The induction of macrophage spreading: role of coagulation factors and the complement system. (17/32044)

Unstimulated mouse peritoneal macrophages, attached to either glass or plastic substrates, responded to factors generated in serum and plasma by spreading and increasing their apparent surface area up to eightfold. Two distinct and dissociable systems were involved. The first appears related to the distinct and dissociable systems were involved. The first appears related to the contact phase of blood coagulation. It is activated by glass and not plastic surfaces, depleted by kaolin adsorption, and inhibited by soybean trypsin inhibitor. In contrast, a separate complement-dependent system can be generated in kaolin-adsorbed plasma. Activation of the complement system can occur either by the alternate or classical pathways and generates a relatively small effector molecule which is dialyzable. These factors presumably influencing the surface membrane and underlying structures may explain the rapid spreading of activated macrophages observed after both infections and chemical peritoneal inflammatory agents.  (+info)

PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. (18/32044)

The Transmembrane 4 Superfamily member, PETA-3/CD151, is ubiquitously expressed by endothelial cells in vivo. In cultured human umbilical vein endothelial cells PETA-3 is present on the plasma membrane and predominantly localises to regions of cell-cell contact. Additionally, this protein is abundant within an intracellular compartment which accounts for up to 66% of the total PETA-3 expressed. Intracellular PETA-3 showed colocalisation with transferrin receptor and CD63 suggesting an endosomal/lysosomal localisation which was supported by immuno-electronmicroscopy studies. Co-immunoprecipitation experiments investigating possible interactions of PETA-3 with other molecules demonstrated associations with several integrin chains including beta1, beta3, beta4, (alpha)2, (alpha)3, (alpha)5, (alpha)6 and provide the first report of Transmembrane 4 Superfamily association with the (alpha)6beta4 integrin. Using 2-colour confocal microscopy, we demonstrated similar localisation of PETA-3 and integrin chains within cytoplasmic vesicles and endothelial cell junctions. In order to assess the functional implications of PETA-3/integrin associations, the effect of anti-PETA-3 antibodies on endothelial function was examined. Anti-PETA-3 mAb inhibited endothelial cell migration and modulated in vitro angiogenesis, but had no detectable effect on neutrophil transendothelial migration. The broad range of integrin associations and the presence of PETA-3 with integrins both on the plasma membrane and within intracellular vesicles, suggests a primary role for PETA-3 in regulating integrin trafficking and/or function.  (+info)

PDGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. (19/32044)

A line of null mice has been produced which fails to express the transmembrane chondroitin sulfate proteoglycan NG2. Homozygous NG2 null mice do not exhibit gross phenotypic differences from wild-type mice, suggesting that detailed analyses are required to detect subtle alterations caused by the absence of NG2. Accordingly, dissociated cultures of aortic smooth muscle cells from null mice were compared to parallel cultures from wild-type mice for their ability to proliferate and migrate in response to specific growth factors. Both null and wild-type smooth muscle cells exhibited identical abilities to proliferate and migrate in response to PDGF-BB. In contrast, only the wild-type cells responded to PDGF-AA in both types of assays. NG2 null cells failed to proliferate or migrate in response to PDGF-AA, implying a defect in the signaling cascade normally initiated by activation of the PDGF (alpha)-receptor. In agreement with this idea, activation of the extracellular signal-regulated kinase (ERK) in response to PDGF-AA treatment occured only in wild-type cells. Failure to observe autophosphorylation of the PDGF (alpha)-receptor in PDGF-AA-treated null cells indicates that the absence of NG2 causes a defect in signal transduction at the level of (alpha)-receptor activation.  (+info)

Interaction of lipopolysaccharide with human small intestinal lamina propria fibroblasts favors neutrophil migration and peripheral blood mononuclear cell adhesion by the production of proinflammatory mediators and adhesion molecules. (20/32044)

Fibroblasts are important effector cells having a potential role in augmenting the inflammatory responses in various diseases. In infantile diarrhea caused by enteropathogenic Escherichia coli (EPEC), the mechanism of inflammatory reactions at the mucosal site remains unknown. Although the potential involvement of fibroblasts in the pathogenesis of cryptococcus-induced diarrhea in pigs has been suggested, the precise role of lamina propria fibroblasts in the cellular pathogenesis of intestinal infection and inflammation caused by EPEC requires elucidation. Earlier we reported the lipopolysaccharide (LPS)-induced cell proliferation, and collagen synthesis and downregulation of nitric oxide in lamina propria fibroblasts. In this report, we present the profile of cytokines and adhesion molecules in the cultured and characterized human small intestinal lamina propria fibroblasts in relation to neutrophil migration and adhesion in response to lipopolysaccharide (LPS) extracted from EPEC 055:B5. Upon interaction with LPS (1-10 micrograms/ml), lamina propria fibroblasts produced a high level of proinflammatory mediators, interleukin (IL)-1alpha, IL-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha and cell adhesion molecules (CAM) such as intercellular cell adhesion molecule (ICAM), A-CAM, N-CAM and vitronectin in a time-dependent manner. LPS induced cell-associated IL-1alpha and IL-1beta, and IL-6, IL-8 and TNF-alpha as soluble form in the supernatant. Apart from ICAM, vitronectin, A-CAM, and N-CAM proteins were strongly induced in lamina propria fibroblasts by LPS. Adhesion of PBMC to LPS-treated lamina propria fibroblasts was ICAM-dependent. LPS-induced ICAM expression in lamina propria fibroblasts was modulated by whole blood, PBMC and neutrophils. Conditioned medium of LPS-treated lamina propria fibroblasts remarkably enhanced the neutrophil migration. The migration of neutrophils was inhibited by anti-IL-8 antibody. Co-culture of fibroblasts with neutrophils using polycarbonate membrane filters exhibited time-dependent migration of neutrophils. These findings indicate that the coordinate production of proinflammatory cytokines and adhesion molecules in lamina propria fibroblasts which do not classically belong to the immune system can influence the local inflammatory reactions at the intestinal mucosal site during bacterial infections and can influence the immune cell population residing in the lamina propria.  (+info)

The Caenorhabditis elegans gene ham-2 links Hox patterning to migration of the HSN motor neuron. (21/32044)

The Caenorhabditis elegans HSN motor neurons permit genetic analysis of neuronal development at single-cell resolution. The egl-5 Hox gene, which patterns the posterior of the embryo, is required for both early (embryonic) and late (larval) development of the HSN. Here we show that ham-2 encodes a zinc finger protein that acts downstream of egl-5 to direct HSN cell migration, an early differentiation event. We also demonstrate that the EGL-43 zinc finger protein, also required for HSN migration, is expressed in the HSN specifically during its migration. In an egl-5 mutant background, the HSN still expresses EGL-43, but expression is no longer down-regulated at the end of the cell's migration. Finally, we find a new role in early HSN differentiation for UNC-86, a POU homeodomain transcription factor shown previously to act downstream of egl-5 in the regulation of late HSN differentiation. In an unc-86; ham-2 double mutant the HSNs are defective in EGL-43 down-regulation, an egl-5-like phenotype that is absent in either single mutant. Thus, in the HSN, a Hox gene, egl-5, regulates cell fate by activating the transcription of genes encoding the transcription factors HAM-2 and UNC-86 that in turn individually control some differentiation events and combinatorially affect others.  (+info)

Cytotoxicity is mandatory for CD8(+) T cell-mediated contact hypersensitivity. (22/32044)

Contact hypersensitivity (CHS) is a T cell-mediated skin inflammation induced by epicutaneous exposure to haptens in sensitized individuals. We have previously reported that CHS to dinitrofluorobenzene in mice is mediated by major histocompatibility complex (MHC) class I-restricted CD8(+) T cells. In this study, we show that CD8(+) T cells mediate the skin inflammation through their cytotoxic activity. The contribution of specific cytotoxic T lymphocytes (CTLs) to the CHS reaction was examined both in vivo and in vitro, using mice deficient in perforin and/or Fas/Fas ligand (FasL) pathways involved in cytotoxicity. Mice double deficient in perforin and FasL were able to develop hapten-specific CD8(+) T cells in the lymphoid organs but did not show CHS reaction. However, they did not generate hapten-specific CTLs, demonstrating that the CHS reaction is dependent on cytotoxic activity. In contrast, Fas-deficient lpr mice, FasL-deficient gld mice, and perforin-deficient mice developed a normal CHS reaction and were able to generate hapten-specific CTLs, suggesting that CHS requires either the Fas/FasL or the perforin pathway. This was confirmed by in vitro studies showing that the hapten-specific CTL activity was exclusively mediated by MHC class I-restricted CD8(+) T cells which could use either the perforin or the Fas/FasL pathway for their lytic activity. Thus, cytotoxic CD8(+) T cells, commonly implicated in the host defence against tumors and viral infections, could also mediate harmful delayed-type hypersensitivity reactions.  (+info)

CD44 cleavage induced by a membrane-associated metalloprotease plays a critical role in tumor cell migration. (23/32044)

CD44 is a cell surface receptor for hyaluronate, a component of the extracellular matrix (ECM). Although CD44 has been implicated in tumor invasion and metastasis, the molecular mechanisms remain to be elucidated. Here we find that CD44 expressed in cancer cells is cleaved at the membrane-proximal region of the ectodomain and the membrane-bound cleavage product can be detected using an antibody against the cytoplasmic domain of CD44. Furthermore, we report that CD44 cleavage is mediated by a membrane-associated metalloprotease expressed in cancer cells. A tissue inhibitor of metalloproteases-1 (TIMP-1), as well as metalloprotease inhibitors, inhibit CD44 cleavage in the cell-free assay. Contrary, serine protease inhibitors enhance CD44 cleavage, and the enhancement can be prevented by pretreatment with a metalloprotease inhibitor. Thus, CD44 cleavage is regulated by an intricate balance between some proteases and their inhibitors. Interestingly, treatment with the metalloprotease blocker 1,10-phenanthroline, which strongly prevent the CD44 cleavage, suppressed RERF-LC-OK lung cancer cell migration on a hyaluronate substrate, but not on several other substrates. These results suggest that CD44 cleavage plays a critical role in an efficient cell-detachment from a hyaluronate substrate during the cell migration and consequently promotes CD44-mediated cancer cell migration. Our present data indicate that CD44, not only ECM per se, is one of the targets of pericellular proteolysis involved in tumor invasion and metastasis.  (+info)

Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. (24/32044)

Neurons continue to be born in the subventricular zone (SVZ) of the lateral ventricles of adult mice. These cells migrate as a network of chains through the SVZ and the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into mature neurons. The OB is the only known target for these neuronal precursors. Here, we show that, after elimination of the OB, the SVZ and RMS persist and become dramatically larger. The proportion of dividing [bromodeoxyuridine (BrdU)-labeled] or dying (pyknotic or terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeled) cells in the RMS was not significantly affected at 3 d or 3 weeks after bulbectomy (OBX). However, by 3 months after OBX, the percentage of BrdU-labeled cells in the RMS decreased by half and that of dying cells doubled. Surprisingly, the rostral migration of precursors continued along the RMS after OBX. This was demonstrated by focal microinjections of BrdU and grafts of SVZ cells carrying LacZ under the control of a neuron-specific promoter gene. Results indicate that the OB is not essential for proliferation and the directional migration of SVZ precursors.  (+info)