Utilization of exogenous purine compounds in Bacillus cereus. Translocation of the ribose moiety of inosine. (1/1270)

Intact cells of Bacillus cereus catalyze the breakdown of exogenous AMP to hypoxanthine and ribose 1-phosphate through the successive action of 5'-nucleotidase, adenosine deaminase, and inosine phosphorylase. Inosine hydrolase was not detectable, even in crude extracts. Inosine phosphorylase causes a "translocation" of the ribose moiety (as ribose 1-phosphate) inside the cell, while hypoxanthine remains external. Even though the equilibrium of the phosphorolytic reaction favors nucleoside synthesis, exogenous inosine (as well as adenosine and AMP) is almost quantitatively transformed into external hypoxanthine, since ribose 1-phosphate is readily metabolized inside the cell. Most likely, the translocated ribose 1-phosphate enters the sugar phosphate shunt, via its prior conversion into ribose 5-phosphate, thus supplying the energy required for the subsequent uptake of hypoxanthine in B. cereus.  (+info)

A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. (2/1270)

Aiming to develop a DNA marker specific for Bacillus anthracis and able to discriminate this species from Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides, we applied the randomly amplified polymorphic DNA (RAPD) fingerprinting technique to a collection of 101 strains of the genus Bacillus, including 61 strains of the B. cereus group. An 838-bp RAPD marker (SG-850) specific for B. cereus, B. thuringiensis, B. anthracis, and B. mycoides was identified. This fragment included a putative (366-nucleotide) open reading frame highly homologous to the ypuA gene of Bacillus subtilis. The restriction analysis of the SG-850 fragment with AluI distinguished B. anthracis from the other species of the B. cereus group.  (+info)

Separation and properties of two acetylacetoin reductases from Bacillus cereus YUF-4. (3/1270)

The separation and purification of two kinds of acetylacetoin reductases (AACRs) from Bacillus cereus YUF-4 were examined. NADPH-linked AACR (AACR I) and NADH-linked AACR (AACR II) were separated from each other by ammonium sulfate fractionation, DEAE-cellulose chromatography, and hydroxyapatite chromatography. The former was purified 3.4-fold with a yield of 10.0%, and the latter was purified 29-fold with a yield of 15.6%. The two enzymes differ from each other in some enzymic properties such as substrate specificity.  (+info)

Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. (4/1270)

The performances of five automated microbial identification systems, relative to that of a reference identification system, for their ability to accurately and repeatedly identify six common food-borne pathogens were assessed. The systems assessed were the MicroLog system (Biolog Inc., Hayward, Calif.), the Microbial Identification System (MIS; MIDI Inc., Newark, Del.), the VITEK system (bioMerieux Vitek, Hazelwood, Mo.), the MicroScan WalkAway 40 system (Dade-MicroScan International, West Sacramento, Calif.), and the Replianalyzer system (Oxoid Inc., Nepean, Ontario, Canada). The sensitivities and specificities of these systems for the identification of food-borne isolates of Bacillus cereus, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., and verotoxigenic Escherichia coli were determined with 40 reference positive isolates and 40 reference negative isolates for each pathogen. The sensitivities of these systems for the identification of these pathogens ranged from 42.5 to 100%, and the specificities of these systems for the identification of these pathogens ranged from 32.5 to 100%. Some of the systems had difficulty correctly identifying the reference isolates when the results were compared to those from the reference identification tests. The sensitivity of MIS for the identification of S. aureus, B. cereus, E. coli, and C. jejuni, for example, ranged from 47.5 to 72. 5%. The sensitivity of the Microlog system for the identification of E. coli was 72.5%, and the sensitivity of the VITEK system for the identification of B. cereus was 42.5%. The specificities of four of the five systems for the identification of all of the species tested with the available databases were greater than or equal to 97.5%; the exception was MIS for the identification of C. jejuni, which displayed a specificity of 32.5% when it was tested with reference negative isolates including Campylobacter coli and other Campylobacter species. All systems had >80% sensitivities for the identification of Salmonella species and Listeria species at the genus level. The repeatability of these systems for the identification of test isolates ranged from 30 to 100%. Not all systems included all six pathogens in their databases; thus, some species could not be tested with all systems. The choice of automated microbial identification system for the identification of a food-borne pathogen would depend on the availability of identification libraries within the systems and the performance of the systems for the identification of the pathogen.  (+info)

Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. (5/1270)

As 16S rRNA sequence analysis has proven inadequate for the differentiation of Bacillus cereus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic marker. The gyrB genes of B. cereus JCM 2152(T), Bacillus thuringiensis IAM 12077(T), Bacillus mycoides ATCC 6462(T), and Bacillus anthracis Pasteur #2H were cloned and sequenced. Oligonucleotide PCR primer sets were designed from within gyrB sequences of the respective bacteria for the specific amplification and differentiation of B. cereus, B. thuringiensis, and B. anthracis. The results from the amplification of gyrB sequences correlated well with results obtained with the 16S rDNA-based hybridization study but not with the results of their phenotypic characterization. Some of the reference strains of both B. cereus (three serovars) and B. thuringiensis (two serovars) were not positive in PCR amplification assays with gyrB primers. However, complete sequencing of 1.2-kb gyrB fragments of these reference strains showed that these serovars had, in fact, lower homology than their originally designated species. We developed and tested a procedure for the specific detection of the target organism in boiled rice that entailed 15 h of preenrichment followed by PCR amplification of the B. cereus-specific fragment. This method enabled us to detect an initial inoculum of 0.24 CFU of B. cereus cells per g of boiled rice food homogenate without extracting DNA. However, a simple two-step filtration step is required to remove PCR inhibitory substances.  (+info)

Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. (6/1270)

This paper describes a specific, sensitive, semiautomated, and quantitative Hep-2 cell culture-based 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay for Bacillus cereus emetic toxin. Of nine Bacillus, Brevibacillus, and Paenibacillus species assessed for emetic toxin production, only B. cereus was cytotoxic.  (+info)

Effect of hydrostatic tensile stress on the growth of Escherichia coli and Bacillus cereus. (7/1270)

The specific growth rates of Escherichia coli and Bacillus cereus were measured for growth media in a flask, a lens-plate arrangement simulating an isolated capillary space, and a lens-plate arrangement under hydrostatic tensile stress. The specific growth rates of the bacteria were the same for the flask and lens-plate arrangement without hydrostatic tensile stress, but were enhanced when the growth media were subjected to hydrostatic tensile stress. The enhanced specific growth rates reached steady values at a tensile stress of 40 pascals. The effect was observed up to tensile stresses of around 100 pascals. The maximum increase in specific growth rate was 25% for E. coli and 22% for B. cereus.  (+info)

Isolation of stable ribosomal subunits from spores of Bacillus cereus. (8/1270)

Analyses of ribosomes extracted from spores of Bacillus cereus T by a dryspore disruption technique indicated that previously reported defects in ribosomes from spores may arise during the ribosome extraction process. The population of ribosomes from spores is shown to cotain a variable quantity of free 50S subunits which are unstable, giving rise to slowly sedimenting particles in low-Mg2+ sucrose gradients and showing extremely low activity in in vitro protein synthesis. The majority of the ribosomal subunits in spores, obtained by dissociation of 70S ribosomes and polysomes, are shown to be as stable as subunits from vegetative cells, though the activity of spore polysomes was lower than that of vegetative ribosomes. In spite of the instability and inactivity of a fraction of the spore's ribosomal subunits, the activity of the total population obtained from spores by the dry disruption technique was 32% of vegetative ribosome activity, fivefold higher than previously obtained with this species. The improvement in activity and the observed variability of subunit destabilization are taken as evidence for partial degradation of spore ribosomes during extraction.  (+info)