Evaluation of the chronic toxicity and oncogenicity of N,N-diethyl-m-toluamide (DEET). (65/73494)

Chronic toxicity and/or oncogenicity studies were conducted in rats, mice, and dogs with the insect repellent DEET. DEET was mixed in the diet and administered to CD rats for two years at concentrations that corresponded to dosage levels of 10, 30 or 100 mg/kg/day for males and 30, 100, or 400 mg/kg/day for females; to CD-1 mice for 18 months at dosage levels of 250, 500, or 1000 mg/kg/day; and to dogs for one year, via gelatin capsules, at dosage levels of 30, 100, or 400 mg/kg/day. In the rodent studies, each group consisted of 60 animals of each sex, and two concurrent independent control groups, each containing 60 animals/sex were included in each study. Each group in the dog study consisted of four male and four female dogs and one control group was included in the study. Treatment-related effects were observed at the highest dose level in all three studies. For rats, the effects included decreases in body weight and food consumption and an increase in serum cholesterol in females only. In mice, the effects observed were decreases in body weight and food consumption in both sexes. The effects observed in dogs included increased incidences of emesis and ptyalism, and levels of transient reduction in hemoglobin and hematocrit, increased alkaline phosphatase (males only), decreased cholesterol, and increased potassium. One male dog in the high-dose group also exhibited ataxia, tremors, abnormal head movements, and/or convulsions on several occasions during the study. The highest no-observed-effect levels (NO-ELs) for rats, mice and dogs were determined to be 100, 500, and 100 mg/kg/day, respectively. No specific target organ toxicity or oncogenicity was observed in any of the studies.  (+info)

Dose-specific production of chlorinated quinone and semiquinone adducts in rodent livers following administration of pentachlorophenol. (66/73494)

Production of chlorinated quinoid metabolites was investigated in the livers of Sprague-Dawley rats and B6C3F1 mice following single oral administration of pentachlorophenol (PCP) (0-40 mg/kg body weight) and in male Fischer 344 rats, following chronic ingestion of PCP at 1,000 ppm in the diet for 6 months (equivalent to 60 mg PCP/kg body weight/day). Analyses of the rates of adduction in the livers of Sprague-Dawley rats and B6C3F1 mice suggested that the production of tetrachloro-1,2-benzosemiquinone (Cl4-1,2-SQ) adducts was proportionally greater at low doses of PCP (less than 4-10 mg/kg body weight) and was 40-fold greater in rats than in mice. Production of tetrachloro-1,4-benzoquinone (Cl4-1,4-BQ) adducts, on the other hand, was proportionally greater at high doses of PCP [greater than 60-230 mg/kg body weight] and was 2- to 11-fold greater in mice than in rats over the entire range of dosages. A mathematical model employed these data to predict the rates of daily adduct production and steady state levels of PCP-derived quinone and semiquinone adducts in rats and mice. To evaluate predictions of the model, levels of PCP-derived adducts at steady state were investigated in the livers of male Fischer 344 rats chronically ingesting 60 mg PCP/kg body weight/day. Levels of total Cl4-1,4-BQ-derived adducts in liver cytosolic proteins (Cp) (22.0 nmol/g) and in liver nuclear proteins (Np) (3.07 nmol/g) were comparable to those of model predictions (15.0 and 3.02 nmol/g for Cp and Np, respectively). Overall, these results suggest that species differences in the metabolism of PCP to semiquinones and quinones were, in part, responsible for the production of liver tumors in mice but not rats in chronic bioassays.  (+info)

Biophysical characterization of a designed TMV coat protein mutant, R46G, that elicits a moderate hypersensitivity response in Nicotiana sylvestris. (67/73494)

The hypersensitivity resistance response directed by the N' gene in Nicotiana sylvestris is elicited by the tobacco mosaic virus (TMV) coat protein R46G, but not by the U1 wild-type TMV coat protein. In this study, the structural and hydrodynamic properties of R46G and wild-type coat proteins were compared for variations that may explain N' gene elicitation. Circular dichroism spectroscopy reveals no significant secondary or tertiary structural differences between the elicitor and nonelicitor coat proteins. Analytical ultracentrifugation studies, however, do show different concentration dependencies of the weight average sedimentation coefficients at 4 degrees C. Viral reconstitution kinetics at 20 degrees C were used to determine viral assembly rates and as an initial assay of the rate of 20S formation, the obligate species for viral reconstitution. These kinetic results reveal a decreased lag time for reconstitution performed with R46G that initially lack the 20S aggregate. However, experiments performed with 20S initially present reveal no detectable differences indicating that the mechanism of viral assembly is similar for the two coat protein species. Therefore, an increased rate of 20S formation from R46G subunits may explain the differences in the viral reconstitution lag times. The inferred increase in the rate of 20S formation is verified by direct measurement of the 20S boundary as a function of time at 20 degrees C using velocity sedimentation analysis. These results are consistent with the interpretation that there may be an altered size distribution and/or lifetime of the small coat protein aggregates in elicitors that allows N. sylvestris to recognize the invading virus.  (+info)

Breaking the low barrier hydrogen bond in a serine protease. (68/73494)

The serine protease subtilisin BPN' is a useful catalyst for peptide synthesis when dissolved in high concentrations of a water-miscible organic co-solvent such as N,N-dimethylformamide (DMF). However, in 50% DMF, the k(cat) for amide hydrolysis is two orders of magnitude lower than in aqueous solution. Surprisingly, the k(cat) for ester hydrolysis is unchanged in 50% DMF. To explain this alteration in activity, the structure of subtilisin 8397+1 was determined in 20, 35, and 50% (v/v) DMF to 1.8 A resolution. In 50% DMF, the imidazole ring of His64, the central residue of the catalytic triad, has rotated approximately 180 degrees around the Cbeta-Cgamma bond. Two new water molecules in the active site stabilize the rotated conformation. This rotation places His64 in an unfavorable geometry to interact with the other members of the catalytic triad, Ser221 and Asp32. NMR experiments confirm that the characteristic resonance due to the low barrier hydrogen bond between the His64 and Asp32 is absent in 50% DMF. These experiments provide a clear structural basis for the change in activity of serine proteases in organic co-solvents.  (+info)

Variants of ribonuclease inhibitor that resist oxidation. (69/73494)

Human ribonuclease inhibitor (hRI) is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and Cys95, and Cys328 and Cys329. A cystine formed from such adjacent cysteine residues would likely contain a perturbing cis peptide bond within its eight-membered ring, which would disrupt the structure of hRI and could facilitate further oxidation. We find that replacing Cys328 and Cys329 with alanine residues has little effect on the affinity of hRI for bovine pancreatic ribonuclease A (RNase A), but increases its resistance to oxidation by 10- to 15-fold. Similar effects are observed for the single variants, C328A hRI and C329A hRI, suggesting that oxidation resistance arises from the inability to form a Cys328-Cys329 disulfide bond. Replacing Cys94 and Cys95 with alanine residues increases oxidation resistance to a lesser extent, and decreases the affinity of hRI for RNase A. The C328A, C329A, and C328A/C329A variants are likely to be more useful than wild-type hRI for inhibiting pancreatic-type ribonucleases in vitro and in vivo. We conclude that replacing adjacent cysteine residues can confer oxidation resistance in a protein.  (+info)

Fosfomycin alters lipopolysaccharide-induced inflammatory cytokine production in mice. (70/73494)

To determine the mechanisms of immunomodulating action of fosfomycin (FOF), we examined its effect on the production of inflammatory cytokines in mice injected with lipopolysaccharide (LPS). Treatment with FOF significantly lowered the peak serum levels of tumor necrosis factor alpha and interleukin-1 beta, indicating that FOF alters inflammatory cytokine production after LPS stimulation.  (+info)

Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. (71/73494)

In Saccharomyces cerevisiae, mating pheromones activate two MAP kinases (MAPKs), Fus3p and Kss1p, to induce G1 arrest prior to mating. Fus3p is known to promote G1 arrest by activating Far1p, which inhibits three Clnp/Cdc28p kinases. To analyze the contribution of Fus3p and Kss1p to G1 arrest that is independent of Far1p, we constructed far1 CLN strains that undergo G1 arrest from increased activation of the mating MAP kinase pathway. We find that Fus3p and Kss1p both control G1 arrest through multiple functions that operate in parallel with Far1p. Fus3p and Kss1p together promote G1 arrest by repressing transcription of G1/S cyclin genes (CLN1, CLN2, CLB5) by a mechanism that blocks their activation by Cln3p/Cdc28p kinase. In addition, Fus3p and Kss1p counteract G1 arrest through overlapping and distinct functions. Fus3p and Kss1p together increase the expression of CLN3 and PCL2 genes that promote budding, and Kss1p inhibits the MAP kinase cascade. Strikingly, Fus3p promotes proliferation by a novel function that is not linked to reduced Ste12p activity or increased levels of Cln2p/Cdc28p kinase. Genetic analysis suggests that Fus3p promotes proliferation through activation of Mcm1p transcription factor that upregulates numerous genes in G1 phase. Thus, Fus3p and Kss1p control G1 arrest through a balance of arrest functions that inhibit the Cdc28p machinery and proliferative functions that bypass this inhibition.  (+info)

Presynaptic action of adenosine on a 4-aminopyridine-sensitive current in the rat carotid body. (72/73494)

1. Plasma adenosine concentration increases during hypoxia to a level that excites carotid body chemoreceptors by an undetermined mechanism. We have examined this further by determining the electrophysiological responses to exogenous adenosine of sinus nerve chemoafferents in vitro and of whole-cell currents in isolated type I cells. 2. Steady-state, single-fibre chemoafferent discharge was increased approximately 5-fold above basal levels by 100 microM adenosine. This adenosine-stimulated discharge was reversibly and increasingly reduced by methoxyverapamil (D600, 100 microM), by application of nickel chloride (Ni2+, 2 mM) and by removal of extracellular Ca2+. These effects strongly suggest a presynaptic, excitatory action of adenosine on type I cells of the carotid body. 3. Adenosine decreased whole-cell outward currents at membrane potentials above -40 mV in isolated type I cells recorded during superfusion with bicarbonate-buffered saline solution at 34-36 C. This effect was reversible and concentration dependent with a maximal effect at 10 microM. 4. The degree of current inhibition induced by 10 microM adenosine was voltage independent (45.39 +/- 2. 55 % (mean +/- s.e.m.) between -40 and +30 mV) and largely ( approximately 75 %), but not entirely, Ca2+ independent. 4-Aminopyridine (4-AP, 5 mM) decreased the amplitude of the control outward current by 80.60 +/- 3.67 % and abolished the effect of adenosine. 5. Adenosine was without effect upon currents near the resting membrane potential of approximately -55 mV and did not induce depolarization in current-clamp experiments. 6. We conclude that adenosine acts to inhibit a 4-AP-sensitive current in isolated type I cells of the rat carotid body and suggest that this mechanism contributes to the chemoexcitatory effect of adenosine in the whole carotid body.  (+info)