Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. (1/266)

COPI-coated vesicle budding from lipid bilayers whose composition resembles mammalian Golgi membranes requires coatomer, ARF, GTP, and cytoplasmic tails of putative cargo receptors (p24 family proteins) or membrane cargo proteins (containing the KKXX retrieval signal) emanating from the bilayer surface. Liposome-derived COPI-coated vesicles are similar to their native counterparts with respect to diameter, buoyant density, morphology, and the requirement for an elevated temperature for budding. These results suggest that a bivalent interaction of coatomer with membrane-bound ARF[GTP] and with the cytoplasmic tails of cargo or putative cargo receptors is the molecular basis of COPI coat assembly and provide a simple mechanism to couple uptake of cargo to transport vesicle formation.  (+info)

Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. (2/266)

The crystal structure of the complex of ARF1 GTPase bound to GDP and the catalytic domain of ARF GTPase-activating protein (ARFGAP) has been determined at 1.95 A resolution. The ARFGAP molecule binds to switch 2 and helix alpha3 to orient ARF1 residues for catalysis, but it supplies neither arginine nor other amino acid side chains to the GTPase active site. In the complex, the effector-binding region appears to be unobstructed, suggesting that ARFGAP could stimulate GTP hydrolysis while ARF1 maintains an interaction with its effector, the coatomer complex of COPI-coated vesicles. Biochemical experiments show that coatomer directly participates in the GTPase reaction, accelerating GTP hydrolysis a further 1000-fold in an ARFGAP-dependent manner. Thus, a tripartite complex controls the GTP hydrolysis reaction triggering disassembly of COPI vesicle coats.  (+info)

Clathrin and two components of the COPII complex, Sec23p and Sec24p, could be involved in endocytosis of the Saccharomyces cerevisiae maltose transporter. (3/266)

The Saccharomyces cerevisiae maltose transporter is a 12-transmembrane segment protein that under certain physiological conditions is degraded in the vacuole after internalization by endocytosis. Previous studies showed that endocytosis of this protein is dependent on the actin network, is independent of microtubules, and requires the binding of ubiquitin. In this work, we attempted to determine which coat proteins are involved in this endocytosis. Using mutants defective in the heavy chain of clathrin and in several subunits of the COPI and the COPII complexes, we found that clathrin, as well as two cytosolic subunits of COPII, Sec23p and Sec24p, could be involved in internalization of the yeast maltose transporter. The results also indicate that endocytosis of the maltose transporter and of the alpha-factor receptor could have different requirements.  (+info)

Inhibition of secretion by 1,3-Cyclohexanebis(methylamine), a dibasic compound that interferes with coatomer function. (4/266)

We noted previously that certain aminoglycoside antibiotics inhibit the binding of coatomer to Golgi membranes in vitro. The inhibition is mediated in part by two primary amino groups present at the 1 and 3 positions of the 2-deoxystreptamine moiety of the antibiotics. These two amines appear to mimic the epsilon-amino groups present in the two lysine residues of the KKXX motif that is known to bind coatomer. Here we report the effects of 1, 3-cyclohexanebis(methylamine) (CBM) on secretion in vivo, a compound chosen for study because it contains primary amino groups that resemble those in 2-deoxystreptamine and it should penetrate lipid bilayers more readily than antibiotics. CBM inhibited coatomer binding to Golgi membranes in vitro and in vivo and inhibited secretion by intact cells. Despite depressed binding of coatomer in vivo, the Golgi complex retained its characteristic perinuclear location in the presence of CBM and did not fuse with the endoplasmic reticulum (ER). Transport from the ER to the Golgi was also not blocked by CBM. These data suggest that a full complement of coat protein I (COPI) on membranes is not critical for maintenance of Golgi integrity or for traffic from the ER to the Golgi but is necessary for transport through the Golgi to the plasma membrane.  (+info)

Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of beta-COP in endosomes. (5/266)

The Nef protein of primate lentiviruses downregulates the cell surface expression of CD4 through a two-step process. First, Nef connects the cytoplasmic tail of CD4 with adaptor protein complexes (AP), thereby inducing the formation of CD4-specific clathrin-coated pits that rapidly endocytose the viral receptor. Second, Nef targets internalized CD4 molecules for degradation. Here we show that Nef accomplishes this second task by acting as a connector between CD4 and the beta subunit of COPI coatomers in endosomes. A sequence encompassing a critical acidic dipeptide, located nearby but distinct from the AP-binding determinant of HIV-1 Nef, is responsible for beta-COP recruitment and for routing to lysosomes. A novel class of endosomal sorting motif, based on acidic residues, is thus revealed, and beta-COP is identified as its downstream partner.  (+info)

p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. (6/266)

COPI-coated vesicles that bud off the Golgi complex contain two major transmembrane proteins, p23 and p24. We have localized the protein at the Golgi complex and at COPI-coated vesicles. Transport from the intermediate compartment (IC) to the Golgi can be blocked at 15 degrees C, and under these conditions p24 accumulates in peripheral punctated structures identified as IC. Release from the temperature block leads to a redistribution of p24 to the Golgi, showing that p24, similar to p23, cycles between the IC and Golgi complex. Immunoprecipitations of p24 from cell lysates and from detergent-solubilized Golgi membranes and COPI-coated vesicles show that p24 and p23 interact with each other to form a complex. Transient transfection of p23 in HeLa cells shows that p23 and p24 colocalize in structures induced by the overexpression of p23. Taken together p24 interacts with p23 and constitutively cycles between the organelles of the early secretory pathway.  (+info)

Osmotically induced cell volume changes alter anterograde and retrograde transport, Golgi structure, and COPI dissociation. (7/266)

Physiological conditions that impinge on constitutive traffic and affect organelle structure are not known. We report that osmotically induced cell volume changes, which are known to occur under a variety of conditions, rapidly inhibited endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells. Both ER export and ER Golgi intermediate compartment (ERGIC)-to-Golgi trafficking steps were blocked, but retrograde transport was active, and it mediated ERGIC and Golgi collapse into the ER. Extensive tubulation and relatively rapid Golgi resident redistribution were observed under hypo-osmotic conditions, whereas a slower redistribution of the same markers, without apparent tubulation, was observed under hyperosmotic conditions. The osmotic stress response correlated with the perturbation of COPI function, because both hypo- and hyperosmotic conditions slowed brefeldin A-induced dissociation of betaCOP from Golgi membranes. Remarkably, Golgi residents reemerged after several hours of sustained incubation in hypotonic or hypertonic medium. Reemergence was independent of new protein synthesis but required PKC, an activity known to mediate cell volume recovery. Taken together these results indicate the existence of a coupling between cell volume and constitutive traffic that impacts organelle structure through independent effects on anterograde and retrograde flow and that involves, in part, modulation of COPI function.  (+info)

GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. (8/266)

A site-directed photocross-linking approach was employed to determine components that act downstream of ADP-ribosylation factor (ARF). To this end, a photolabile phenylalanine analog was incorporated at various positions of the putative effector region of the ARF molecule. Depending on the position of incorporation, we find specific and GTP-dependent interactions of ARF with two subunits of the coatomer complex, beta-COP and gamma-COP, as well as an interaction with a cytosolic protein (approximately 185 kDa). In addition, we observe homodimer formation of ARF molecules at the Golgi membrane. These data suggest that the binding site of ARF to coatomer is at the interface of its beta- and gamma-subunits, and this is in close proximity to the second site of interaction of coatomer with the Golgi membrane, the binding site within gamma-COP for cytosolic dibasic/diphenylalanine motifs.  (+info)