New experimental and computational approaches to the analysis of gene expression. (17/28523)

Public and private EST (Expressed Sequence Tag) programs provide access to a large number of ESTs from a number of plant species, including Arabidopsis, corn, soybean, rice, wheat. In addition to the homology of each EST to genes in GenBank, information about homology to all other ESTs in the data base can be obtained. To estimate expression levels of genes represented in the DuPont EST data base we count the number of times each gene has been seen in different cDNA libraries, from different tissues, developmental stages or induction conditions. This quantitation of message levels is quite accurate for highly expressed messages and, unlike conventional Northern blots, allows comparison of expression levels between different genes. Lists of most highly expresses genes in different libraries can be compiled. Also, if EST data is available for cDNA libraries derived from different developmental stages, gene expression profiles across development can be assembled. We present an example of such a profile for soybean seed development. Gene expression data obtained from Electronic Northern analysis can be confirmed and extended beyond the realm of highly expressed genes by using high density DNA arrays. The ESTs identified as interesting can be arrayed on nylon or glass and probed with total labeled cDNA first strand from the tissue of interest. Two-color fluorescent labeling allows accurate mRNA ratio measurements. We are currently using the DNA array technology to study chemical induction of gene expression and the biosynthesis of oil, carbohydrate and protein in developing seeds.  (+info)

Ploidy regulation of gene expression. (18/28523)

Microarray-based gene expression analysis identified genes showing ploidy-dependent expression in isogenic Saccharomyces cerevisiae strains that varied in ploidy from haploid to tetraploid. These genes were induced or repressed in proportion to the number of chromosome sets, regardless of the mating type. Ploidy-dependent repression of some G1 cyclins can explain the greater cell size associated with higher ploidies, and suggests ploidy-dependent modifications of cell cycle progression. Moreover, ploidy regulation of the FLO11 gene had direct consequences for yeast development.  (+info)

Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis. (19/28523)

With cDNA microarrays, it is now possible to compare the expression of many genes simultaneously. To maximize the likelihood of finding genes whose expression is altered under the experimental conditions, it would be advantageous to be able to select clones for tissue-appropriate cDNA sets. We have taken advantage of the extensive sequence information in the dbEST expressed sequence tag (EST) database to identify a neural crest-derived melanocyte cDNA set for microarray analysis. Analysis of characterized genes with dbEST identified one library that contained ESTs representing 21 neural crest-expressed genes (library 198). The distribution of the ESTs corresponding to these genes was biased toward being derived from library 198. This is in contrast to the EST distribution profile for a set of control genes, characterized to be more ubiquitously expressed in multiple tissues (P < 1 x 10(-9)). From library 198, a subset of 852 clustered ESTs were selected that have a library distribution profile similar to that of the 21 neural crest-expressed genes. Microarray analysis demonstrated the majority of the neural crest-selected 852 ESTs (Mel1 array) were differentially expressed in melanoma cell lines compared with a non-neural crest kidney epithelial cell line (P < 1 x 10(-8)). This was not observed with an array of 1,238 ESTs that was selected without library origin bias (P = 0.204). This study presents an approach for selecting tissue-appropriate cDNAs that can be used to examine the expression profiles of developmental processes and diseases.  (+info)

Sensitivity issues in DNA array-based expression measurements and performance of nylon microarrays for small samples. (20/28523)

DNA or oligonucleotide arrays are widely used for large-scale expression measurements, using various implementations: macroarrays in which DNA is spotted onto nylon membranes of relatively large dimensions (with radioactive detection) on the one hand; microarrays on glass slides and oligonucleotide chips, both used with fluorescent probes, on the other hand. Nylon micro-arrays with colourimetric detection have also been described recently. The small physical dimensions of miniaturized systems allow small hybridization volumes (2-100 microl) and provide high probe concentrations, in contrast to macroarrays. We show, however, that actual sensitivity (defined as the amount of sample necessary for detection of a given mRNA species) is in fact similar for all these systems and that this is mostly due to the very different amounts of target material present on the respective arrays. We then demonstrate that the combination of nylon microarrays with(33)P-labelled radioactive probes provides 100-fold better sensitivity, making it possible to perform expression profiling experiments using submicrogram amounts of unamplified total RNA from small biological samples. This has important implications in basic and clinical research and makes this alternative approach particularly suitable for groups operating in an academic context.  (+info)

Large-scale gene expression data analysis: a new challenge to computational biologists. (21/28523)

The use of high-density DNA arrays to monitor gene expression at a genome-wide scale constitutes a fundamental advance in biology. In particular, the expression pattern of all genes in Saccharomyces cerevisiae can be interrogated using microarray analysis where cDNAs are hybridized to an array of each of the approximately 6000 genes in the yeast genome. In this survey I review three recent experiments related to transcriptional regulation and discuss the great challenge for computational biologists trying to extract functional information from such large-scale gene expression data.  (+info)

Hunting for differentially expressed genes. (22/28523)

Differentially expressed genes are usually identified by comparing steady-state mRNA concentrations. Several methods have been used for this purpose, including differential hybridization, cDNA subtraction, differential display and, more recently, DNA chips. Subtractive hybridization has significantly improved after the polymerase chain reaction was incorporated into the original method and many new protocols have been established. Recently, the availability of the wellknown coding sequences for some organisms has greatly facilitated gene expression analysis using high-density microarrays. Here, we describe some of these modifications and discuss the benefits and drawbacks of the various methods corresponding to the main advances in this field.  (+info)

Gene expression profile of aging and its retardation by caloric restriction. (23/28523)

The gene expression profile of the aging process was analyzed in skeletal muscle of mice. Use of high-density oligonucleotide arrays representing 6347 genes revealed that aging resulted in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes. Most alterations were either completely or partially prevented by caloric restriction, the only intervention known to retard aging in mammals. Transcriptional patterns of calorie-restricted animals suggest that caloric restriction retards the aging process by causing a metabolic shift toward increased protein turnover and decreased macromolecular damage.  (+info)

Polymorphism analysis and gene detection by minisequencing on an array of gel-immobilized primers. (24/28523)

Two procedures, multibase and multiprimer, have been developed for single nucleotide extension of primers immobilized within polyacrylamide gel pads on a microchip. In the multibase assay, a primer is next to a polymorphic nucleotide; the nucleotide is identified by the specificity with which the primer incorporates fluorescently labeled dideoxyribo-nucleoside triphosphates. In the multiprimer assay, several primers containing different 3'-terminal nucleotides overlapping the variable nucleotide in DNA are used. The polymorphic nucleotide is identified according to the primer that is extended. The methods were compared for diagnosis of beta-thalassemia mutations. Isothermal amplification of the fluorescent signal was achieved by performing both assays at elevated temperature. Anthrax toxin genes were identified in a model system using this amplification method.  (+info)