H-Ras is involved in the inside-out signaling pathway of interleukin-3-induced integrin activation. (41/73494)

The proto-oncogene product, p21(ras), has been implicated in the cellular mechanism of adhesion, although its precise role has been controversial. Numerous cytokines and growth-factors activate Ras, which is an important component of their growth-promoting signaling pathways. On the other hand, the role of Ras in cytokine-induced adhesion has not been elucidated. We therefore investigated the function of H-Ras in the inside-out signaling pathway of interleukin-3 (IL-3)-induced integrin activation in the murine Baf3 cell line after transfection of cells with either constitutively active, dominant-negative, or wild-type H-Ras cDNAs. Adhesion of Baf3 cells to fibronectin was induced by IL-3 in a dose-dependent manner via very late antigen-4 (VLA-4; alpha4beta1 integrins) and VLA-5 (alpha5beta1 integrins) activation. On the other hand, IL-4 did not induce the adhesion of Baf3 cells to fibronectin, although IL-4 did stimulate the cell proliferation of Baf3 cells. Constitutively active H-Ras-transfected Baf3 cells adhered to fibronectin without IL-3 stimulation through VLA-4 and VLA-5, whereas dominant-negative H-Ras-transfected Baf3 cells showed significantly less adhesion induced by IL-3 compared with wild-type and constitutively active H-Ras-transfected Baf3 cells. Anti-beta1 integrin antibody (clone; 9EG7), which is known to change integrin conformation and activate integrins, induced the adhesion of dominant-negative H-Ras-transfected Baf3 cells as much as the other types of H-Ras-transfected Baf3 cells. 8-Br-cAMP, Dibutyryl-cAMP, Ras-Raf-1 pathway inhibitors, and PD98059, a MAPK kinase inhibitor, suppressed proliferation and phosphorylation of MAPK detected by Western blotting with anti-phospho-MAPK antibody, but not adhesion of any type of H-Ras-transfected Baf3 cells, whereas U-73122, a phospholipase C (PLC) inhibitor, suppressed adhesion of these cells completely. These data indicate that H-Ras and PLC, but not Raf-1, MAPK kinase, or the MAPK pathway, are involved in the inside-out signaling pathway of IL-3-induced VLA-4 and VLA-5 activation in Baf3 cells.  (+info)

Warfarin therapy: evolving strategies in anticoagulation. (42/73494)

Warfarin is the oral anticoagulant most frequently used to control and prevent thromboembolic disorders. Prescribing the dose that both avoids hemorrhagic complications and achieves sufficient suppression of thrombosis requires a thorough understanding of the drug's unique pharmacology. Warfarin has a complex dose-response relationship that makes safe and effective use a challenge. For most indications, the dose is adjusted to maintain the patient's International Normalized Ratio (INR) at 2 to 3. Because of the delay in factor II (prothrombin) suppression, heparin is administered concurrently for four to five days to prevent thrombus propagation. Loading doses of warfarin are not warranted and may result in bleeding complications. Interactions with other drugs must be considered, and therapy in elderly patients requires careful management. Current dosing recommendations are reviewed, and practical guidelines for the optimal use of warfarin are provided.  (+info)

Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. (43/73494)

The present study evaluates the development and functional properties of beta cells differentiated in vitro. The authors have previously demonstrated that when E12.5 rat pancreatic rudiments are cultured in vitro in the absence of mesenchyme, the majority of the epithelial cells differentiate into endocrine beta cells. Thus, depletion of the mesenchyme provokes the expansion of endocrine tissue at the expense of exocrine tissue. The potential use of this procedure for the production of beta cells led the authors to characterize the beta cells differentiated in this model and to compare their properties with those of the endocrine cells of the embryonic and adult pancreas. This study shows that the beta cells that differentiate in vitro in the absence of mesenchyme express the homeodomain protein Nkx6.1, a transcription factor that is characteristic of adult mature beta cells. Further, electron microscopy analysis shows that these beta cells are highly granulated, and the ultrastructural analysis of the granules shows that they are characteristic of mature beta cells. The maturity of these granules was confirmed by a double-immunofluorescence study that demonstrated that Rab3A and SNAP-25, two proteins associated with the secretory pathway of insulin, are strongly expressed. Finally, the maturity of the differentiated beta cells in this model was confirmed when the cells responded to stimulation with 16 mM glucose by a 5-fold increase in insulin release. The authors conclude that the beta cells differentiated in vitro from rat embryonic pancreatic rudiments devoid of mesenchyme are mature beta cells.  (+info)

Effects of promazine, chlorpromazine, d-amphetamine, and pentobarbital on treadle pressing by pigeons under a signalled shock-postponement schedule. (44/73494)

The effects of promazine on treadle pressing to postpone the presentation of electric shock were studied in three pigeons. The effects of chlorpromazine, d-amphetamine, and pentobarbital were studied in two of these pigeons. Each treadle press postponed electric shock for 20 sec and presentation of a preshock stimulus for 14 sec. Selected doses of both promazine and chlorpromazine increased the rates of treadle pressing in all birds. The response-rate increases produced by promazine and chlorpromazine were due to increased conditional probabilities of treadle pressing both before and during the preshock stimulus. d-Amphetamine (1 and 3 mg/kg) slightly increased responding in one of the birds, but not to the extent that promazine or chlorpromazine did. In the other bird, the 10 mg/kg dose of d-amphetamine increased shock rate but did not change response rate. Some doses of d-amphetamine increased the conditional probabilities of responding both in the absence of the preshock signal and during the preshock signal in both birds. Pentobarbital only decreased response rates and increased shock rates.  (+info)

The effects of d-amphetamine on the temporal control of operant responding in rats during a preshock stimulus. (45/73494)

The operant behavior of six rats was maintained by a random-interval schedule of reinforcement. Three-minute periods of noise were superimposed on this behavior, each period ending with the delivery of an unavoidable shock. Overall rates of responding were generally lower during the periods of noise than in its absence (conditioned suppression). These suppressed response rates also exhibited temporal patterning, with responding becoming less frequent as each noise period progressed. The effects of d-amphetamine on this behavioral baseline were then assessed. In four animals the relative response rates during the noise and in its absence suggested that the drug produced a dose-related decrease in the amount of conditioned suppression. However, this effect was often due to a decrease in the rates of responding in the absence of the preshock stimulus, rather than to an increase in response rates during the stimulus. Temporal patterning in response rates during the preshock stimulus was abolished, an effect that was interpreted in terms of rate-dependent effect of d-amphetamine. This study thus extends rate-dependent analyses of the effects of amphetamines to the patterns of operant behavior that occur during a preshock stimulus, and which have been discussed in terms of the disrupting effects of anxiety on operant behavior.  (+info)

Fluid secretion by the malpighian tubules of the tsetse fly Glossina morsitans: the effects of ouabain, ethacrynic acid and amiloride. (46/73494)

The effects of three inhibitors of sodium transport on the secretion of fluid by the Malpighian tubules of Glossina morsitans have been observed. The cardiac glycoside, ouabain, affects neither the rate of secretion nor the sodium concentration of the fluid secreted when isolated tubules are bathed by solutions containing a range of sodium and potassium concentrations. Secretion is inhibited, however, by ethacrynic acid and amiloride. The results confirm that fluid secretion by the Malpighian tubules of this insect is dependent on the active transport of sodium ions and show that Na+/k+ exchange pumps are not involved in this process.  (+info)

Analysis of the stimulation-inhibition paradox exhibited by lymphocytes exposed to concanavalin A. (47/73494)

High doses of Concanavalin A (Con A), which normally inhibit T-lymphocyte stimulation as measured by increases in DNA synthesis, cause these lymphocytes to become committed to mitogenesis while also generating a dominant but reversible negative growth signal. The observed response to the stimulatory signal as measured by the rate of commitment to enter the S phase (i.e., the rate at which the stimulation becomes lectin independent) increases with lectin concentration even in the inhibitory range. The generation of this positive signal is prevented by treating the cells with colchicine. Cells that have become committed but are also simultaneously blocked from entering the S phase by the high doses of Con A can begin synthesizing DNA if the lectin is released by adding a competitive inhibitor of binding. Experiments done in agarose cultures in which lymphocytes are kept from contact with each other suggest that the reversible inhibitory signal is mediated by structures in the individual cells rather than as a result of agglutination. Continuously dividing cells of the lymphoid line P388 are also individually and reversibly inhibited by Con A. These findings are considered in terms of the relation of the inhibitory signal to the microtubular components of cell surface modulating assemblies made up of submembranous arrays of microtubules, microfilaments, and associated proteins.  (+info)

Concanavalin A-mediated binding and sphering of human red blood cells by homologous monocytes. (48/73494)

Human red blood cells sensitized with concanavalin A became bound to homologous peripheral blood monocytes. Binding occured at a concentration of 10(5) molecules of tetrameric Con A per red blood cell (RBC) and increased with additional Con A. RBC binding began within 5 min and was maximal at 90 min. Phagocytosis of sensitized RBCs was minimal. RBC attachment was prevented by 0.01 M alpha-methyl-D-mannopyranoside, and, once the RBC-monocyte rosette was established, bound RBCs were largely removed with this specific saccharide inhibitor of Con A. RBCs attached to monocytes became spherocytic and osmotically fragile. The recognition of concanavalin A (Con A)-coated RBCs was not mediated through the monocyte IgG-Fc receptor. These studies demonstrate that, like IgG and C3b, Con A is capable of mediating the binding of human RBCs to human monocytes. Red cells so bound are damaged at the monocyte surface.  (+info)