Induction of hepatic cytochromes P450 in dogs exposed to a chronic low dose of polychlorinated biphenyls. (1/201)

Induction of cytochrome P450 isoforms, specifically CYP1A1, and their catalytic activities are potential biomarkers of environmental contamination by polychlorinated biphenyls (PCBs). In this study, dogs were exposed to 25 ppm or 5 ppm Aroclor 1248 (PCB mixture) daily in their diet for 10 or 20 weeks, respectively. Relative to controls, hepatic microsomes from dogs dosed with PCBs had higher levels of CYP1A1 detected in immunoblots and higher levels of EROD activity, but low levels of induction for CYP2B and PROD activity. Concentrations of 96 PCB congeners in serum and liver were evaluated using capillary chromatography. Results showed that all dogs exposed to PCB mixtures had higher levels of PCB in serum and liver. Dogs preferentially sequestered highly chlorinated PCB congeners in liver relative to serum. With these experiments, we demonstrated that EROD activity was a potentially sensitive marker of PCB exposure at 5 and 25 ppm. Furthermore, CYP1A1 and EROD activity were maximally induced in dogs consuming dietary concentrations only 2.5 times the maximal permissible level for human food (FDA). The value of CYP1A1 induction as a biomarker of PCB exposure was tenuous because neither CYP1A1 levels nor EROD activity correlated with total PCB body burden. However, a small subset of congeners were identified in liver that may strongly influence EROD and PROD induction. Finally, two dogs in the 25 ppm dose group were fasted for 48 h. After 24 h of fasting, several new congeners appeared in the serum and remained in the serum for the remainder of the fast. The fast caused a 293% increase in PCB concentration in serum. This increase has strong implications regarding mobilization of toxic PCBs in wildlife during fasting (e.g., migration, hibernation).  (+info)

Pseudoenzymatic reduction of N-hydroxy-2-acetylaminofluorene to 2-acetylaminofluorene mediated by cytochrome P450. (2/201)

N-hydroxy-2-acetylaminofluorene (N-OH-AAF) was reduced to 2-acetylaminofluorene by rat liver microsomes in the presence of both NAD(P)H and FAD under anaerobic conditions. The microsomal reduction proceeds as if it were an enzymatic reaction. However, when the microsomes were boiled, the activity was not abolished, but was enhanced. The activity was also observed with cytochrome P450 2B1 alone, without NADPH-cytochrome P450 reductase, in the presence of these cofactors. Hematin also exhibited a significant reducing activity in the presence of both a reduced pyridine nucleotide and FAD. The activities of microsomes, cytochrome P450 2B1 and hematin were also observed upon the addition of photochemically reduced FAD instead of both NAD(P)H and FAD. The microsomal reduction of N-OH-AAF appears to be a non-enzymatic reaction by the reduced flavin, catalyzed by the heme group of cytochrome P450.  (+info)

Selective mechanism-based inactivation of cytochromes P-450 2B1 and P-450 2B6 by a series of xanthates. (3/201)

Fifteen xanthates with carbon chains of different lengths or substitutions, including the antiviral compound D609 (O-tricyclo[5.2. 1.0(2,6)]dec-9-yl-dithiocarbonate), were tested for their ability to inactivate cytochromes P-450 (P-450s) 2B1 and 2B6. All of the xanthates tested were found to inactivate P-450 2B1 in a time- and concentration-dependent manner. The rates of inactivation at 30 degrees C ranged from 0.22 min-1 to 0.02 min-1. The concentrations required for half-maximal inactivation were between 2.4 and 69 microM. A general trend in the inactivation kinetics could be observed with an increasing chain length of the xanthates. Longer carbon chains resulted in slower rates of inactivation with longer half-times of inactivation and higher partition ratios. For P-450 2B1, the most effective inactivators were xanthates with substitutions of intermediate length. The best inactivator for P-450 2B1 was the C8 xanthate, with an inactivation potency (KI) of 2.4 microM, a rate of inactivation of 0.07 min-1, and a partition ratio of 4. Four xanthates were further examined for their effect on the 7-ethoxy-4-(trifluoromethyl)coumarin activity of P-450 2B6. The C8 xanthate was again the most effective inactivator, with a KI of 1 microM. Although the KI values were generally lower than those found with P-450 2B1, the rates of inactivation for P-450 2B6 with the various xanthates were 3- to 5-fold slower. In addition, the isozyme selectivity of xanthates was tested with P-450s 2E1, 1A1, 3A2, 3A4, 2C9, and 2D6. P-450 2E1 was inactivated by xanthates at concentrations 15- to 100-fold higher than those required to inactivate either P-450 2B1 or 2B6. P-450 1A1 was not inactivated by xanthates. However, all of the xanthates tested were able to inhibit the enzymatic activity of P-450 1A1 to a different extent, depending on the length of the xanthate carbon chain. Virtually no inactivation of P-450s 2D6 or 2C9 was seen, except that C8 and D609 were inhibitory at high concentrations (0.2-0.6 mM). None of the xanthates studied had any effect on the activities of P-450s 3A2 or 3A4.  (+info)

Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. (4/201)

The prognosis of pancreatic adenocarcinoma is poor and current treatment ineffective. A novel treatment strategy is described here using a mouse model system for pancreatic cancer. Cells that have been genetically modified to express the cytochrome P450 2B1 enzyme are encapsulated in cellulose sulphate and implanted into pre-established tumours derived from human pancreatic cells. Cytochrome P450 2B1 converts the chemotherapeutic agent ifosfamide to toxic metabolites. Administration of ifosfamide to tumour-bearing mice that were recipients of implanted encapsulated cells results in partial or even complete tumour ablation. These results suggest that in situ chemotherapy with genetically modified cells in an immunoprotected environment may prove useful for application in man.  (+info)

Dihydropyrimidine dehydrogenase activity and fluorouracil pharmacokinetics with liver damage induced by bile duct ligation in rats. (5/201)

Hepatic metabolism is the main determinant in the pharmacokinetics of 5-fluorouracil (5-FU). Its disposition might be affected with liver dysfunction. In the present study, the influence of liver damage induced by bile duct ligation on dihydropyrimidine dehydrogenase (DPD), a rate-limiting enzyme in 5-FU catabolism, CYP2B, and 5-FU pharmacokinetics were compared in male Sprague-Dawley rats. After 3 weeks of the ligation in two different groups of animals for in vitro and pharmacokinetic experiments, significant increases in serum bilirubin level and spleen weight were found in both groups. No significant differences were noted in bilirubin level or spleen weight of the bile duct ligation group between the two experiment groups. In the in vitro experiment, DPD activity and protein levels determined by Western blot analysis in the bile duct ligation group were slightly but significantly greater than those of a sham-operated group, whereas CYP2B activity and protein level were significantly reduced. These findings were supported by mRNA levels of CYP2B and DPD. When 40 mg/kg 5-FU was administered i.v. in the pharmacokinetic experiment, no significant differences in pharmacokinetic parameters were found between the bile duct ligation and sham-operated groups. These results suggested that DPD activity and protein level were maintained and that 5-FU pharmacokinetics was not altered in the presence of liver damage accompanied by a significant reduction in CYP2B activity and protein level, supporting previous clinical studies showing that mild to moderate liver dysfunction does not affect 5-FU disposition.  (+info)

Mechanism-based inactivation of rat liver cytochrome P-450 2B1 by 2-methoxy-5-nitrobenzyl bromide. (6/201)

Mechanism-based inactivators serve as probes of enzyme mechanism, function, and structure. Koshland's Reagent II (2-methoxy-5-nitrobenzyl bromide, KR-II) is a potential mechanism-based inactivator of enzymes that perform O-dealkylations. The major phenobarbital-inducible form of cytochrome P-450 in male rat liver microsomes, CYP2B1, is capable of catalyzing O-dealkylations. The interactions of KR-II with purified CYP2B1 in the reconstituted system containing P-450, NADPH:P-450 oxidoreductase, and sonicated dilaurylphosphatidyl choline were studied. The benzphetamine N-demethylase activity of CYP2B1 was inactivated by KR-II in a time- and NADPH-dependent manner, and the loss of activity followed pseudo-first-order kinetics. The inactivation also required KR-II, and the rate of activity loss was dependent on the concentration of KR-II in a saturable fashion. The inactivator concentration required for the half-maximal rate of inactivation (KI) was approximately 0.1 mM. The inactivation was not prevented by the addition of the nucleophiles dithiothreitol and glutathione, nor was it reversed by gel filtration. The present results demonstrate that KR-II is a mechanism-based inactivator of rat CYP2B1.  (+info)

Expression of stably transfected murine glutathione S-transferase A3-3 protects against nucleic acid alkylation and cytotoxicity by aflatoxin B1 in hamster V79 cells expressing rat cytochrome P450-2B1. (7/201)

Aflatoxin B1 (AFB1) is activated to AFB1-8,9-oxide (AFBO), a potent mutagenic and carcinogenic metabolite of AFB1. In the mouse, AFBO has been shown to be most efficiently detoxified by a specific isozyme of alpha-class glutathione S-transferase (GST), mGSTA3-3 (mGST-Yc). A hamster V79 cell line (V79MZr2B1, originally designated V79/SD1) previously transfected with the rat cytochrome P450-2B1 was stably transfected with an mGSTA3-3 expression vector, to study the chemopreventive role of GST in protecting against cytotoxicity or genotoxicity of AFBO. Immunoblotting demonstrated strong expression of an alpha-class GST in the mGSTA3-3 transfected cell line, whereas no detectable alpha-class GST protein was observed in the control (empty vector-transfected) cells. Previous studies with the V79MZr2B1 cell line indicated that it can activate AFB1 to a mutagenic metabolite via a transfected rat P450-2B1 stably expressed in the cells. We examined the ability of the expressed mGSTA3-3 to protect against AFB1-induced cytotoxicity or [3H]-covalent adduct formation in cellular nucleic acids. Exposure of empty vector-transfected control cells and mGSTA3-3 expressing cells to up to 600 nM [3H]-AFB1 indicated that a 70-80% reduction in DNA and RNA adducts was afforded by the expression of mGSTA3-3 in the transfected cells. Clonogenic survival assays showed that the mGSTA3-3 cell line was 4.6-fold resistant to AFB1 cytotoxicity as compared with the empty vector-transfected control SD1 cells, with IC50 values of 69 and 15 microM, respectively. The results of these studies demonstrate that mGSTA3-3 confers substantial protection against nucleic acid covalent modification and cytotoxicity by AFB1 in this transgenic cell model system.  (+info)

Mimicry in primary rat hepatocyte cultures of the in vivo perivenous induction by phenobarbital of cytochrome P-450 2B1 mRNA: role of epidermal growth factor and perivenous oxygen tension. (8/201)

Treatment of male rats with phenobarbital (PB) results in a perivenous and mid-zonal pattern of cytochrome P-450 (CYP)2B1 mRNA expression within the liver acinus. The mechanism of this zonated induction is still poorly understood. In this study sinusoidal gradients of oxygen and epidermal growth factor (EGF) besides those of the pituitary-dependent hormones growth hormone (GH), thyroxine (T4), and triiodothyronine (T3) were considered to be possible determinants for the zonated induction of the CYP2B1 gene in liver. Moreover, heme proteins seem to play a key role in oxygen sensing. Therefore, the influence of arterial (16% O2) and venous (8% O2) oxygen tension (pO2), and of the heme synthesis inhibitors CoCl2 and desferrioxamine (DSF) on PB-dependent CYP2B1 mRNA induction as well as the repression by EGF and, for comparison, by GH, T4, and T3, of the induction under arterial and venous pO2 were investigated in primary rat hepatocytes. Within 3 days, phenobarbital induced CYP2B1 mRNA to maximal levels under arterial pO2 and to about 40% of maximal levels under venous pO2. CoCl2 annihilated induction by PB under both oxygen tensions, whereas desferrioxamine and heme abolished the positive modulation by O2, suggesting that heme is a necessary component for O2 sensing. EGF suppressed CYP2B1 mRNA induction by PB only under arterial but not under venous pO2, whereas GH, T4, and T3 inhibited induction under both arterial and venous pO2. Thus, in hepatocyte cultures, an O2 gradient in conjunction with EGF mimicked the perivenous induction by PB of the CYP2B1 gene observed in the liver in vivo.  (+info)