Activation of Go-proteins by membrane depolarization traced by in situ photoaffinity labeling of galphao-proteins with [alpha32P]GTP-azidoanilide. (1/389)

Evidence for depolarization-induced activation of G-proteins in membranes of rat brain synaptoneurosomes has been previously reported (Cohen-Armon, M., and Sokolovsky, M. (1991) J. Biol. Chem. 266, 2595-2605; Cohen-Armon, M., and Sokolovsky, M. (1993) J. Biol. Chem. 268, 9824-9838). In the present work we identify the activated G-proteins as Go-proteins by tracing their depolarization-induced in situ photoaffinity labeling with [alpha32P]GTP-azidoanilide (GTPAA). Labeled GTPAA was introduced into transiently permeabilized rat brain-stem synaptoneurosomes. The resealed synaptoneurosomes, while being UV-irradiated, were depolarized. Relative to synaptoneurosomes at resting potential, the covalent binding of [alpha32P]GTPAA to Galphao1- and Galphao3-proteins, but not to Galphao2- isoforms, was enhanced by 5- to 7-fold in depolarized synaptoneurosomes, thereby implying an accelerated exchange of GDP for [alpha32P]GTPAA. Their depolarization-induced photoaffinity labeling was independent of stimulation of Go-protein-coupled receptors and could be reversed by membrane repolarization, thus excluding induction by transmitters release. It was, however, dependent on depolarization-induced activation of the voltage-gated sodium channels (VGSC), regardless of Na+ current. The alpha subunit of VGSC was cross-linked and co-immunoprecipitated with Galphao-proteins in depolarized brain-stem and cortical synaptoneurosomes. VGSC alpha subunit most efficiently cross-linked with guanosine 5'-O-2-thiodiphosphate-bound rather than to guanosine 5'-O-(3-thiotriphosphate)-bound Galphao-proteins in isolated synaptoneurosomal membranes. These findings support a possible involvement of VGSC in depolarization-induced activation of Go-proteins.  (+info)

Ecto-ATPase activity of alpha-sarcoglycan (adhalin). (2/389)

alpha-Sarcoglycan is a component of the sarcoglycan complex of dystrophin-associated proteins. Mutations of any of the sarcoglycan genes cause specific forms of muscular dystrophies, collectively termed sarcoglycanopathies. Importantly, a deficiency of any specific sarcoglycan affects the expression of the others. Thus, it appears that the lack of sarcoglycans deprives the muscle cell of an essential, yet unknown function. In the present study, we provide evidence for an ecto-ATPase activity of alpha-sarcoglycan. alpha-Sarcoglycan binds ATP in a Mg2+-dependent and Ca2+-independent manner. The binding is inhibited by 3'-O-(4-benzoyl)benzoyl ATP and ADP. Sequence analysis reveals the existence of a consensus site for nucleotide binding in the extracellular domain of the protein. An antibody against this sequence inhibits the binding of ATP. A dystrophin.dystrophin-associated protein preparation demonstrates a Mg-ATPase activity that is inhibited by the antibody but not by inhibitors of endo-ATPases. In addition, we demonstrate the presence in the sarcolemmal membrane of a P2X-type purinergic receptor. These data suggest that alpha-sarcoglycan may modulate the activity of P2X receptors by buffering the extracellular ATP concentration. The absence of alpha-sarcoglycan in sarcoglycanopathies leaves elevated the concentration of extracellular ATP and the persistent activation of P2X receptors, leading to intracellular Ca2+ overload and muscle fiber death.  (+info)

Orientation and positional mapping of the subunits of the multicomponent transcription factors RFX and X2BP to the major histocompatibility complex class II transcriptional enhancer. (3/389)

Major histocompatibility complex class II genes contain a common complex enhancer that allows for their coordinate regulation. The X box element of the enhancer cooperatively binds the multisubunit transcription factors RFX and X2BP. RFX is an essential class II transcription factor and contains three distinct proteins: RFX5, RFX-B/Ank and RFXAP. X2BP, a CREB/ATF family transcription factor, most likely binds as a homodimer. A site-specific protein-DNA photocrosslinking assay was used to investigate the interactions of the subunits of RFX and X2BP with X box DNA. Two of the RFX subunits, RFX5 and RFX-B/Ank, were found to bind defined sites within the X1 half of the X box. The third RFX subunit, RFXAP, made extensive X1 box contacts. The subunits of X2BP made contacts with the edges of the X2 half of the X box in a manner consistent with other bZIP transcription factor contact patterns. The resulting map provides specific base pair contacts and subunit orientation with respect to the DNA sequence of the RFX-X2BP-X box complex. Our results suggest possible stoichiometry of the RFX subunits and potential interaction between RFX-B/Ank and RFXAP with one of the subunits of X2BP.  (+info)

Analysis of the membrane-interacting domains of myelin basic protein by hydrophobic photolabeling. (4/389)

Myelin basic protein is a water soluble membrane protein which interacts with acidic lipids through some type of hydrophobic interaction in addition to electrostatic interactions. Here we show that it can be labeled from within the lipid bilayer when bound to acidic lipids with the hydrophobic photolabel 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID) and by two lipid photolabels. The latter included one with the reactive group near the apolar/polar interface and one with the reactive group linked to an acyl chain to position it deeper in the bilayer. The regions of the protein which interact hydrophobically with lipid to the greatest extent were determined by cleaving the TID-labeled myelin basic protein (MBP) with cathepsin D into peptides 1-43, 44-89, and 90-170. All three peptides from lipid-bound protein were labeled much more than peptides from the protein labeled in solution. However, the peptide labeling pattern was similar for both environments. The two peptides in the N-terminal half were labeled similarly and about twice as much as the C-terminal peptide indicating that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half. MBP can be modified post-translationally in vivo, including by deamidation, which may alter its interactions with lipid. However, deamidation had no effect on the TID labeling of MBP or on the labeling pattern of the cathepsin D peptides. The site of deamidation has been reported to be in the C-terminal half, and its lack of effect on hydrophobic interactions of MBP with lipid are consistent with the conclusion that the N-terminal half interacts hydrophobically more than the C-terminal half. Since other studies of the interaction of isolated N-terminal and C-terminal peptides with lipid also indicate that the N-terminal half interacts hydrophobically with lipid more than the C-terminal half, these results from photolabeling of the intact protein suggest that the N-terminal half of the intact protein interacts with lipid in a similar way as the isolated peptide. The similar behavior of the intact protein to that of its isolated peptides suggests that when the purified protein binds to acidic lipids, it is in a conformation which allows both halves of the protein to interact independently with the lipid bilayer. That is, it does not form a hydrophobic domain made up from different parts of the protein.  (+info)

NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone. (5/389)

The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron-sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron-sulfur cluster N2 to quinone.  (+info)

Selective inhibition of MDR1 P-glycoprotein-mediated transport by the acridone carboxamide derivative GG918. (6/389)

The acridone carboxamide derivative GG918 (N-{4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)-ethyl]-pheny l}-9,10dihydro-5-methoxy-9-oxo-4-acridine carboxamide) is a potent inhibitor of MDR1 P-glycoprotein-mediated multidrug resistance. Direct measurements of ATP-dependent MDR1 P-glycoprotein-mediated transport in plasma membrane vesicles from human and rat hepatocyte canalicular membranes indicated 50% inhibition at GG918 concentrations between 8 nM and 80 nM using N-pentyl-[3H]quinidinium, ['4C]doxorubicin and [3H]daunorubicin as substrates. The inhibition constant K for GG918 was 35 nM in rat hepatocyte canalicular membrane vesicles with [3H]daunorubicin as the substrate. Photoaffinity labelling of canalicular and recombinant rat Mdr1b P-glycoprotein by [3H]azidopine was suppressed by 10 muM and 40 muM GG918. The high selectivity of GG918-induced inhibition was demonstrated in canalicular membrane vesicles and by analysis of the hepatobiliary elimination in rats using [3H]daunorubicin, [3H]taurocholate and [3H]cysteinyl leukotrienes as substrates for three distinct ATP-dependent export pumps. Almost complete inhibition of [3H]daunorubicin transport was observed at GG918 concentrations that did not affect the other hepatocyte canalicular export pumps. The high potency and selectivity of GG918 for the inhibition of human MDR1 and rat Mdr1b P-glycoprotein may serve to interfere with this type of multidrug resistance and provides a tool for studies on the function of these ATP-dependent transport proteins.  (+info)

Direct photoaffinity labeling of cysteine 211 or a nearby amino acid residue of beta-tubulin by guanosine 5'-diphosphate bound in the exchangeable site. (7/389)

Tubulin with [8-14C]GDP bound in the exchangeable site was exposed to ultraviolet light, and radiolabel was cross-linked to two peptide regions of the beta-subunit. Following enrichment for peptides cross-linked to guanosine by boronate chromatography, we confirmed that the cysteine 12 residue was the major site of cross-linking. However, significant radiolabel was also incorporated into a peptide containing amino acid residues 206 through 224. Although every amino acid in this peptide except cysteine 211 was identified by sequential Edman degradation, implying that this was the amino acid residue cross-linked to guanosine, radiolabel at C-8 was usually lost during peptide processing (probably during chromatography at pH 10). Consequently, the radiolabeled amino acid could not be unambiguously identified.  (+info)

Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling. (8/389)

The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver.  (+info)