Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. (49/2746)

There is growing evidence that cereals and legumes play important roles in the prevention of chronic diseases. Early epidemiologic studies of these associations focused on intake of dietary fiber rather than intake of grains or legumes. Generally, these studies indicated an inverse association between dietary fiber intake and risk of coronary artery disease; this observation has been replicated in recent cohort studies. Studies that focused on grain or cereal intake are fewer in number; these tend to support an inverse association between intake of whole grains and coronary artery disease. Studies on the association of dietary fiber with colon and other cancers have generally shown inverse relations, but whether these relations are attributable to cereals, other fiber sources, or other factors is less clear. Although legumes have been shown to lower blood cholesterol concentrations, epidemiologic studies are few and inconclusive regarding the association of legumes with risk of coronary artery disease. It has been hypothesized that legumes, in particular soybeans, reduce the risk of some cancers, but epidemiologic studies are equivocal in this regard. Overall, there is substantial epidemiologic evidence that dietary fiber and whole grains are associated with decreased risk of coronary artery disease and some cancers, whereas the role of legumes in these diseases appears promising but as yet inconclusive.  (+info)

Cardiovascular and renal benefits of dry bean and soybean intake. (50/2746)

Dry beans and soybeans are nutrient-dense, fiber-rich, and are high-quality sources of protein. Protective and therapeutic effects of both dry bean and soybean intake have been documented. Studies show that dry bean intake has the potential to decrease serum cholesterol concentrations, improve many aspects of the diabetic state, and provide metabolic benefits that aid in weight control. Soybeans are a unique source of the isoflavones genistein and diadzein, which have numerous biological functions. Soybeans and soyfoods potentially have multifaceted health-promoting effects, including cholesterol reduction, improved vascular health, preserved bone mineral density, and reduction of menopausal symptoms. Soy appears to have salutary effects on renal function, although these effects are not well understood. Whereas populations consuming high intakes of soy have lower prevalences of certain cancers, definitive experimental data are insufficient to clarify a protective role of soy. The availability of legume products and resources is increasing, incorporating dry beans and soyfoods into the diet can be practical and enjoyable. With the shift toward a more plant-based diet, dry beans and soy will be potent tools in the treatment and prevention of chronic disease.  (+info)

Identification of a plasmid-borne locus in Rhizobium etli KIM5s involved in lipopolysaccharide O-chain biosynthesis and nodulation of Phaseolus vulgaris. (51/2746)

Screening of derivatives of Rhizobium etli KIM5s randomly mutagenized with mTn5SSgusA30 resulted in the identification of strain KIM-G1. Its rough colony appearance, flocculation in liquid culture, and Ndv(-) Fix(-) phenotype were indicative of a lipopolysaccharide (LPS) defect. Electrophoretic analysis of cell-associated polysaccharides showed that KIM-G1 produces only rough LPS. Composition analysis of purified LPS oligosaccharides from KIM-G1 indicated that it produces an intact LPS core trisaccharide (alpha-D-GalA-1-->4[alpha-D-GalA-1-->5]-Kdo) and tetrasaccharide (alpha-D-Gal-1-->6[alpha-D-GalA-1-->4]-alpha-D-Man-1-->5Kdo), strongly suggesting that the transposon insertion disrupted a locus involved in O-antigen biosynthesis. Five monosaccharides (Glc, Man, GalA, 3-O-Me-6-deoxytalose, and Kdo) were identified as the components of the repeating O unit of the smooth parent strain, KIM5s. Strain KIM-G1 was complemented with a 7.2-kb DNA fragment from KIM5s that, when provided in trans on a broad-host-range vector, restored the smooth LPS and the full capacity of nodulation and fixation on its host Phaseolus vulgaris. The mTn5 insertion in KIM-G1 was located at the N terminus of a putative alpha-glycosyltransferase, which most likely had a polar effect on a putative beta-glycosyltransferase located downstream. A third open reading frame with strong homology to sugar epimerases and dehydratases was located upstream of the insertion site. The two glycosyltransferases are strain specific, as suggested by Southern hybridization analysis, and are involved in the synthesis of the variable portion of the LPS, i.e., the O antigen. This newly identified LPS locus was mapped to a 680-kb plasmid and is linked to the lpsbeta2 gene recently reported for R. etli CFN42.  (+info)

Stress-induced legume root nodule senescence. Physiological, biochemical, and structural alterations. (52/2746)

Nitrate-fed and dark-stressed bean (Phaseolus vulgaris) and pea (Pisum sativum) plants were used to study nodule senescence. In bean, 1 d of nitrate treatment caused a partially reversible decline in nitrogenase activity and an increase in O(2) diffusion resistance, but minimal changes in carbon metabolites, antioxidants, and other biochemical parameters, indicating that the initial decrease in nitrogenase activity was due to O(2) limitation. In pea, 1 d of dark treatment led to a 96% decline in nitrogenase activity and sucrose, indicating sugar deprivation as the primary cause of activity loss. In later stages of senescence (4 d of nitrate or 2-4 d of dark treatment), nodules showed accumulation of oxidized proteins and general ultrastructural deterioration. The major thiol tripeptides of untreated nodules were homoglutathione (72%) in bean and glutathione (89%) in pea. These predominant thiols declined by approximately 93% after 4 d of nitrate or dark treatment, but the loss of thiol content can be only ascribed in part to limited synthesis by gamma-glutamylcysteinyl, homoglutathione, and glutathione synthetases. Ascorbate peroxidase was immunolocalized primarily in the infected and parenchyma (inner cortex) nodule cells, with large decreases in senescent tissue. Ferritin was almost undetectable in untreated bean nodules, but accumulated in the plastids and amyloplasts of uninfected interstitial and parenchyma cells following 2 or 4 d of nitrate treatment, probably as a response to oxidative stress.  (+info)

Differential induction of plant volatile biosynthesis in the lima bean by early and late intermediates of the octadecanoid-signaling pathway. (53/2746)

Plants are able to respond to herbivore damage with de novo biosynthesis of an herbivore-characteristic blend of volatiles. The signal transduction initiating volatile biosynthesis may involve the activation of the octadecanoid pathway, as exemplified by the transient increase of endogenous jasmonic acid (JA) in leaves of lima bean (Phaseolus lunatus) after treatment with the macromolecular elicitor cellulysin. Within this pathway lima bean possesses at least two different biologically active signals that trigger different biosynthetic activities. Early intermediates of the pathway, especially 12-oxo-phytodienoic acid (PDA), are able to induce the biosynthesis of the diterpenoid-derived 4,8, 12-trimethyltrideca-1,3,7,11-tetraene. High concentrations of PDA result in more complex patterns of additional volatiles. JA, the last compound in the sequence, lacks the ability to induce diterpenoid-derived compounds, but is highly effective at triggering the biosynthesis of other volatiles. The phytotoxin coronatine and amino acid conjugates of linolenic acid (e.g. linolenoyl-L-glutamine) mimic the action of PDA, but coronatine does not increase the level of endogenous JA. The structural analog of coronatine, the isoleucine conjugate of 1-oxo-indanoyl-4-carboxylic acid, effectively mimics the action of JA, but does not increase the level of endogenous JA. The differential induction of volatiles resembles previous findings on signal transduction in mechanically stimulated tendrils of Bryonia dioica.  (+info)

Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. (54/2746)

Many plant species respond to herbivory with de novo production of a mixture of volatiles that attracts carnivorous enemies of the herbivores. One of the major components in the blend of volatiles produced by many different plant species in response to herbivory by insects and spider mites is the homoterpene 4,8-dimethyl-1,3(E), 7-nonatriene. One study (J. Donath, W. Boland [1995] Phytochemistry 39: 785-790) demonstrated that a number of plant species can convert the acyclic sesquiterpene alcohol (3S)-(E)-nerolidol to this homoterpene. Cucumber (Cucumis sativus L.) and lima bean (Phaseolus lunatus L.) both produce 4,8-dimethyl-1,3(E),7-nonatriene in response to herbivory. We report the presence in cucumber and lima bean of a sesquiterpene synthase catalyzing the formation of (3S)-(E)-nerolidol from farnesyl diphosphate. The enzyme is inactive in uninfested cucumber leaves, slightly active in uninfested lima bean leaves, and strongly induced by feeding of the two-spotted spider mite (Tetranychus urticae Koch) on both plant species, but not by mechanical wounding. The activities of the (3S)-(E)-nerolidol synthase correlated well with the levels of release of 4, 8-dimethyl-1,3(E),7-nonatriene from the leaves of the different treatments. Thus, (3S)-(E)-nerolidol synthase is a good candidate for a regulatory role in the release of the important signaling molecule 4,8-dimethyl-1,3(E),7-nonatriene.  (+info)

Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. (55/2746)

The 154-kb plasmid was cured from race 7 strain 1449B of the phytopathogen Pseudomonas syringae pv. phaseolicola (Pph). Cured strains lost virulence toward bean, causing the hypersensitive reaction in previously susceptible cultivars. Restoration of virulence was achieved by complementation with cosmid clones spanning a 30-kb region of the plasmid that contained previously identified avirulence (avr) genes avrD, avrPphC, and avrPphF. Single transposon insertions at multiple sites (including one located in avrPphF) abolished restoration of virulence by genomic clones. Sequencing 11 kb of the complementing region identified three potential virulence (vir) genes that were predicted to encode hydrophilic proteins and shared the hrp-box promoter motif indicating regulation by HrpL. One gene achieved partial restoration of virulence when cloned on its own and therefore was designated virPphA as the first (A) gene from Pph to be identified for virulence function. In soybean, virPphA acted as an avr gene controlling expression of a rapid cultivar-specific hypersensitive reaction. Sequencing also revealed the presence of homologs of the insertion sequence IS100 from Yersinia and transposase Tn501 from P. aeruginosa. The proximity of several avr and vir genes together with mobile elements, as well as G+C content significantly lower than that expected for P. syringae, indicates that we have located a plasmid-borne pathogenicity island equivalent to those found in mammalian pathogens.  (+info)

Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. (56/2746)

The site of phosphorylation of phenylalanine ammonia-lyase (PAL) has been identified as a threonine residue. A Ca(2+)-stimulated protein kinase of approximately 55 kDa has been partially purified from elicited cells. The kinase can phosphorylate a synthetic peptide derived from PAL and a recombinant poplar PAL. PAL phosphorylation was associated with a decrease in Vmax in agreement with the suggestion that protein phosphorylation is involved in marking PAL subunits for turnover. The phosphorylation site in French bean PAL is most likely Thr545 in the sequence VAKRTLTT (539-546). Conservation of the phosphorylation site in PAL from diverse species suggests that phosphorylation of PAL may be a ubiquitous regulatory mechanism in higher plants.  (+info)