DNA sequence analysis by hybridization with oligonucleotide microchips: MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides. (49/28523)

Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15 degrees C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.  (+info)

Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. (50/28523)

We describe a method for the discrimination of short tandem repeat (STR) alleles based on active microarray hybridization. An essential factor in this method is electronic hybridization of the target DNA, at high stringency, in <5 min. High stringency is critical to avoid slippage of hybrids along repeat tracts at allele-specific test sites in the array. These conditions are attainable only with hybridization kinetics realized by electronic concentration of DNA. A sandwich hybrid is assembled, in which proper base stacking of juxtaposed terminal nucleotides results in a thermodynamically favored complex. The increased stability of this complex relative to non-stacked termini and/or base pair mismatches is used to determine the identification of STR alleles. This method is capable of simultaneous and precise identification of alleles containing different numbers of repeats, as well as mutations within these repeats. Given the throughput capabilities of microarrays our system has the potential to enhance the use of microsatellites in forensic criminology, diagnostics and genetic mapping.  (+info)

Different functional domains of TAFII250 modulate expression of distinct subsets of mammalian genes. (51/28523)

The TATA box-binding protein-associated factors (TAFs) are thought to play an essential role in eukaryotic RNA polymerase II transcription by mediating the expression of distinct subsets of genes. In hamster ts13 cells, a single amino acid change in TAF(II)250, which disrupts its acetyl-transferase activity at the restrictive temperature, alters the transcription of specific genes involved in cell cycle control. Likewise, disruption of the amino-terminal kinase domain of TAF(II)250 results in transcriptional defects in ts13 cells. However, it was not known whether the acetyl-transferase or kinase domains of TAF(II)250 modulate specific classes of genes and whether these two domains regulate distinct subsets of genes. Here we have used high-density gene-profiling to identify mammalian transcripts that require either the TAF(II)250 acetyl-transferase or protein kinase function for proper expression. We found that transcription of at least 18% of genes are differentially expressed at the restrictive temperature. The promoter region of one of these genes was subsequently characterized, and both upstream elements as well as the core promoter were shown to be TAF(II)250 responsive. We also found that expression of approximately 6% of genes in ts13 cells requires a functional TAF(II)250 amino-terminal kinase domain, but only approximately 1% of these hamster genes also require the TAF(II)250 acetyl-transferase activity. Our results suggest that the two TAF(II)250 enzymatic activities are important for regulating largely nonoverlapping sets of genes involved in a wide range of biological functions in vivo.  (+info)

Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. (52/28523)

Multigenic programs controlling susceptibility to apoptosis in response to ionizing radiation have not yet been defined. Here, using DNA microarrays, we show gene expression patterns in an apoptosis-sensitive and apoptosis-resistant murine B cell lymphoma model system both before and after irradiation. From the 11,000 genes interrogated by the arrays, two major patterns emerged. First, before radiation exposure the radioresistant LYar cells expressed significantly greater levels of message for several genes involved in regulating intracellular redox potential. Compared with LYas cells, LYar cells express 20- to 50-fold more mRNA for the tetraspanin CD53 and for fructose-1,6-bisphosphatase. Expression of both of these genes can lead to the increase of total cellular glutathione, which is the principle intracellular antioxidant and has been shown to inhibit many forms of apoptosis. A second pattern emerged after radiation, when the apoptosis-sensitive LYas cells induced rapid expression of a unique cluster of genes characterized by their involvement in mitochondrial electron transport. Some of these genes have been previously recognized as proapoptotic; however others, such as uncoupling protein 2, were not previously known to be apoptotic regulatory proteins. From these observations we propose that a multigenic program for sensitivity to apoptosis involves induction of transcripts for genes participating in mitochondrial uncoupling and loss of membrane potential. This program triggers mitochondrial release of apoptogenic factors and induces the "caspase cascade." Conversely, cells resistant to apoptosis down-regulate these biochemical pathways, while activating pathways for establishment and maintenance of high intracellular redox potential by means of elevated glutathione.  (+info)

Advanced method for oligonucleotide deprotection. (53/28523)

A new procedure for rapid deprotection of synthetic oligodeoxynucleotides has been developed. While all known deprotection methods require purification to remove the residual protective groups (e.g. benzamide) and insoluble silicates, the new procedure based on the use of an ammonia-free reagent mixture allows one to avoid the additional purification steps. The method can be applied to deprotect the oligodeoxynucleotides synthesized by using the standard protected nucleoside phosphoramidites dG(iBu), dC(Bz)and dA(Bz).  (+info)

Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. (54/28523)

The cDNA from activated mutants of the homologous transcription factors Pdr1p and Pdr3p was used to screen DNA microarrays of the Saccharomyces cerevisiae complete genome. Twenty-six overexpressed targets of the PDR1-3 and/or PDR3-7 mutants were identified. Twenty-one are new targets, the majority of which are of unknown function. In addition to well known ABC transporters, these targets appear to be involved in transport or in membrane lipids and cell wall biosyntheses. Several of the targets seem to contribute to the cell defence against a variety of stresses. Pdr1p and Pdr3p do not act similarly on all targets. Unexpectedly, the expression of 23 other genes appeared to be repressed in the PDR1-3 and/or PDR3-7 mutants. In contrast to the majority of the activated genes, none of the repressed genes contains pleiotropic drug resistance binding sites in their promoter.  (+info)

Identification of genes differentially over-expressed in lung squamous cell carcinoma using combination of cDNA subtraction and microarray analysis. (55/28523)

In order to develop effective vaccine products against human cancer, we are interested in identifying genes over-expressed in tumor cells. Through a combination of cDNA library subtraction and microarray technology, we identified seventeen genes preferentially expressed in lung squamous cell carcinoma, including four novel genes. To date, expression profiles of these genes were confirmed by Northern and/or real-time analysis, and several genes were also found to be expressed in head and neck squamous tumors. Thus, these combined methods represent a high throughput approach for identifying tumor specific genes. Furthermore, the report of characterization on these genes will allow them to be exploited for their diagnostic, prognostic, and therapeutic potentials including immunotherapy and antibody based anticancer therapy.  (+info)

Mitotic misregulation and human aging. (56/28523)

Messenger RNA levels were measured in actively dividing fibroblasts isolated from young, middle-age, and old-age humans and humans with progeria, a rare genetic disorder characterized by accelerated aging. Genes whose expression is associated with age-related phenotypes and diseases were identified. The data also suggest that an underlying mechanism of the aging process involves increasing errors in the mitotic machinery of dividing cells in the postreproductive stage of life. We propose that this dysfunction leads to chromosomal pathologies that result in misregulation of genes involved in the aging process.  (+info)