Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. (1/235)

Transcriptional activation of the human CYP1A1 gene (coding for cytochrome P450 1A1) is mediated by the aryl hydrocarbon receptor (AhR). In the present study we have examined the effect of the common dietary polyphenolic compounds quercetin and kaempferol on the transcription of CYP1A1 and the function of the AhR in MCF-7 human breast cancer cells. Quercetin caused a time- and concentration-dependent increase in the amount of CYP1A1 mRNA and CYP1A1 enzyme activity in MCF-7 cells. The increase in CYP1A1 mRNA caused by quercetin was prevented by the transcription inhibitor actinomycin D. Quercetin also caused an increase in the transcription of a chloramphenicol reporter vector containing the CYP1A1 promoter. Quercetin failed to induce CYP1A1 enzyme activity in AhR-deficient MCF-7 cells. Gel retardation studies demonstrated that quercetin activated the ability of the AhR to bind to an oligonucleotide containing the xenobiotic-responsive element (XRE) of the CYP1A1 promoter. These results indicate that quercetin's effect is mediated by the AhR. Kaempferol did not affect CYP1A1 expression by itself but it inhibited the transcription of CYP1A1 induced by the prototypical AhR ligand 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD), as measured by a decrease in TCDD-induced CYP1A1 promoter-driven reporter vector activity, and CYP1A1 mRNA in cells. Kaempferol also abolished TCDD-induced XRE binding in a gel-shift assay. Both compounds were able to compete with TCDD for binding to a cytosolic extract of MCF-7 cells. Known ligands of the AhR are, for the most part, man-made compounds such as halogenated and polycyclic aromatic hydrocarbons. These results demonstrate that the dietary flavonols quercetin and kaempferol are natural, dietary ligands of the AhR that exert different effects on CYP1A1 transcription.  (+info)

Inhibition of xanthine oxidase by flavonoids. (2/235)

Various dietary flavonoids were evaluated in vitro for their inhibitory effect on xanthine oxidase, which has been implicated in oxidative injury to tissue by ischemia-reperfusion. Xanthine oxidase activity was determined by directly measuring uric acid formation by HPLC. The structure-activity relationship revealed that the planar flavones and flavonols with a 7-hydroxyl group such as chrysin, luteolin, kaempferol, quercetin, myricetin, and isorhamnetin inhibited xanthine oxidase activity at low concentrations (IC50 values from 0.40 to 5.02 microM) in a mixed-type mode, while the nonplanar flavonoids, isoflavones and anthocyanidins were less inhibitory. These results suggest that certain flavonoids might suppress in vivo the formation of active oxygen species and urate by xanthine oxidase.  (+info)

Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. (3/235)

Lactase phlorizin hydrolase (LPH; EC 3.2.1.62) is a membrane-bound, family 1 beta-glycosidase found on the brush border of the mammalian small intestine. LPH, purified from sheep small intestine, was capable of hydrolysing a range of flavonol and isoflavone glycosides. The catalytic efficiency (k(cat)/K(m)) for the hydrolysis of quercetin-4'-glucoside, quercetin-3-glucoside, genistein-7-glucoside and daidzein-7-glucoside was 170, 137, 77 and 14 (mM(-1) s(-1)) respectively. The majority of the activity occurred at the lactase and not phlorizin hydrolase site. The ability of LPH to deglycosylate dietary (iso)flavonoid glycosides suggests a possible role for this enzyme in the metabolism of these biologically active compounds.  (+info)

Flavones and flavonols at dietary levels inhibit a transformation of aryl hydrocarbon receptor induced by dioxin. (4/235)

Dioxins invade the body mainly through the diet, and produce toxicity through the transformation of aryl hydrocarbon receptor (AhR). An inhibitor of the transformation should therefore protect against the toxicity and ideally be part of the diet. We examined flavonoids ubiquitously expressed in plant foods as one of the best candidates, and found that the subclasses flavones and flavonols suppressed antagonistically the transformation of AhR induced by 1 nM of 2,3,7,8-tetrachlorodibenzo-p-dioxin, without exhibiting agonistic effects that transform AhR. The antagonistic IC(50) values ranged from 0.14 to 10 microM, close to the physiological levels in human.  (+info)

Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. (5/235)

In the present study, the effects of taxifolin, a plant flavonoid, on lipid, apolipoprotein B (apoB), and apolipoprotein A-I (apoA-I) synthesis and secretion were determined in HepG2 cells. Pretreatment of cells with (+/-)-taxifolin led to an inhibition of cholesterol synthesis in a dose- and time-dependent manner, with an 86 +/- 3% inhibition at 200 microM observed within 24 h. As to the mechanism underlying this inhibitory effect, taxifolin was shown to inhibit the activity of HMG-CoA reductase by 47 +/- 7%. In addition, cellular cholesterol esterification, and triacylglycerol and phospholipid syntheses, were also significantly suppressed in the presence of taxifolin. ApoA-I and apoB synthesis and secretion were then studied by pulse-chase experiments. ApoA-I secretion was found to increase by 36 +/- 10%. In contrast, an average reduction of 61 +/- 8% in labeled apoB in the medium was apparent with taxifolin. This effect on secretion appeared not to be exerted at the transcriptional level. Rather, the effect on apoB secretion was found to be exerted in the early stages of apoB degradation and to be sensitive to dithiothreitol (DTT) and insensitive to N-acetyl-leucyl-leucyl-norleucinal, suggesting a proteolytic pathway involving a DTT-sensitive protease. Fractionation of secreted apoB revealed a slight shift in the distribution of secreted apoB-containing lipoproteins. Cholesteryl ester, rather than triacylglycerol, was shown to be the lipid that primarily regulated apoB secretion. In summary, our data suggest that taxifolin decreases hepatic lipid synthesis with a concomitant decrease and increase in apoB and apoA-I secretion, respectively.  (+info)

Red wine is a poor source of bioavailable flavonols in men. (6/235)

Red wine is a source of polyphenolic antioxidants, of which flavonols such as quercetin are representatives. Red wine might therefore prevent LDL oxidation and atherosclerosis. However, data on the bioavailability of flavonols from wine are lacking. Therefore, we compared the bioavailability of flavonols, especially quercetin, from red wine with that from the major dietary sources, yellow onions and black tea. Twelve healthy men consumed 750 mL red wine, 50 g fried onions or 375 mL of black tea, each for 4 d in random order. These supplements provided similar amounts of quercetin (14-16 mg). There was a washout period of 3 d between each period of supplementation. The plasma quercetin concentration after the consumption of wine was lower than that after onions (P: < 0.05) and not different from that after tea. Urinary excretion of quercetin after wine did not differ from that after onions and was higher than that after tea (P: < 0.05). We conclude that flavonols from red wine are absorbed. However, because one glass of red wine provides fewer available flavonols than one portion of onions or one glass of tea, red wine appears to be a poorer source of flavonols than these other two sources.  (+info)

Role of lipophilicity and hydrogen peroxide formation in the cytotoxicity of flavonols. (7/235)

We compared the lipophilicity and toxicity of the four flavonols, galangin, kaempferol, quercetin and myricetin, which respectively have no, one, two and three hydroxyl groups on the B-ring. The lipophilicity was in the order of myricetin < quercetin < kaempferol < galangin. The cytotoxicity determined by a colony-formation assay with Chinese hamster lung fibroblast V79 cells was in the order of quercetin < kaempferol < galangin < myricetin. Apart from myricetin, the order of lipophilicity was the same as that of cytotoxicity, implying that the cytotoxicity was attributable to the lipophilicity. The cytotoxicity of myricetin was attributable to the hydrogen peroxide formed by autoxidation.  (+info)

The flavonoids, quercetin and isorhamnetin 3-O-acylglucosides diminish neutrophil oxidative metabolism and lipid peroxidation. (8/235)

Two natural flavonoids, quercetin and isorhamnetin 3-O-acylglucosides, were examined for their inhibitory influence on the in vitro production and release of reactive oxygen species in polymorphonuclear neutrophils (PMNs). The generation of superoxide radical, hydrogen peroxide and hypochlorous acid were measured by, respectively, cytochrome c reduction, dichlorofluorescin oxidation and taurine chlorination. Membrane lipid oxidation was studied by the thiobarbituric acid method in mouse spleen microsomes. The addition of flavonoids at the concentration range 1-100 microM inhibited PMNs oxidative metabolism and lipid peroxidation in a dose-dependent manner. The results suggest that these flavonoids suppress the oxidative burst of PMNs and protect membranes against lipid peroxidation.  (+info)