Evolution of gene expression patterns in a model of branching morphogenesis. (33/28523)

Branching morphogenesis of the ureteric bud in response to unknown signals from the metanephric mesenchyme gives rise to the urinary collecting system and, via inductive signals from the ureteric bud, to recruitment of nephrons from undifferentiated mesenchyme. An established cell culture model for this process employs cells of ureteric bud origin (UB) cultured in extracellular matrix and stimulated with conditioned media (BSN-CM) from a metanephric mesenchymal cell line (H. Sakurai, E. J. Barros, T. Tsukamoto, J. Barasch, and S. K. Nigam. Proc. Natl. Acad. Sci. USA 94: 6279-6284, 1997.). In the presence of BSN-CM, the UB cells form branching tubular structures reminiscent of the branching ureteric bud. The pattern of gene regulation in this model of branching morphogenesis of the kidney collecting system was investigated using high-density cDNA arrays. Software and analytical methods were developed for the quantification and clustering of genes. With the use of a computational method termed "vector analysis," genes were clustered according to the direction and magnitude of differential expression in n-dimensional log-space. Changes in gene expression in response to the BSN-CM consisted primarily of differential expression of transcription factors with previously described roles in morphogenesis, downregulation of pro-apoptotic genes accompanied by upregulation of anti-apoptotic genes, and upregulation of a small group of secreted products including growth factors, cytokines, and extracellular proteinases. Changes in expression are discussed in the context of a general model for epithelial branching morphogenesis. In addition, the cDNA arrays were used to survey expression of epithelial markers and secreted factors in UB and BSN cells, confirming the largely epithelial character of the former and largely mesenchymal character of the later. Specific morphologies (cellular processes, branching multicellular cords, etc.) were shown to correlate with the expression of different, but overlapping, genomic subsets, suggesting differences in morphogenetic mechanisms at these various steps in the evolution of branching tubules.  (+info)

Accumulation of specific RNAs encoding transcriptional factors and stress response proteins against a background of severe depletion of cellular RNAs in cells infected with herpes simplex virus 1. (34/28523)

Herpes simplex virus 1 encodes several functions to preclude the shutoff of host response to infection, including degradation of mRNA immediately after infection. To determine whether any cellular mRNAs accumulate in infected cells against a background of severe loss of host RNA, we hybridized cDNAs derived from three different cell lines infected with wild type and a mutant virus to a DNA array containing probes for 588 human genes representing different functional groups. The results were that (i) infected cells accumulated at levels above those of mock-infected cells, a small number of transcripts representing transcriptional factors that could regulate gene expression both positively and negatively, and one stress response protein (GADD45), (ii) the amount and nature of the accumulated transcripts showed limited variability depending on the cell and virus, and (iii) at least some of the proteins encoded by the accumulated transcripts could benefit either the virus or the host.  (+info)

Application of complementary DNA microarray technology to carcinogen identification, toxicology, and drug safety evaluation. (35/28523)

One major challenge facing today's cancer researchers and toxicologists is the development of new approaches for the identification of carcinogens and other environmental hazards. Here, we describe the potential impact of emerging technologies for measuring gene expression profiles on carcinogen identification and on the general field of toxicology. An example of one of these technologies is the use of cDNA microarray chips. We provide an overview to the key questions that are confronting investigators charged with determining the relative safety of natural or synthetic chemicals to which humans are exposed, followed by a discussion of how cDNA microarray technology may be applied to these questions. Gene chip technology is still a relatively new technology, and only a handful of studies have demonstrated its utility. However, as the technical hurdles to development are passed, the use of this methodology in addressing the questions raised here will be critical to increase the sensitivity of detection of the potential toxic effects of environmental chemicals and to understand their risks to humans.  (+info)

Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. (36/28523)

Although cancer classification has improved over the past 30 years, there has been no general approach for identifying new cancer classes (class discovery) or for assigning tumors to known classes (class prediction). Here, a generic approach to cancer classification based on gene expression monitoring by DNA microarrays is described and applied to human acute leukemias as a test case. A class discovery procedure automatically discovered the distinction between acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without previous knowledge of these classes. An automatically derived class predictor was able to determine the class of new leukemia cases. The results demonstrate the feasibility of cancer classification based solely on gene expression monitoring and suggest a general strategy for discovering and predicting cancer classes for other types of cancer, independent of previous biological knowledge.  (+info)

Mutational analysis using oligonucleotide microarrays. (37/28523)

The development of inexpensive high throughput methods to identify individual DNA sequence differences is important to the future growth of medical genetics. This has become increasingly apparent as epidemiologists, pathologists, and clinical geneticists focus more attention on the molecular basis of complex multifactorial diseases. Such undertakings will rely upon genetic maps based upon newly discovered, common, single nucleotide polymorphisms. Furthermore, candidate gene approaches used in identifying disease associated genes necessitate screening large sequence blocks for changes tracking with the disease state. Even after such genes are isolated, large scale mutational analyses will often be needed for risk assessment studies to define the likely medical consequences of carrying a mutated gene. This review concentrates on the use of oligonucleotide arrays for hybridisation based comparative sequence analysis. Technological advances within the past decade have made it possible to apply this technology to many different aspects of medical genetics. These applications range from the detection and scoring of single nucleotide polymorphisms to mutational analysis of large genes. Although we discuss published scientific reports, unpublished work from the private sector could also significantly affect the future of this technology.  (+info)

Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. (38/28523)

Several methods have been used recently to determine gene expression profiles of cell populations. Here we demonstrate the strength of combining two approaches, serial analysis of gene expression (SAGE) and DNA arrays, to help elucidate pathways in breast cancer progression by finding genes consistently expressed at different levels in primary breast cancers, metastatic breast cancers, and normal mammary epithelial cells. SAGE profiles of 21PT and 21MT, two well-characterized breast tumor cell lines, were compared with SAGE profiles of normal breast epithelial cells to identify differentially expressed genes. A subset of these candidates was then placed on an array and screened with clinical breast tumor samples to find genes and expressed sequence tags that are consistently expressed at different levels in diseased and normal tissues. In addition to finding the predicted overexpression of known breast cancer markers HER-2/neu and MUC-1, the powerful coupling of SAGE and DNA arrays resulted in the identification of genes and potential pathways not implicated previously in breast cancer. Moreover, these techniques also generated information about the differences and similarities of expression profiles in primary and metastatic breast tumors. Thus, combining SAGE and custom array technology allowed for the rapid identification and validation of the clinical relevance of many genes potentially involved in breast cancer progression. These differentially expressed genes may be useful as tumor markers and prognostic indicators and may be suitable targets for various forms of therapeutic intervention.  (+info)

Inversion of in situ synthesized oligonucleotides: improved reagents for hybridization and primer extension in DNA microarrays. (39/28523)

Oligonucleotides synthesized in array format suffer from contamination by truncated species. We have developed a method to invert DNA molecules in situ after completed synthesis. Reactive functions at the 5'-ends of the oligonucleotides are permitted to react with functions on the support before the 3'-ends are released, in effect reversing the orientation of full-length oligonucleotides, while any 5'-truncated molecules are lost. This strategy serves both to purify in situ synthesized reagents and to reorient the oligonucleotides, causing them to expose free 3'-hydroxyls. In situ inverted oligonucleotides can be used in assays based on DNA polymerase-assisted extension of immobilized primers, and we demonstrate their utility in minisequencing and in pyrosequencing.  (+info)

Microarray analysis of Drosophila development during metamorphosis. (40/28523)

Metamorphosis is an integrated set of developmental processes controlled by a transcriptional hierarchy that coordinates the action of hundreds of genes. In order to identify and analyze the expression of these genes, high-density DNA microarrays containing several thousand Drosophila melanogaster gene sequences were constructed. Many differentially expressed genes can be assigned to developmental pathways known to be active during metamorphosis, whereas others can be assigned to pathways not previously associated with metamorphosis. Additionally, many genes of unknown function were identified that may be involved in the control and execution of metamorphosis. The utility of this genome-based approach is demonstrated for studying a set of complex biological processes in a multicellular organism.  (+info)