Inhibition of in vitro enteric neuronal development by endothelin-3: mediation by endothelin B receptors. (1/1687)

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population. The crest- and non-crest-derived cells were exposed in vitro to endothelin-3, IRL 1620 (an endothelin B agonist), and/or BQ 788 (an endothelin B antagonist). Neurons and glia developed only in cultures of crest-derived cells, and did so even when endothelin-3 was absent and BQ 788 was present. Endothelin-3 inhibited neuronal development, an effect that was mimicked by IRL 1620 and blocked by BQ 788. Endothelin-3 failed to stimulate the incorporation of [3H]thymidine or bromodeoxyuridine. Smooth muscle development in non-crest-derived cell cultures was promoted by endothelin-3 and inhibited by BQ 788. In contrast, transcription of laminin alpha1, a smooth muscle-derived promoter of neuronal development, was inhibited by endothelin-3, but promoted by BQ 788. Neurons did not develop in explants of the terminal bowel of E12 ls/ls (endothelin-3-deficient) mice, but could be induced to do so by endothelin-3 if a source of neural precursors was present. We suggest that endothelin-3/endothelin B normally prevents the premature differentiation of crest-derived precursors migrating to and within the fetal bowel, enabling the precursor population to persist long enough to finish colonizing the bowel.  (+info)

Different contributions of endothelin-A and endothelin-B receptors in the pathogenesis of deoxycorticosterone acetate-salt-induced hypertension in rats. (2/1687)

We investigated the involvement of actions mediated by endothelin-A (ETA) and endothelin-B (ETB) receptors in the pathogenesis of deoxycorticosterone acetate (DOCA)-salt-induced hypertension in rats. Two weeks after the start of DOCA-salt treatment, rats were given ABT-627 (10 [mg/kg]/d), a selective ETA receptor antagonist; A-192621 (30 [mg/kg]/d), a selective ETB receptor antagonist; or their vehicle for 2 weeks. Uninephrectomized rats without DOCA-salt treatment served as controls. Treatment with DOCA and salt for 2 weeks led to a mild but significant hypertension; in vehicle-treated DOCA-salt rats, systolic blood pressure increased markedly after 3 to 4 weeks. Daily administration of ABT-627 for 2 weeks almost abolished any further increases in blood pressure, whereas A-192621 did not affect the development of DOCA-salt-induced hypertension. When the degree of vascular hypertrophy of the aorta was histochemically evaluated at 4 weeks, there were significant increases in wall thickness, wall area, and wall-to-lumen ratio in vehicle-treated DOCA-salt rats compared with uninephrectomized control rats. The development of vascular hypertrophy was markedly suppressed by ABT-627. In contrast, treatment with A-192621 significantly exaggerated these vascular changes. In vehicle-treated DOCA-salt rats, renal blood flow and creatinine clearance decreased, and urinary excretion of protein, blood urea nitrogen, fractional excretion of sodium, and urinary N-acetyl-beta-glucosaminidase activity increased. Such damage was overcome by treatment with ABT-627 but not with A-192621; indeed, the latter agent led to worsening of the renal dysfunction. Histopathologic examination of the kidney in vehicle-treated DOCA-salt rats revealed tubular dilatation and atrophy as well as thickening of small arteries. Such damage was reduced in animals given ABT-627, whereas more severe histopathologic changes were observed in A-192621-treated animals. These results strongly support the view that ETA receptor-mediated action plays an important role in the pathogenesis of DOCA-salt-induced hypertension. On the other hand, it seems likely that the ETB receptor-mediated action protects against vascular and renal injuries in this model of hypertension. A selective ETA receptor antagonist is likely to be useful for treatment of subjects with mineralocorticoid-dependent hypertension, whereas ETB-selective antagonism alone is detrimental to such cases.  (+info)

Endogenous endothelin-1 depresses left ventricular systolic and diastolic performance in congestive heart failure. (3/1687)

Endothelin-1 (ET-1) is a positive inotrope in normal hearts; however, the direct cardiac effects of endogenous ET-1 in congestive heart failure (CHF) are unknown. We evaluated the cardiac responses to endogenous ET-1 using an ETA and ETB receptor blocker (L-754,142) in seven conscious dogs before and after pacing-induced CHF. Before CHF, when the plasma ET-1 was 7.3 +/- 1.7 fmol/ml, L-754,142 caused no significant alterations in heart rate, left ventricular (LV) end-systolic pressure, total systemic resistance, and the time constant of LV relaxation (tau). LV contractile performance, measured by the slopes of LV pressure (P)-volume (V) relation (EES), dP/dtmax-end-diastolic V relation (dE/dtmax), and stroke work-end-diastolic V relation, was also unaffected. After CHF, when the plasma ET-1 was significantly increased to 14.1 +/- 3.0 fmol/ml (p <.05), L-754,142 produced a significant decreases in LV end-systolic pressure (101 +/- 11 versus 93 +/- 8 mm Hg) and total systemic resistance (0.084 +/- 0.022 versus 0.065 +/- 0.15 mm Hg/ml/min). The tau (42 +/- 12 versus 38 +/- 10 ms), mean left atrial P (22 +/- 5 versus 18 +/- 4 mm Hg) (p <.05), and minimum LVP were also significantly decreased. After CHF, the slopes of P-V relations, EES (3.4 +/- 0.4 versus 4.8 +/- 0.8 mm Hg/ml), dE/dtmax (42.4 +/- 7.8 versus 50.0 +/- 7.8 mm Hg/s/ml), and stroke work-end-diastolic V relation (58.1 +/- 3.3 versus 72.4 +/- 5.2 mm Hg) (p <.05) all increased after L-754,142, indicating enhanced contractility. Before CHF, low levels of endogenous ET-1 have little cardiac effect. However, after CHF, elevated endogenous ET-1 produces arterial vasoconstriction, slows LV relaxation, and depresses LV contractile performance. Thus, elevated endogenous ET-1 may contribute to the functional impairment in CHF in this canine model.  (+info)

Transcriptional down-regulation of the rabbit pulmonary artery endothelin B receptor during phenotypic modulation. (4/1687)

1. We confirmed that endothelium-independent contraction of the rabbit pulmonary artery (RPA) is mediated through both an endothelin A (ET(A)R) and endothelin B (ET(B2)R) receptor. 2. The response of endothelium-denuded RPA rings to endothelin-1 (ET-1, pD2 = 7.84 +/- 0.03) was only partially inhibited by BQ123 (10 microM), an ET(A)R antagonist. 3. Pretreatment with 1 nM sarafotoxin S6c (S6c), an ET(B)R agonist, desensitized the ET(B2)R and significantly attenuated the response to ET-3 (pD2 = 7.40 +/- 0.02 before, <6.50 after S6c). 4. Pretreatment with S6c had little effect on the response to ET-1, but BQ123 (10 microM) caused a parallel shift to the right of the residual ETAR-mediated response to ET-1 (pD2 = 7.84 +/- 0.03 before S6c, 7.93 +/- 0.03 after S6c, 6.81 +/- 0.05 after BQ123). 5. Binding of radiolabelled ET-1 to early passage cultures of RPA vascular smooth muscle cells (VSMC) displayed two patterns of competitive displacement characteristic of the ET(A)R (BQ123 pIC50 = 8.73 +/- 0.05) or ET(B2)R (S6c pIC50 = 10.15). 6. Competitive displacement experiments using membranes from late passage VSMC confirmed only the presence of the ET(A)R (ET-1 pIC50 = 9.3, BQ123 pIC50 = 8.0, S6c pIC50 < 6.0). 7. The ET(A)R was functionally active and coupled to rises in intracellular calcium which exhibited prolonged homologous desensitization. 8. Using a reverse transcriptase polymerase chain reaction for the rabbit ET(B2)R, we demonstrated the absence of mRNA expression in phenotypically modified VSMC. 9. We conclude that the ET(B2)R expressed by VSMC which mediates contraction of RPA is rapidly down-regulated at the transcriptional level during phenotypic modulation in vitro.  (+info)

Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. (5/1687)

1. The cardiac depressant actions of TNF were investigated in the isolated perfused rat heart under constant flow (10 ml min(-1)) and constant pressure (70 mmHg) conditions, using a recirculating (50 ml) mode of perfusion. 2. Under constant flow conditions TNF (20 ng ml(-1)) caused an early (< 25 min) decrease in left ventricular developed pressure (LVDP), which was maintained for 90 min (LVDP after 90 min: control vs TNF; 110 +/- 4 vs 82 +/- 10 mmHg, P < 0.01). 3. The depression in cardiac function seen with TNF under constant flow conditions, was blocked by the ceramidase inhibitor N-oleoylethanolamine (NOE), 1 microM, (LVDP after 90 min: TNF vs TNF with NOE; 82 +/- 10 vs 11 +/- 5 mmHg, P < 0.05). 4. In hearts perfused at constant pressure, TNF caused a decrease in coronary flow rate (change in flow 20 min after TNF: control vs TNF; -3.0 +/- 0.9 vs -8.7 +/- 1.2 ml min(-1), P < 0.01). This was paralleled by a negative inotropic effect (change in LVDP 20 min after TNF: control vs TNF; -17 +/- 7 vs -46 +/- 6 mmHg, P < 0.01). The decline in function was more rapid and more severe than that seen under conditions of constant flow. 5. These data indicate that cardiac function can be disrupted by TNF on two levels, firstly via a direct, ceramidase dependant negative inotropic effect, and secondly via an indirect coronary vasoconstriction.  (+info)

Nucleotide sequence of endothelin-B receptor gene reveals origin of piebald mutation in laboratory mouse. (6/1687)

Piebald (Ednrbs) is a coat color mutation of laboratory mice caused by a decreased expression of endothelin-B receptor gene (Ednrb). The IITES and JF1 mouse strains, whose origins are believed to be different from those of the common laboratory inbred strains, also show a phenotype similar to Ednrbs. In the present study, we found that the nucleotide sequence of the Ednrb gene of the IITES and JF1 mice is identical to that of the Ednrbs allele, Ednrbs allele has an RFLP of the Ednrb gene identical with that of M. m. molossinus but different from other subspecies, and at least particular regions of chromosome 14 proximal to the Ednrb locus of the IITES and JF1 strains are derived from M. m. molossinus. These findings clearly indicate that the Ednrbs allele of the laboratory mice has its origin in M. m. molossinus.  (+info)

Effects of hypertension, diabetes mellitus, and hypercholesterolemia on endothelin type B receptor-mediated nitric oxide release from rat kidney. (7/1687)

BACKGROUND: Although endothelin-1 is a potent vasoconstrictor peptide, stimulation of endothelin type B receptor (ETBR) causes bidirectional changes in vascular tone, ie, vasodilation and vasoconstriction. Roles of ETBR in pathological conditions are largely unknown. METHODS AND RESULTS: We studied the effect of BQ-3020, a highly selective ETBR agonist, on renal vascular resistance and nitric oxide (NO) release in the isolated, perfused kidney of rats with hypertension, diabetes mellitus, and hypercholesterolemia. Immunohistochemistry of endothelial NO synthase and ETBR was also examined. Infusion of BQ-3020 at concentrations of +info)

Maintenance of blood pressure in normotensive dogs by endothelin. (8/1687)

The role of endothelin (ET)-1 in blood pressure homeostasis and the interaction with the renin-angiotensin system (RAS) was investigated in normotensive conscious dogs. ETA receptors were blocked by LU-135252 (1-30 mg/kg); trandolapril (2 mg/kg) or losartan (10 mg/kg) was used to inhibit the RAS. LU-135252 in oral doses of 3-30 mg/kg significantly reduced mean arterial pressure (MAP) by approximately 10 mmHg maximally, whereas trandolapril or losartan were without any effect. MAP reduction was more pronounced when LU-135252 was combined with either losartan (-15.5 +/- 3.2 mmHg; 2 h postadministration; P < 0.05) or trandolapril (-30.9 +/- 3.6 mmHg; P < 0.05). When endogenous nitric oxide (NO) generation was blocked but NO concomitantly infused, this synergistic effect on MAP was prevented. The data show that ET-1 contributes to the maintenance of blood pressure via ETA receptors. Furthermore, ET-1 and ANG II play a prominent role in the control of blood pressure by opposing the effects of NO. The pronounced blood pressure fall after combined blockade of ETA receptors and the RAS may be mediated by an enhanced release of NO.  (+info)