and sequences found in GenBank are also reported. Overlaps between them gave a rather complete picture of the HML-6.2BC1-like human endogenous retroviral elements. Work with somatic cell hybrids and FISH localized HML-6.28 to chromosome 6, band p21, close to the MHC region. The causal role of HML-6.28 in breast cancer remains unclear. Nevertheless, the ca. 20 Myr old HML-6 sequences enabled the definition of common and unique features of type A, B, and D (ABD) retroviruses. In Gag, HML-6 has no intervening sequences between matrix and capsid proteins, unlike extant exogenous ABD viruses, possibly an ancestral feature. Alignment of the dUTPase showed it to be present in all ABD viruses, but gave a phylogenetic tree different from trees made from other ABD genes, indicating a distinct phylogeny of dUTPase. A conserved 24-mer sequence in the amino terminus of some ABD envelope genes suggested a conserved function.  (+info)

Molecular cloning, structural characterization and chromosomal localization of human lipoyltransferase gene. (18/8470)

Lipoyltransferase catalyzes the transfer of the lipoyl group from lipoyl-AMP to the lysine residue of the lipoate-dependent enzymes. We isolated human lipoyltransferase cDNA and genomic DNA. The cDNA insert contained a 1119-base pair open reading frame encoding a precursor peptide of 373 amino acids. Predicted amino acid sequence of the protein shares 88 and 31% identity with bovine lipoyltransferase and Escherichia coli lipoate-protein ligase A, respectively. Northern blot analyses of poly(A)+ RNA indicated a major species of about 1.5 kb. mRNA levels of lipoyltransferase were highest in skeletal muscle and heart, showing good correlation with those of dihydrolipoamide acyltransferase subunits of pyruvate, 2-oxoglutarate and branched-chain 2-oxo acid dehydrogenase complexes and H-protein of the glycine cleavage system which accept lipoic acid as a prosthetic group. The human lipoyltransferase gene is a single copy gene composed of four exons and three introns spanning approximately 8 kb of genomic DNA. Some alternatively spliced mRNA species were found by 5'-RACE analysis, and the most abundant species lacks the third exon. The human lipoyltransferase gene was localized to chromosome band 2q11.2 by fluorescence in situ hybridization.  (+info)

Genomic instability and recurrent breakpoints are main cytogenetic findings in Hodgkin's disease. (19/8470)

BACKGROUND AND OBJECTIVE: Successful cytogenetic studies in Hodgkin's disease (HD) are rare, and, except for hyperdiploidy, no chromosome changes typical for this disorder have been described. The purpose of this study was to collect cytogenetic information from a new series of lymphoid neoplasms diagnosed either as classical HD or as Hodgkin's-like anaplastic large cell lymphoma (HD-like ALCL), according to the REAL Classification. DESIGN AND METHODS: We studied 27 cases of HD and 10 cases of HD-like ALCL. Cytogenetic investigations were performed on lymph nodes (35 cases), bone marrow or pleural effusion. A large screening of slides was performed to detect abnormal metaphases despite the low mitotic index of Reed-Sternberg cells. In addition to ours, available published data were analyzed in detail to identify recurring cytogenetic events. RESULTS: Metaphases which could be analyzed were obtained in 86.5% of cases, with 59.4% showing abnormal clones. We found a peculiar kind of cytogenetic instability in which, despite variations in the type of structural rearrangements, chromosome breakpoints were non-randomly distributed. Moreover, from our data plus those collected from literature on HD (total 177 cases), the number of breakpoints was higher in patients in a more advanced clinical stage. INTERPRETATION AND CONCLUSIONS: Cytogenetic studies in HD are highly informative regarding clonality, provided large numbers of metaphases are examined. Based on karyotype, genetic changes in HD and HD-like ALCL are similar. Results are consistent with a high degree of chromosomal instability and predominance of hyperdiploid complex karyotypes. Chromosome breakpoints are non-randomly distributed and more numerous in advanced clinical stages.  (+info)

Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels. (20/8470)

Familial combined hyperlipidemia (FCHL) is a common dyslipidemia predisposing to premature coronary heart disease (CHD). The disease is characterized by increased levels of serum total cholesterol (TC), triglycerides (TGs), or both. We recently localized the first locus for FCHL, on chromosome 1q21-q23. In the present study, a genomewide screen for additional FCHL loci was performed. In stage 1, we genotyped 368 polymorphic markers in 35 carefully characterized Finnish FCHL families. We identified six chromosomal regions with markers showing LOD score (Z) values >1.0, by using a dominant mode of inheritance for the FCHL trait. In addition, two more regions emerged showing Z>2.0 with a TG trait. In stage 2, we genotyped 26 more markers and seven additional FCHL families for these interesting regions. Two chromosomal regions revealed Z>2.0 in the linkage analysis: 10p11.2, Z=3.20 (theta=.00), with the TG trait; and 21q21, Z=2.24 (theta=.10), with the apoB trait. Furthermore, two more chromosomal regions produced Z>2.0 in the affected-sib-pair analysis: 10q11.2-10qter produced Z=2.59 with the TC trait and Z=2.29 with FCHL, and 2q31 produced Z=2.25 with the TG trait. Our results suggest additional putative loci influencing FCHL in Finnish families, some potentially affecting TG levels and some potentially affecting TC or apoB levels.  (+info)

Comparative genomic hybridization detects many recurrent imbalances in central nervous system primitive neuroectodermal tumours in children. (21/8470)

A series of 23 children with primitive neuroectodermal tumours (PNET) were analysed with comparative genomic hybridization (CGH). Multiple chromosomal imbalances have been detected in 20 patients. The most frequently involved chromosome was chromosome 17, with a gain of 17q (11 cases) and loss of 17p (eight cases). Further recurrent copy number changes were detected. Extra copies of chromosome 7 were present in nine patients and gains of 1q were detected in six patients. A moderate genomic amplification was detected in one patient, involving two sites on 3p and the whole 12p. Losses were more frequent, and especially involved the chromosomes 11 (nine cases), 10q (eight cases), 8 (six cases), X (six patients) and 3 (five cases), and part of chromosome 9 (five cases). These recurrent chromosomal changes may highlight locations of novel genes with an important role in the development and/or progression of PNET.  (+info)

Isolation of CpG islands from large genomic clones. (22/8470)

Positional cloning is a powerful method for the identification of genes. Using genetic and physical mapping methods the genomic region within which a particular gene is located can relatively easily be narrowed down to a comparatively small area contained within cosmid, PAC or BAC clones. It is then a matter of identifying genes within these clones. Here we describe the appli-cation of a technique, which has been successfully used for the bulk purification of CpG islands from whole genomes, to the isolation of CpG island sequences from such clones. As CpG islands overlap transcription units they can be used to isolate full-length cDNAs for associated genes, either by probing cDNA libraries or by searching databases. CpG islands are linked with approximately 60% of human genes and because their isolation is independent of the expression profile of these genes this approach would complement other expression-based methods of gene identification. By applying this technique to a cosmid clone known to contain the PAX6 gene we successfully isolated the CpG island for this gene along with other CpG island-like sequences. Closer examination revealed that an extensive genomic region around the 5'-end of PAX6 is unusual with regard to methylation and GC content. CpG island sequences were also successfully isolated from a PAC clone carrying the MBD1 gene. These included the complete CpG island containing the first exon and regulatory sequences from MBD1.  (+info)

Identification of a photoreceptor cell-specific nuclear receptor. (23/8470)

Nuclear receptors comprise a large and expanding family of transcription factors involved in diverse aspects of animal physiology and development, the functions of which can be modulated in a spatial and temporal manner by access to small lipophilic ligands and/or the specificity of their own localized expression. Here we report the identification of a human nuclear receptor that reveals a unique proximal box (CNGCSG) in the DNA-binding domain. The conservation of this feature in its nematode counterpart suggests the requirement for this type of P box in the genetic cascades mediated by nuclear receptors in a wide variety of animal species. The expression of this receptor, PNR (photoreceptor-specific nuclear receptor), appears strongly restricted in the retina, exclusively in photoreceptor cells. In human cell lines, PNR expression was observed in Y79 retinoblastoma along with other photoreceptor marker genes such as CRX. Among vertebrate receptors, PNR shares structural kinship with an orphan receptor TLX, and despite distinct differences in the DNA binding domain, PNR is able to recognize a subset of TLX target sequences in vitro. Analyses of the human PNR gene revealed its chromosomal position as 15q24, a site that has recently been reported as a susceptible region for retinal degeneration. These data support a role for PNR in the regulation of signalling pathways intrinsic to the photoreceptor cell function.  (+info)

Three proteins define a class of human histone deacetylases related to yeast Hda1p. (24/8470)

Gene expression is in part controlled by chromatin remodeling factors and the acetylation state of nucleosomal histones. The latter process is regulated by histone acetyltransferases and histone deacetylases (HDACs). Previously, three human and five yeast HDAC enzymes had been identified. These can be categorized into two classes: the first class represented by yeast Rpd3-like proteins and the second by yeast Hda1-like proteins. Human HDAC1, HDAC2, and HDAC3 proteins are members of the first class, whereas no class II human HDAC proteins had been identified. The amino acid sequence of Hda1p was used to search the GenBank/expressed sequence tag databases to identify partial sequences from three putative class II human HDAC proteins. The corresponding full-length cDNAs were cloned and defined as HDAC4, HDAC5, and HDAC6. These proteins possess certain features present in the conserved catalytic domains of class I human HDACs, but also contain additional sequence domains. Interestingly, HDAC6 contains an internal duplication of two catalytic domains, which appear to function independently of each other. These class II HDAC proteins have differential mRNA expression in human tissues and possess in vitro HDAC activity that is inhibited by trichostatin A. Coimmunoprecipitation experiments indicate that these HDAC proteins are not components of the previously identified HDAC1 and HDAC2 NRD and mSin3A complexes. However, HDAC4 and HDAC5 associate with HDAC3 in vivo. This finding suggests that the human class II HDAC enzymes may function in cellular processes distinct from those of HDAC1 and HDAC2.  (+info)