Arsenic trioxide and melarsoprol induce apoptosis in plasma cell lines and in plasma cells from myeloma patients. (1/242)

Recent data have renewed the interest for arsenic-containing compounds as anticancer agents. In particular, arsenic trioxide (As2O3) has been demonstrated to be an effective drug in the treatment of acute promyelocytic leukemia by inducing programmed cell death in leukemic cells both in vitro and in vivo. This prompted us to study the in vitro effects of As2O3 and of another arsenical derivative, the organic compound melarsoprol, on human myeloma cells and on the plasma cell differentiation of normal B cells. At pharmacological concentrations (10(-8) to 10(-6) mol/L), As2O3 and melarsoprol caused a dose- and time-dependent inhibition of survival and growth in myeloma cell lines that was, in some, similar to that of acute promyelocytic leukemia cells. Both arsenical compounds induced plasma cell apoptosis, as assessed by 4',6-diamidino-2-phenylindole staining, detection of phosphatidylserine at the cell surface using annexin V, and by the terminal deoxynucleotidyl transferase-mediated nick end labeling assay. As2O3 and melarsoprol also inhibited viability and growth and induced apoptosis in plasma-cell enriched preparations from the bone marrow or blood of myeloma patients. In nonseparated bone marrow samples, both arsenical compounds triggered death in myeloma cells while sparing most myeloid cells, as demonstrated by double staining with annexin V and CD38 or CD15 antibodies. In primary myeloma cells as in cell lines, interleukin 6 did not prevent arsenic-induced cell death or growth inhibition, and no synergistic effect was observed with IFN-alpha. In contrast to As2O3, melarsoprol only slightly reduced the plasma cell differentiation of normal B cells induced by pokeweed mitogen. Both pokeweed mitogen-induced normal plasma cells and malignant plasma cells showed a normal nuclear distribution of PML protein, which was disrupted by As2O3 but not by melarsoprol, suggesting that the two arsenical derivatives acted by different mechanisms. These results point to the use of arsenical derivatives as investigational drugs in the treatment of multiple myeloma.  (+info)

Health impacts of domestic coal use in China. (2/242)

Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.  (+info)

Increased chromosome-type chromosome aberration frequencies as biomarkers of cancer risk in a blackfoot endemic area. (3/242)

To examine whether biomarkers such as sister chromatid exchanges (SCEs) and chromosome aberrations (CAs) can predict cancer development, a nested case-control study was performed in a blackfoot endemic area with a known high cancer risk. A cohort of 686 residents was recruited from three villages in the blackfoot endemic area. Personal characteristics were collected, and venous blood was drawn for lymphocyte culture and stored in a refrigerator. The vital status and cancer development were followed using the National Death Registry, Cancer Registry, and Blackfoot Disease Registry. The follow-up period was from August 1991 to July 1995. During this 4-year period, 31 residents developed various types of cancer. Blood culture samples from nine of these subjects were unsuitable for experiments due to improper storage. Finally, a total of 22 cancer cases had cytogenetic samples that could be analyzed. Twenty-two control subjects were selected from those who did not develop cancer in the study period, and these subjects were matched to cases by sex, age, smoking habits, and residential area. The results showed that there was no significant difference in the frequencies of SCE and chromatid-type CAs between the case and control groups. However, the frequencies of chromosome-type CAs, e.g., chromosome-type gaps, chromosome-type breaks, chromosome-type breaks plus exchanges, total chromosome-type aberrations, and total frequencies of CAs in the case group, were significantly higher than those in the control group (P < 0.05). The odds ratio of cancer risk in subjects with more than zero chromosome-type breaks was 5.0 (95% confidence interval = 1.09-22.82) compared to those with zero chromosomal breaks. The odds ratios for more than zero chromosome-type breaks plus exchanges and a frequency of total chromosome-type aberrations of >1.007% were 11.0 and 12.0, respectively (P < 0.05). Subjects with a total CA frequency of >4.023% had a 9-fold increase for cancer risk. These results indicate that chromosome-type CAs are good biomarkers for the prediction of cancer development, whereas SCEs and chromatid-type CAs cannot predict cancer risk.  (+info)

Testing their metal. (4/242)

Metals continually rank at the top of the U.S. Environmental Protection Agency's annual list of agents that pose the greatest hazard to the people of the United States. Metals aren't going away, either. They do not biodegrade, and they often concentrate in human and animal cells and tissue. Many metals are known human and animal carcinogens, while many others are suspected to play a role in cancer. Little is known, however, about the mechanisms by which metals cause cancer.  (+info)

The development of Lewisite vapour induced lesions in the domestic, white pig. (5/242)

Studies performed in the past in our laboratory have detailed the development of sulphur mustard lesions in the domestic, white pig using small glass chambers to achieve saturated vapour exposure under occluded conditions. We have now used this experimental model to produce cutaneous lesions for detailed histopathological studies following challenge with lewisite. Histological examination of resulting lesions have revealed that although the overall pattern of lesion development is similar to that seen following mustard challenge, the time-course of cellular events is very much compressed. The epidermis showed focal basal cell vacuolation with associated acute inflammation as early as one hour postexposure. Coagulative necrosis of the epidermis and papillary dermis was complete by 24 hours and followed the appearance of multiple coalescent blisters between six and 12 hours post-exposure. At 48 hours, the lesions were full thickness burns with necrosis extending into the deep subcutaneous connective and adipose tissues. The study of lesions beyond 24 hours revealed early epithelial regeneration at the wound edge. The overall spontaneous healing rate of these biologically severe lesions was significantly faster than comparable sulphur mustard injuries and probably reflected a lack of alkylation of DNA and RNA.  (+info)

Arsenic-related Bowen's disease, palmar keratosis, and skin cancer. (6/242)

Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic-related diseases are common in areas of the world where the drinking water has a high arsenic content. In this paper, we describe a 35-year-old male patient who had arsenic-related keratosis, squamous-cell carcinoma in the palmar area of his left hand, and Bowen's disease on his left thigh. The patient worked in a borax mine for 15 years, so he was exposed to arsenic in drinking water, airborne arsenic in his workplace, and had direct contact. The patient was treated for 11 months for arsenic-related keratosis until an axillary lymph node metastasis occurred; the lesion was excised and diagnosed to be malignant. Bowen's disease was detected when the patient was being treated for cancer. No other malignancy was found. The patient is still receiving regular follow-up care.  (+info)

Enhanced transcription factor DNA binding and gene expression induced by arsenite or arsenate in renal slices. (7/242)

Although the kidney represents a target for the accumulation and toxicity of arsenic, little is known about the molecular targets of arsenic in this organ. Therefore, these studies were designed to examine the molecular impact of arsenite [As(III)] and arsenate [As(V)] at low (nanomolar) concentrations. Precision-cut rabbit renal cortical slices were challenged with As(III) or As(V) for up to 8 h. Neither form of the metal induced overt cytotoxicity as assessed by intracellular K+ levels over this time period at concentrations from 0.01-10 microM. In addition, no alterations in the expression of Hsp 60, 70, or 90 were observed. However, induction of heme oxygenase-1 (Hsp 32) was seen following a 4-h challenge with As(III), but not with As(V). As(III) and As(V) induced DNA binding of AP-1 at 2- and 4-h exposure; following a 6-h exposure there was no difference. Although no alteration in the DNA binding activity of ATF-2 was induced by As(III) or As(V), both forms enhanced the DNA binding activity of Elk-1. Enhanced DNA binding activity of AP-1 and Elk-1 correlated with increased gene expression of c-fos, but not c-jun, at 2 h. c-myc gene expression was also induced by As(III) and As(V), albeit at a later time point (6 h). These results suggest that acute arsenic challenge, by either As(III) or As(V), is associated with discrete alterations in the activity of signaling pathways and gene expression in renal tissue.  (+info)

Relations between exposure to arsenic, skin lesions, and glucosuria. (8/242)

OBJECTIVES: Exposure to arsenic causes keratosis, hyperpigmentation, and hypopigmentation and seemingly also diabetes mellitus, at least in subjects with skin lesions. Here we evaluate the relations of arsenical skin lesions and glucosuria as a proxy for diabetes mellitus. METHODS: Through existing measurements of arsenic in drinking water in Bangladesh, wells with and without arsenic contamination were identified. Based on a questionnaire, 1595 subjects > or = 30 years of age were interviewed; 1481 had a history of drinking water contaminated with arsenic whereas 114 had not. Time weighted mean arsenic concentrations and mg-years/l of exposure to arsenic were estimated based on the history of consumption of well water and current arsenic concentrations. Urine samples from the study subjects were tested by means of a glucometric strip. People with positive tests were considered to be cases of glucosuria. RESULTS: A total of 430 (29%) of the exposed people were found to have skin lesions. Corresponding to drinking water with < 0.5, 0.5-1.0, and > 1.0 mg/l of arsenic, and with the 114 unexposed subjects as the reference, the prevalence ratios for glucosuria, as adjusted for age and sex, were 0.8, 1.4, and 1.4 for those without skin lesions, and 1.1, 2.2, and 2.6 for those with skin lesions. Taking exposure as < 1.0, 1.0-5.0, > 5.0-10.0 and > 10.0 mg-years/l of exposure to arsenic the prevalence ratios, similarly adjusted, were 0.4, 0.9, 1.2, and 1.7 for those without and 0.8, 1.7, 2.1, and 2.9 for those with skin lesions. All series of risk estimates were significant for trend, (p < 0.01). CONCLUSIONS: The results suggest that skin lesions and diabetes mellitus, as here indicated by glucosuria, are largely independent effects of exposure to arsenic although glucosuria had some tendency to be associated with skin lesions. Importantly, however, glucosuria (diabetes mellitus) may occur independently of skin lesions.  (+info)