Roles of an Ets motif and a novel CACGAC direct repeat in transcription of the murine dihydrolipoamide dehydrogenase (Dld) gene. (73/66602)

The 5'-flanking region of the murine dihydrolipoamide dehydrogenase (Dld) gene was characterized for its promoter activity. DNase I footprinting analysis of the promoter region (-545 bp to +41 bp) revealed six major protein-binding domains (termed P1 to P6) that were protected by NIH3T3 fibroblast nuclear extracts. Transient transfection assays, using a series of nested deletions of the 2.5 kb 5'-flanking region ligated to the chloramphenicol acetyltransferase reporter gene, identified that the -42-bp to +41-bp region, which harbours the P1, P2, and P3 domains, had minimal transcriptional activity. When the 5'-flanking region was extended from -42 bp to -82 bp, there was an approx. 5-fold increase in promoter activity. To identify further the cis elements involved in transcription of the Dld gene (-82 bp to +41 bp), a series of mutations were introduced into this region and evaluated for functional effects using transient transfection and electrophoretic mobility shift assays. Mutation or deletion of the CACGAC direct repeat, located from -61 bp to -46 bp, resulted in minimal promoter activity. Mutation of the Ets motif, located from -37 bp to -32 bp, reduced the minimal promoter activity by approx. 50%, whereas the deletion of this motif almost abolished the promoter activity. These results indicate that: (i) the Ets motif is required for the minimal promoter activity and (ii) the CACGAC direct repeat enhances promoter activity. Database searches failed to identify the direct repeat with the CACGAC motif and hence the CACGAC sequence may represent a novel motif. The requirement of both the Ets motif and the direct repeat element for optimal promoter activity represents a unique combination for gene transcription.  (+info)

Tumour necrosis factor-alpha regulates expression of the CCAAT-enhancer-binding proteins (C/EBPs) alpha and beta and determines the occupation of the C/EBP site in the promoter of the insulin-responsive glucose-transporter gene in 3T3-L1 adipocytes. (74/66602)

We have demonstrated previously that treatment of 3T3-L1 adipocytes with tumour necrosis factor-alpha (TNF) results in a rapid (4 h) and significant (75-80%) reduction in the rate of transcription of the GLUT4 gene. Control of GLUT4 gene transcription has been suggested at least in part to reside with the CCAAT-enhancer-binding protein (C/EBP) family (alpha, beta and delta isoforms) of transcription factors. Using electrophoretic mobility shift assays, we have examined the ability of TNF to alter the occupation of the C/EBP site in the GLUT4 promoter. The data suggest that in fully differentiated adipocytes the C/EBP site is a ligand for predominantly alpha/alpha homodimers; however, after exposure to TNF, a shift in occupancy of the site occurs and the ligands become alpha/beta heterodimers and beta/beta homodimers. Partner selection in dimer formation appears to be controlled by selective translocation of the beta-isoform from the cytosol to the nucleus after exposure of the cells to TNF.  (+info)

Dual role for transcription factor AP-2 in the regulation of the major fetal promoter P3 of the gene for human insulin-like growth factor II. (75/66602)

The human insulin-like growth factor II (IGF-II) gene contains four promoters that are differentially active during cell growth and development. Promoter 3 (P3) is the most active promoter in fetal and non-hepatic adult tissues. In addition to its expression during development, P3 is also the major promoter in many tumour tissues and IGF-II-expressing cell lines. Here we show that AP-2 has a dual function in P3 regulation in vivo as well as in vitro. In cells expressing low levels of endogenous AP-2, AP-2 overexpression activates P3, whereas P3 promoter activity is inhibited in cells containing abundant AP-2. Four potential AP-2-binding sites were identified in footprinting studies with recombinant AP-2. One of these AP-2-binding sites is located within the previously identified element P3-4 that contains two adjacent binding sites for IGF-II promoter-binding proteins IPBP3 and IPBP4/5. By applying binding competition assays and mutational analysis it is shown that AP-2 interferes with IPBP3 binding and transactivation in vivo as well as in vitro. Furthermore, AP-2 can bind additional elements in the proximal P3 promoter that also contribute to AP-2-mediated transactivation as shown by transient transfection assays. From these results we conclude that AP-2 is an important regulator in vivo and in vitro of IGF-II P3 activity.  (+info)

Comparison of the mechanism of cytotoxicity of 2-chloro-9-(2-deoxy-2- fluoro-beta-D-arabinofuranosyl)adenine, 2-chloro-9-(2-deoxy-2-fluoro- beta-D-ribofuranosyl)adenine, and 2-chloro-9-(2-deoxy-2,2-difluoro- beta-D-ribofuranosyl)adenine in CEM cells. (76/66602)

In an effort to understand biochemical features that are important to the selective antitumor activity of 2-chloro-9-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)adenine [Cl-F( upward arrow)-dAdo], we evaluated the biochemical pharmacology of three structurally similar compounds that have quite different antitumor activities. Cl-F( upward arrow)-dAdo was 50-fold more potent as an inhibitor of CEM cell growth than were either 2-chloro-9-(2-deoxy-2-fluoro-beta-D-ribofuranosyl)adenine [Cl-F( downward arrow)-dAdo] or 2-chloro-9-(2-deoxy-2, 2-difluoro-beta-D-ribofuranosyl)adenine [Cl-diF( upward arrow downward arrow)-dAdo]. The compounds were similar as substrates of deoxycytidine kinase. Similar amounts of their respective triphosphates accumulated in CEM cells, and the rate of disappearance of these metabolites was also similar. Cl-F( upward arrow)-dAdo was 10- to 30-fold more potent in its ability to inhibit the incorporation of cytidine into deoxycytidine nucleotides than either Cl-F( downward arrow)-dAdo or Cl-diF( upward arrow downward arrow)-dAdo, respectively, which indicated that ribonucleotide reductase was differentially inhibited by these three compounds. Thus, the differences in the cytotoxicity of these agents toward CEM cells were not related to quantitative differences in the phosphorylation of these agents to active forms but can mostly be accounted for by differences in the inhibition of ribonucleotide reductase activity. Furthermore, the inhibition of RNA and protein synthesis by Cl-F( downward arrow)-dAdo and Cl-diF( upward arrow downward arrow)-dAdo at concentrations similar to those required for the inhibition of DNA synthesis can help explain the poor antitumor selectivity of these two agents because all cells require RNA and protein synthesis.  (+info)

p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. (77/66602)

DNA binding activity of p53 is crucial for its tumor suppressor function. Our recent studies have shown that four molecules of the DNA binding domain of human p53 (p53DBD) bind the response elements with high cooperativity and bend the DNA. By using A-tract phasing experiments, we find significant differences between the bending and twisting of DNA by p53DBD and by full-length human wild-type (wt) p53. Our data show that four subunits of p53DBD bend the DNA by 32-36 degrees, whereas wt p53 bends it by 51-57 degrees. The directionality of bending is consistent with major groove bends at the two pentamer junctions in the consensus DNA response element. More sophisticated phasing analyses also demonstrate that p53DBD and wt p53 overtwist the DNA response element by approximately 35 degrees and approximately 70 degrees, respectively. These results are in accord with molecular modeling studies of the tetrameric complex. Within the constraints imposed by the protein subunits, the DNA can assume a range of conformations resulting from correlated changes in bend and twist angles such that the p53-DNA tetrameric complex is stabilized by DNA overtwisting and bending toward the major groove at the CATG tetramers. This bending is consistent with the inherent sequence-dependent anisotropy of the duplex. Overall, the four p53 moieties are placed laterally in a staggered array on the external side of the DNA loop and have numerous interprotein interactions that increase the stability and cooperativity of binding. The novel architecture of the p53 tetrameric complex has important functional implications including possible p53 interactions with chromatin.  (+info)

Yeast and human genes that affect the Escherichia coli SOS response. (78/66602)

The sequencing of the human genome has led to the identification of many genes whose functions remain to be determined. Because of conservation of genetic function, microbial systems have often been used for identification and characterization of human genes. We have investigated the use of the Escherichia coli SOS induction assay as a screen for yeast and human genes that might play a role in DNA metabolism and/or in genome stability. The SOS system has previously been used to analyze bacterial and viral genes that directly modify DNA. An initial screen of meiotically expressed yeast genes revealed several genes associated with chromosome metabolism (e.g., RAD51 and HHT1 as well as others). The SOS induction assay was then extended to the isolation of human genes. Several known human genes involved in DNA metabolism, such as the Ku70 end-binding protein and DNA ligase IV, were identified, as well as a large number of previously unknown genes. Thus, the SOS assay can be used to identify and characterize human genes, many of which may participate in chromosome metabolism.  (+info)

A novel splicing isoform of mouse sterol regulatory element-binding protein-1 (SREBP-1). (79/66602)

We cloned a cDNA encoding the NH2-terminal portion of mouse SREBP-1. The deduced amino acid sequence was 76% and 90% identical to human and hamster SREBP-1, respectively. We found out a novel splicing isoform of mouse SREBP-1 that lacks 42 amino acid residues composing a PEST sequence observed in unstable proteins. It has been reported that SREBP-1 is rapidly turned over in the nucleus. Although this isoform was not a dominant isoform, it might be possible that the produced protein functions differently from other isoforms including a complete PEST sequence.  (+info)

Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. (80/66602)

Hox homeodomain proteins are developmental regulators that determine body plan in a variety of organisms. A majority of the vertebrate Hox proteins bind DNA as heterodimers with the Pbx1 homeodomain protein. We report here the 2.35 A structure of a ternary complex containing a human HoxB1-Pbx1 heterodimer bound to DNA. Heterodimer contacts are mediated by the hexapeptide of HoxB1, which binds in a pocket in the Pbx1 protein formed in part by a three-amino acid insertion in the Pbx1 homeodomain. The Pbx1 DNA-binding domain is larger than the canonical homeodomain, containing an additional alpha helix that appears to contribute to binding of the HoxB1 hexapeptide and to stable binding of Pbx1 to DNA. The structure suggests a model for modulation of Hox DNA binding activity by Pbx1 and related proteins.  (+info)