Effects of stimulants of abuse on extrapyramidal and limbic neuropeptide Y systems. (1/2306)

Neuropeptide Y (NPY), an apparent neuromodulating neuropeptide, has been linked to dopamine systems and dopamine-related psychotic disorders. Because of this association, we determined and compared the effects of psychotomimetic drugs on extrapyramidal and limbic NPY systems. We observed that phencyclidine, methamphetamine (METH), (+)methylenedioxymethamphetamine (MDMA), and cocaine, but not (-)MDMA, similarly reduced the striatal content of NPY-like immunoreactivity from 54% (phencyclidine) to 74% [(+) MDMA] of control. The effects of METH on NPY levels in the nucleus accumbens, caudate nucleus, globus pallidus, and substantia nigra were characterized in greater detail. We observed that METH decreased NPY levels in specific regions of the nucleus accumbens and the caudate, but had no effect on NPY in the globus pallidus or the substantia nigra. The dopamine D1 receptor antagonist SCH-23390 blocked these effects of METH, suggesting that NPY levels throughout the nucleus accumbens and the caudate are regulated through D1 pathways. The D2 receptor antagonist eticlopride did not appear to alter the METH effect, but this was difficult to determine because eticlopride decreased NPY levels by itself. A single dose of METH was sufficient to lower NPY levels, in some, but not all, regions examined. The effects on NPY levels after multiple METH administrations were substantially greater and persisted up to 48 h after treatment; this suggests that synthesis of this neuropeptide may be suppressed even after the drug is gone. These findings suggest that NPY systems may contribute to the D1 receptor-mediated effects of the psychostimulants.  (+info)

Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. (2/2306)

Sydnocarb (3-(beta-phenylisopropyl)-N-phenylcarbamoylsydnonimine) is a psychostimulant in clinical practice in Russia as a primary and adjunct therapy for a host of psychiatric disorders, including schizophrenia and depression. It has been described as a stimulant with an addiction liability and toxicity less than that of amphetamines. The present study undertook to evaluate the psychomotor stimulant effects of sydnocarb in comparison to those of methamphetamine. Sydnocarb increased locomotor activity of mice with reduced potency (approximately 10-fold) and efficacy compared with methamphetamine. Sydnocarb blocked the locomotor depressant effects of haloperidol at doses that were inactive when given alone. The locomotor stimulant effects of both methamphetamine and sydnocarb were dose-dependently blocked by the dopamine D1 and D2 antagonists SCH 39166 and spiperone, respectively; blockade generally occurred at doses of the antagonists that did not depress locomotor activity when given alone. In mice trained to discriminate methamphetamine from saline, sydnocarb fully substituted for methamphetamine with a 9-fold lower potency. When substituted for methamphetamine under self-administration experiments in rats, 10-fold higher concentrations of sydnocarb maintained responding by its i.v. presentation. Sydnocarb engendered stereotypy in high doses with approximately a 2-fold lower potency than methamphetamine. However, sydnocarb was much less efficacious than methamphetamine in inducing stereotyped behavior. Both sydnocarb and methamphetamine increased dialysate levels of dopamine in mouse striatum; however, the potency and efficacy of sydnocarb was less than methamphetamine. The convulsive effects of cocaine were significantly enhanced by the coadministration of nontoxic doses of methamphetamine but not of sydnocarb. Taken together, the present findings indicate that sydnocarb has psychomotor stimulant effects that are shared by methamphetamine while demonstrating a reduced behavioral toxicity.  (+info)

Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. (3/2306)

Visual activity is thought to be a critical factor in controlling the development of central retinal projections. Neuronal activity increases cytosolic calcium, which was hypothesized to regulate process outgrowth in neurons. We performed an in vivo imaging study in the retinotectal system of albino Xenopus laevis tadpoles with the fluorescent calcium indicator calcium green 1 dextran (CaGD) to test the role of calcium in regulating axon arbor development. We find that visual stimulus to the retina increased CaGD fluorescence intensity in retinal ganglion cell (RGC) axon arbors within the optic tectum and that branch additions to retinotectal axon arbors correlated with a local rise in calcium in the parent branch. We find three types of responses to visual stimulus, which roughly correlate with the ON, OFF, and SUSTAINED response types of RGC reported by physiological criteria. Imaging in bandscan mode indicated that patterns of calcium transients were nonuniform throughout the axons. We tested whether the increase in calcium in the retinotectal axons required synaptic activity in the retina; intraocular application of tetrodotoxin (10 microM) or nifedipine (1 and 10 microM) blocked the stimulus-induced increase in RGC axonal fluorescence. A second series of pharmacological investigations was designed to determine the mechanism of the calcium elevation in the axon terminals within the optic tectum. Injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) (20 mM) into the tectal ventricle reduced axonal calcium levels, supporting the idea that visual stimulation increases axonal calcium. Injection of BAPTA (20 mM) into the tectal ventricle to chelate extracellular calcium also attenuated the calcium response to visual stimulation, indicating that calcium enters the axon from the extracellular medium. Caffeine (10 mM) caused a large increase in axonal calcium, indicating that intracellular stores contribute to the calcium signal. Presynaptic nicotinic acetylcholine receptors (nAChRs) may play a role in axon arbor development and the formation of the topographic retinotectal projection. Injection of nicotine (10 microM) into the tectal ventricle significantly elevated RGC axonal calcium levels, whereas application of the nAChR antagonist alphaBTX (100 nM) reduced the stimulus-evoked rise in RGC calcium fluorescence. These data suggest that light stimulus to the retina increases calcium in the axon terminal arbors through a mechanism that includes influx through nAChRs and amplification by calcium-induced calcium release from intracellular calcium stores. Such a mechanism may contribute to developmental plasticity of the retinotectal system by influencing both axon arbor elaboration and the strength of synaptic transmission.  (+info)

The Ca2+ channel blockade changes the behavioral and biochemical effects of immobilization stress. (4/2306)

We investigated how the effects of chronic immobilization stress in rats are modified by Ca2+ channel blockade preceding restraint sessions. The application of nifedipine (5 mg/kg) shortly before each of seven daily 2 h restraint sessions prevented the development of sensitized response to amphetamine as well as the stress-induced elevation of the densities of L-type Ca2+ channel in the hippocampus and significantly reduced the elevation of the densities of [3H]nitrendipine binding sites in the cortex and D1 dopamine receptors in the limbic forebrain. Neither stress, nor nifedipine affected the density of alpha 1-adrenoceptors and D1 receptors in the cerebral cortex nor D2 dopamine receptors in the striatum. A single restraint session caused an elevation of blood corticosterone level that remained unaffected by nifedipine pretreatment, but the reduction of this response during the eighth session was significantly less expressed in nifedipine-treated rats. We conclude that L-type calcium channel blockade prevents development of several stress-induced adaptive responses.  (+info)

Effects of impaired Ca2+ homeostasis on contraction in postinfarction myocytes. (5/2306)

The significance of altered Ca2+ influx and efflux pathways on contractile abnormalities of myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) was investigated by varying extracellular Ca2+ concentration ([Ca2+]o, 0.6-5.0 mM) and pacing frequency (0.1-5.0 Hz). Myocytes isolated from 3-wk MI hearts were significantly longer than those from sham-treated (Sham) hearts (125 +/- 1 vs. 114 +/- 1 micrometer, P < 0.0001). At high [Ca2+]o and low pacing frequency, conditions that preferentially favored Ca2+ influx over efflux, Sham myocytes shortened to a greater extent than 3-wk MI myocytes. Conversely, under conditions that favored Ca2+ efflux (low [Ca2+]o and high pacing frequency), MI myocytes shortened more than Sham myocytes. At intermediate [Ca2+]o and pacing frequencies, differences in steady-state contraction amplitudes between Sham and MI myocytes were no longer significant. Collectively, the interpretation of these data was that Ca2+ influx and efflux pathways were subnormal in MI myocytes and that they contributed to abnormal cellular contractile behavior. Because Na+/Ca2+ exchange activity, but not whole cell Ca2+ current, was depressed in 3-wk MI rat myocytes, our results on steady-state contraction are consistent with, but not proof of, the hypothesis that depressed Na+/Ca2+ exchange accounted for abnormal contractility in MI myocytes. The effects of depressed Na+/Ca2+ exchange on MI myocyte mechanical activity were further evaluated in relaxation from caffeine-induced contractures. Because Ca2+ uptake by sarcoplasmic reticulum was inhibited by caffeine and with the assumption that intracellular Na+ and membrane potential were similar between Sham and MI myocytes, myocyte relaxation from caffeine-induced contracture can be taken as an estimate of Ca2+ extrusion by Na+/Ca2+ exchange. In MI myocytes, in which Na+/Ca2+ exchange activity was depressed, the half time of relaxation (1.54 +/- 0.14 s) was significantly (P < 0.02) prolonged compared with that measured in Sham myocytes (1.10 +/- 0.10 s).  (+info)

Modulation of temperature-induced tone by vasoconstrictor agents. (6/2306)

One of the primary cardiovascular adjustments to hyperthermia is a sympathetically mediated increase in vascular resistance in the viscera. Nonneural factors such as a change in vascular tone or reactivity may also contribute to this response. Therefore, the aim of this study was to determine whether vascular smooth muscle tone is altered during heating to physiologically relevant temperatures >37 degrees C. Gradually increasing bath temperature from 37 degrees C (normothermia) to 43 degrees C (severe hyperthermia) produced graded contractions in vascular ring segments from rat mesenteric arteries and thoracic aortae. In untreated rings these contractions were relatively small, whereas hyperthermia elicited near-maximal increases in tension when rings were constricted with phenylephrine or KCl before heating. In phenylephrine-treated mesenteric arterial rings, the contractile responses to heating were markedly attenuated by the Ca2+ channel antagonists nifedipine and diltiazem. Diltiazem also blocked the contractile responses to heating in thoracic aortic rings. These results demonstrate that hyperthermia has a limited effect on tension generation in rat vascular smooth muscle in the absence of vascular tone. However, in the presence of agonist-induced tone, tension generation during heating is markedly enhanced and dependent on extracellular Ca2+. In conclusion, these data suggest that local regulation of vascular tone can contribute to the hemodynamic adjustments to hyperthermia.  (+info)

Five caffeine metabolite ratios to measure tobacco-induced CYP1A2 activity and their relationships with urinary mutagenicity and urine flow. (7/2306)

To choose a sensitive protocol to discriminate populations exposed and not exposed to inducers, five urinary metabolite ratios (MRs) [MR1 (17X + 17U)/137X, MR2 (5-acetylamino-6-formylamino-3-methyluracil [AFMU] + 1X + 1U)/17U, MR3 (17X/137X), MR4 (AFMU + 1X + 1U + 17X + 17U)/137X, and MR5 (AFMU + 1X + 1U)/17X] were calculated in 4-5 h and 0-24 h urine samples after caffeine intake. One hundred twenty-five healthy volunteers (59 nonsmokers and 66 smokers) were included in the study. All ratios showed a log-normal distribution. MR2 in the two time intervals was the only ratio nondependent on the urine flow. Differences between nonsmokers and smokers could be detected with all ratios at 4-5 h. However, only MR2 and, to a lesser extent, MR5 allowed the discrimination of higher cytochrome P450 1A2 (CYP1A2) activity in smokers in the 0-24 h sample. Although smokers had increased urinary mutagenicity in relation to nonsmokers, a significant association between MRs and urine mutagenicity was observed only with MR2 in the 4-5 h interval; this ratio/time schedule being that of higher association with tobacco consumption. The most flow-dependent ratios, MR1, MR3, and MR4, were closely correlated with each other at the two intervals. The flow dependency profile of each ratio may explain their different power to indicate both tobacco exposure and tobacco-derived mutagenicity. In conclusion, MR2 in the period of 4-5 h after caffeine intake seems preferable, especially at high urine flow rates.  (+info)

Necessary role for ventral tegmental area adenylate cyclase and protein kinase A in induction of behavioral sensitization to intraventral tegmental area amphetamine. (8/2306)

In the present study, we investigated the effects of selective activation or inhibition of ventral tegmental area (VTA) adenylate cyclase (AC) and protein kinase A (PKA) on long-term sensitization induced by repeated intra-VTA or peripheral amphetamine (AMPH). Selective inhibition of AC by SQ 22,536 (9-(tetrahydro-2-furanyl)-9H-purin-6-amine; 100 nmol/side bilateral into VTA) had no effect on acute basal locomotion but attenuated the locomotor stimulation induced by acute i.p. AMPH (1.5 mg/kg). Coinjection of SQ 22,536 (100 nmol/side) fully blocked the sensitization induced by repeated intra-VTA AMPH (15 nmol/side) but had no detectable effect on the sensitization induced by repeated i. p. AMPH. Persistent activation of AC by intra-VTA cholera toxin (500 ng/side) modestly increased acute locomotion and induced a robust sensitization to i.p. AMPH challenge 10 days after the last of three repeated VTA microinjections. Selective inhibition of PKA by Rp-adenosine-3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPS; 25 nmol/side) had no effect on acute basal or AMPH-stimulated locomotion. Coinjection of Rp-cAMPS (25 nmol/side) fully blocked the sensitization induced by repeated intra-VTA AMPH but had no effect on sensitization induced by repeated i.p. AMPH. Intra-VTA microinjection of the selective PKA activator Sp-adenosine-3',5'-cyclic monophosphothioate triethylamine (Sp-cAMPS; 25-100 nmol/side) dose-dependently stimulated acute locomotion and exerted synergistic effects on locomotor activity when coinfused into the VTA with AMPH but had no detectable effect on acute i.p. AMPH-induced locomotion. Repeated intra-VTA Sp-cAMPS did not induce sensitization to AMPH challenge but potentiated the sensitization induced by repeated i.p. AMPH. These results suggest that VTA cAMP signal transduction is necessary for the induction of persistent sensitization to intra-VTA amphetamine and that peripheral and intra-VTA AMPH may not induce behavioral sensitization by identical mechanisms.  (+info)