Laboratory selection for the comparative physiologist. (1/85)

An increasingly popular experimental approach in comparative physiology is to study the evolution of physiological traits in the laboratory, using microbial, invertebrate and vertebrate models. Because selective conditions are well-defined, selected populations can be replicated and unselected control populations are available for direct comparison, strong conclusions regarding the adaptive value of an evolved response can be drawn. These studies have shown that physiological systems evolve rapidly in the laboratory, but not always as one would expect from comparative studies of different species. Laboratory environments are often not as simple as one thinks, so that the evolution of behavioral differences or selection acting on different life stages can lead to unanticipated results. In some cases, unexpected responses to laboratory selection may suggest new insights into physiological mechanisms, which might not be available using other experimental approaches. I outline here recent results (including success stories and caveats for the unwary investigator) and potential directions for selection experiments in comparative physiology.  (+info)

Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. (2/85)

In monkeys, posterior parietal and premotor cortex play an important integrative role in polymodal motion processing. In contrast, our understanding of the convergence of senses in humans is only at its beginning. To test for equivalencies between macaque and human polymodal motion processing, we used functional MRI in normals while presenting moving visual, tactile, or auditory stimuli. Increased neural activity evoked by all three stimulus modalities was found in the depth of the intraparietal sulcus (IPS), ventral premotor, and lateral inferior postcentral cortex. The observed activations strongly suggest that polymodal motion processing in humans and monkeys is supported by equivalent areas. The activations in the depth of IPS imply that this area constitutes the human equivalent of macaque area VIP.  (+info)

Sepsis and mechanisms of inflammatory response: is exercise a good model? (3/85)

OBJECTIVES: The immune changes induced by a bout of prolonged and vigorous exercise have been suggested to be a useful experimental model of sepsis and the inflammatory response. Available literature was reviewed to evaluate this hypothesis. METHODS: Literature describing the immune response to various patterns of exercise was compared with data on the immune changes observed during sepsis and inflammation. RESULTS: Although there are qualitative similarities between the immune responses to exercise and sepsis, the magnitude of the changes induced by most forms of exercise remains much smaller than in a typical inflammatory response. Indeed, the exercise induced changes in some key elements such as plasma cytokine concentrations are too small to be detected reliably by current technology. CONCLUSIONS: If exercise is to provide a valid model of sepsis and the inflammatory response, it will be necessary to focus on subjects who are willing to exercise extremely hard, to use the pattern of exercise that has the greatest effect on the immune system, and to combine this stimulus with other psychological, environmental, or nutritional stressors.  (+info)

Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). (4/85)

The Saccharomyces Genome Database (SGD) resources, ranging from genetic and physical maps to genome-wide analysis tools, reflect the scientific progress in identifying genes and their functions over the last decade. As emphasis shifts from identification of the genes to identification of the role of their gene products in the cell, SGD seeks to provide its users with annotations that will allow relationships to be made between gene products, both within Saccharomyces cerevisiae and across species. To this end, SGD is annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge that can be shared across species. The GO consists of three separate ontologies describing molecular function, biological process and cellular component. The goal is to use published information to associate each characterized S.cerevisiae gene product with one or more GO terms from each of the three ontologies. To be useful, this must be done in a manner that allows accurate associations based on experimental evidence, modifications to GO when necessary, and careful documentation of the annotations through evidence codes for given citations. Reaching this goal is an ongoing process at SGD. For information on the current progress of GO annotations at SGD and other participating databases, as well as a description of each of the three ontologies, please visit the GO Consortium page at http://www.geneontology.org. SGD gene associations to GO can be found by visiting our site at http://genome-www.stanford.edu/Saccharomyces/.  (+info)

Online Mendelian Inheritance in Animals (OMIA): a comparative knowledgebase of genetic disorders and other familial traits in non-laboratory animals. (5/85)

Online Mendelian Inheritance in Animals (OMIA) provides up-to-date information on inherited disorders and other familial traits in non-laboratory animals. It is freely available online at http://www.angis.org.au/omia. With a strong emphasis on comparative biology, OMIA is modelled on, and reciprocally hyperlinked with, Online Mendelian Inheritance in Man (OMIM). It provides a comprehensive catalog of animal models of human inherited disorders, and also provides comprehensive access to information on potential human homologues of inherited disorders and traits in animals. Because its whole structure is based on comparative biology, it provides phenotypic information in a format that is complementary to all the relevant mapping and sequence databases now existing or being created across the animal kingdom.  (+info)

EVOLUTION OF THE IMMUNE RESPONSE. I. THE PHYLOGENETIC DEVELOPMENT OF ADAPTIVE IMMUNOLOGIC RESPONSIVENESS IN VERTEBRATES. (6/85)

1. The California hagfish, Eptatretus stoutii, seems to be completely lacking in adaptive immunity: it forms no detectable circulating antibody despite intensive stimulation with a range of antigens; it does not show reactivity to old tuberculin following sensitization with BCG; and gives no evidence of homograft immunity. 2. Studies on the sea lamprey, Petromyzon marinus, have been limited to the response to bacteriophage T(2) and hemocyanin in small groups of spawning animals. They suggest that the lamprey may have a low degree of immunologic reactivity. 3. One holostean, the bowfin (Amia calva) and the guitarfish (Rhinobatos productus), an elasmobranch, showed a low level of primary response to phage and hemocyanin. The response is slow and antibody levels low. Both the bowfin and the guitarfish showed a vigorous secondary response to phage, but neither showed much enhancement of reactivity to hemocyanin in the secondary response. The bowfin formed precipitating antibody to hemocyanin, but the guitarfish did not. Both hemagglutinating and precipitating antibody to hemocyanin were also observed in the primary response of the black bass. 4. The bowfin was successfully sensitized to Ascaris antigen, and lesions of the delayed type developed after challenge at varying intervals following sensitization. 5. The horned shark (Heterodontus franciscii) regularly cleared hemocyanin from the circulation after both primary and secondary antigenic stimulation, and regularly formed hemagglutinating antibody, but not precipitating antibody, after both primary and secondary stimulation with this antigen. These animals regularly cleared bacteriophage from the circulation after both the primary and secondary stimulation with bacteriophage T(2). Significant but small amounts of antibody were produced in a few animals in the primary response, and larger amounts in the responding animals after secondary antigenic stimulation. 6. Studies by starch gel and immunoelectrophoresis show that the hagfish has no bands with mobilities of mammalian gamma globulins; that the lamprey has a single, relatively faint band of this type; and that multiple gamma bands are characteristic of the holostean, elasmobranchs, and teleosts studied. By this method of study, the bowfin appeared to have substantial amounts of gamma(2) globulin. 7. We conclude that adaptive immunity and its cellular and humoral correlates developed in the lowest vertebrates, and that a rising level of immunologic reactivity and an increasingly differentiated and complex immunologic mechanism are observed going up the phylogenetic scale from the hagfish, to the lamprey, to the elasmobranchs, to the holosteans, and finally the teleosts.  (+info)

OBSERVATIONS ON THE SIGNIFICANCE OF 5-HYDROXYTRYPTAMINE IN RELATION TO THE PERISTALTIC REFLEX OF THE RAT. (7/85)

Peristalsis of normal rats, and of rats fed either on a control diet or on a tryptophan-free diet (5-hydroxytryptamine-depleted rats), was studied in vitro and in situ to test the hypothesis that 5-hydroxytryptamine functions as a local hormone in the intestine and may be essential for initiation of the peristaltic reflex. A tryptophan-free diet depleted intestinal 5-hydroxytryptamine by a mean value of 90%; in some rats, the depletion appeared to be complete. Peristaltic responses, even of rats with complete depletion, were qualitatively similar to, and quantitatively not statistically different from those of normal or of pair-fed control animals whose intestinal mucosa contained high concentrations of 5-hydroxytryptamine. Intraluminal and serosal 5-hydroxytryptamine produced effects in 5-hydroxytryptamine-depleted rats similar to those in the normal and in the control animals. Furthermore, the maximal stimulatory effects of 5-hydroxytryptamine on peristaltic performance were not greater than spontaneous variations in performance in any group of animals, except with tryptophan-fed control rats, when the effects of the amine on peristalsis in situ were greater than spontaneous variation. It was therefore concluded that 5-hydroxytryptamine is not essential for peristalsis in the rat.  (+info)

INNERVATION OF THE LARGE INTESTINE OF THE TOAD (BUFO MARINUS). (8/85)

The morphology, physiology and pharmacology of the innervation of the toad (Bufo marinus) large intestine have been studied. The large intestine can be divided into the regions colon, rectum and cloaca, on morphological grounds, but acts as a unit in response to nerve stimulation. Of the right and left nerves, each appears to supply the entire large intestine. Autonomic innervation of the large intestine of Bufo marinus is as follows: (1) The 9th and 10th spinal nerves (pelvic) contain predominantly excitatory preganglionic cholinergic fibres, but some inhibitory adrenergic fibres are also present in most preparations. (2) The splanchnic nerves contain inhibitory postganglionic adrenergic fibres from the 3rd to 5th sympathetic ganglia, and a small number of excitatory cholinergic fibres. The pathway of adrenergic inhibitory fibres to the large intestine alongside the posterior mesenteric artery as seen in mammals is rarely present in the toad. Several nonspecific actions of autonomic drugs on the large intestine are discussed. The functional organization of the autonomic innervation of the toad large intestine is similar to that in mammals, that is the large intestine is controlled by antagonistic cholinergic and adrenergic nerves. However, the separation of these two types of nerve fibres into anatomically distinct nerves does not appear to be as complete as in mammals. It is suggested that inhibitory autonomic control of the alimentary canal in vertebrates first appears in the hind-gut region.  (+info)