Observation of marking-like behavior, marking behavior, and growth of the scent gland in young Mongolian gerbils (Meriones unguiculatus) of an inbred strain. (1/135)

A marking-like behavior (defined by authors), a marking behavior, and growth of the scent glands were observed in young Mongolian gerbils of an inbred strain. In males and females, a marking-like behavior, in which animals rub their abdominal scent glands on the floor, began to be seen at the age of 19 days and could be seen in almost all the gerbils at 22 days of age during the suckling period. The frequency of this behavior was highest at 60 days of age (males: 17.9/10 min, females: 15.4/10 min) and there was no sex difference. Marking behavior, in which animals rub their abdominal scent glands on small protruding objects, began to be seen at the age of 40 days in males and 50 days in females. The frequency of this behavior tended to increase until 90 days of age in males (13.7/10 min), but the levels were low (2.5-5.0/10 min) in females. The values in the male group therefore tended to be higher than that in the female group. Macroscopic scent gland pads were clearly observed at the age of 30 days in males, but not until 45 days of age in females. At the age of 45-90 days, the length of the scent gland pad in males and females was 2.1-2.8 and 1.6-1.7 cm, respectively and the width was 0.3-0.5 in males and 0.2-0.3 cm in females. During this period, the length and depth of the pads in males were significantly greater than those in females (p < 0.05). Histological examination of the structure of the scent glands after the age of 45 days showed that the development of clusters of acinar cells in females occurred much later than that in males, but the basic structure of these glands was similar in both sexes. These results suggest that the marking-like behavior was manifested although during the period when the scent glands had not yet developed, whereas true marking behavior first occurred when the glands were moderately well developed.  (+info)

Serum biochemical values in two inbred strains of mastomys (Praomys coucha). (2/135)

Serum samples collected from 119 (72 male and 47 female) mastomys (Praomys coucha) of 2 specific-pathogen-free inbred strains (RI4 and RI7) were analyzed for 12 serum biochemical parameters. Sex-related differences (p < 0.01) were noted in alkaline phosphatase and glucose; the both higher in females than in males. Age-related changes (p < 0.01) were observed in total protein, albumin, total cholesterol, and alkaline phosphatase, with higher values for the first three parameters in the older group (200-250 days of age) than in the younger group (90-140 days of age). Four out of 12 parameters showed strain-related differences (p < 0.01), consistent with the large amount of genetic heterogeneity reported in this species. These serum biochemical reference values should provide information for the use of mastomys in laboratory research.  (+info)

Characterization of early follicular cDNA library suggests evidence for genetic polymorphisms in the inbred strain C108 of Bombyx mori. (3/135)

Recent work towards the completion of a saturated molecular genetic linkage map for the lepidopteran silkworm, Bombyx mori (n = 28), has provided evidence for existing polymorphisms in the inbred strain C108. Two inbred parental strains, p50 and C108, were crossed to produce the F1 (P/C) hybrid offspring. The populations used in this project were comprised of a combination of 29 F2 (F1 x F1) and 31 reciprocal backcross (P/C x C/C, P/C x P/P) progeny. All restriction fragment length polymorphisms (RFLPs) for the initial analysis were hybridized with anonymous probes derived from a random early follicular cDNA (Rcf) library from Bombyx. A total of 19 Rcf probes were selected as showing scorable codominant polymorphic patterns when screened against F2 and backcross DNAs digested with the restriction enzymes EcoRI, HindIII, or PstI, and Southern blotted to nylon membranes for hybridization. Of the newly reported Rcf probes, 7 (37%) were characterized as producing 'simple' polymorphic patterns, while 12 (63%) were characterized as producing 'complex' polymorphic patterns. Further characterization of the complex patterns subdivided this group into two general classes: polymorphisms that contained an additional allele, and multiple bands that contained an easily scored two banded polymorphism. Because the extra allele class was limited to the (P/C x C/C) backcross progeny, it is suggested that the inbred parental strain C108 harbors polymorphic loci that are inherited in a simple Mendelian fashion. A genetic analysis discussing plausible origins and maintenance of these polymorphisms is presented.  (+info)

Trigonocephaly in rabbits with familial interfrontal suture synostosis: the multiple effects of premature single-suture fusion. (4/135)

Previous studies from our laboratory have characterized the craniofacial morphology and growth patterns of an inbred strain of rabbits with autosomal dominant coronal suture synostosis. A number of rabbit perinates from this colony have been collected sporadically over a 5-year period with premature interfrontal suture synostosis. The present study describes the very early onset of craniofacial dysmorphology of these rabbits and compares them to similar-aged normal control rabbits. A total of 40 perinatal New Zealand White rabbits were used in the present study. Twenty-one comprised the sample with interfrontal suture synostosis and ranged in age from 27 to 38 days postconception (term = 31 days) with a mean age of 33.53 days (+/-2.84 days). Nineteen rabbits served as age-matched, normal controls (mean age = 33.05 days +/-2.79 days). Lateral and dorsoventral radiographs were collected from each rabbit. The radiographs were traced, computer digitized, and 12 craniofacial measurements, angles, and indices were obtained. Mean measures were compared using an unpaired Student's t-test. All synostosed rabbits were stillborn or died shortly after birth. Grossly, these rabbits exhibited extreme frontal bossing, trigonocephaly with sagittal keeling, and midfacial shortening. No somatic anomalies were noted. Radiographically, rabbits with interfrontal suture synostosis had significantly (P < 0.05) narrower bifrontal widths, shorter cranial vault lengths, kyphotic cranial base angles, and different cranial vault indices (shapes) compared to controls. Results reveal severe and early pathological and compensatory cranial vault changes associated with premature interfrontal suture synostosis in this rabbit model. The 100% mortality rate noted in this condition may be related to the inheritance of a lethal genetic mutation or to neural compression from reduced intracranial volume. Results are discussed in light of current pathogenic hypotheses for human infants with premature metopic suture synostosis.  (+info)

Factors affecting the efficiency of embryo cryopreservation and rederivation of rat and mouse models. (5/135)

The efficiency of embryo banking for rat and mouse models of human disease and normal biological processes depends on the ease of obtaining embryos. Authors report on the effect of genotype on embryo production and rederivation. In an effort to establish banks of cryopreserved embryos, they provide two databases for comparing banking efficiency: one that contains the embryo collection results from approximately 11,000 rat embryo donors (111 models) and another that contains the embryo collection results from 4,023 mouse embryo donors (57 induced mutant models). The genotype of donor females affected the efficiency of embryo collection in two ways. First, the proportion of females yielding embryos varied markedly among genotypes (rats: 16-100 %, mean =71 %; mice: 24-95 %, mean =65 %). Second, the mean number of embryos recovered from females yielding embryos varied considerably (rats: 4-10.6, mean =7.8; mice 5.3-32.2, mean =13.7). Genotype also affected the efficiency of rederivation of banked rat and mouse embryos models by embryo transfer. For rats, thawed embryos (n =684) from 33 genotypes were transferred into 66 recipient females (pregnancy rate, 78 %). The average rate of developing live newborns for individual rat genotypes was 30 % with a range of 10 to 58 %. For mice, thawed embryos (n =2,064) from 59 genotypes were transferred into 119 pseudopregnant females (pregnancy rate: 76 %). The average rate of development of individual mouse genotypes was 33 % with a range of 11 to 53 %. This analysis demonstrates that genotype is an important consideration when planning embryo banking programs.  (+info)

NK and T cells constitute two major, functionally distinct intestinal epithelial lymphocyte subsets in the chicken. (6/135)

Non-mammalian NK cells have not been characterized in detail; however, their analysis is essential for the understanding of the NK cell receptor phylogeny. As a first step towards defining chicken NK cells, several tissues were screened for the presence of NK cells, phenotypically defined as CD8(+) cells lacking T- or B-lineage specific markers. By this criteria, approximately 30% of CD8(+) intestinal intraepithelial lymphocytes (IEL), but <1% of splenocytes or peripheral blood lymphocytes were defined as NK cells. These CD8(+)CD3(-) IEL were used for the generation of the 28-4 mAb, immunoprecipitating a 35-kDa glycoprotein with a 28-kDa protein core. The CD3 and 28-4 mAb were used to separate IEL into CD3(+) IEL T cells and 28-4(+) cells, both co-expressing the CD8 antigen. During ontogeny, 28-4(+) cells were abundant in the IEL and in the embryonic spleen, where two subsets could be distinguished according to their CD8 and c-kit expression. Most importantly, 28-4(+) IEL lysed NK-sensitive targets, whereas intestinal T cells did not have any spontaneous cytolytic activity. These results define two major, phenotypically and functionally distinct IEL subpopulations, and imply an important role of NK cells in the mucosal immune system.  (+info)

Construction of a BAC library derived from the inbred Hd-rR strain of the teleost fish, Oryzias latipes. (7/135)

A large insert genomic bacterial artificial chromosome (BAC) library was constructed from the inbred Hd-rR strain of the medaka, Oryzias latipes. Approximately 92,000 clones were gridded on high-density replica filters. Insert analysis of randomly selected clones indicated a mean insert size of 210 kb and predicted a 24 times coverage of the medaka genome. The library was hybridized with a single locus DNA fragment, and the resulting positive clones were characterized and shown to be compatible with a 24-fold redundant library. This first large insert genomic library of the medaka should increase the speed of genomic analyses for this fish species.  (+info)

Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. (8/135)

Here we report the identification of inbred miniature swine that failed to produce human-tropic replication-competent porcine endogenous retroviruses (HTRC PERVs), using in vitro coculture assays. When HTRC PERVs were isolated from transmitting animals, all were recombinant viruses, with the receptor-binding domain of PERV-A combining with PERV-C-related sequences.  (+info)