Serum triglyceride: a possible risk factor for ruptured abdominal aortic aneurysm. (1/2985)

BACKGROUND: We aimed to determine the relationship between ruptured abdominal aortic aneurysm (AAA) and serum concentrations of lipids and apolipoproteins. METHODS: A cohort of 21 520 men, aged 35-64 years, was recruited from men attending the British United Provident Association (BUPA) clinic in London for a routine medical examination in 1975-1982. Smoking habits, weight, height and blood pressure were recorded at entry. Lipids and apolipoproteins were measured in stored serum samples from the 30 men who subsequently died of ruptured AAA and 150 matched controls. RESULTS: Triglyceride was strongly related to risk of ruptured AAA. In univariate analyses the risk in men on the 90th centile of the distribution relative to the risk in men on the 10th (RO10-90) was 12 (95% confidence interval [CI] : 3.8-37) for triglyceride, 5.5 (95% CI: 1.8-17) for apolipoprotein B (apoB) (the protein component of low density lipoprotein [LDL]), 0.15 (95% CI : 0.04-0.56) for apo A1 (the protein component of high density lipoprotein [HDL]), 3.7 (95% CI: 1.4-9.4) for body mass index and 3.0 (95% CI: 1.1-8.5) for systolic blood pressure. Lipoprotein (a) (Lp(a)) was not a significant risk factor (RO10-90 = 1.6, 95% CI: 0.6-3.0). In multivariate analysis triglyceride retained its strong association. CONCLUSION: Triglyceride appears to be a strong risk factor for ruptured AAA, although further studies are required to clarify this. If this and other associations are cause and effect, then changing the distribution of risk factors in the population (by many people stopping smoking and adopting a lower saturated fat diet and by lowering blood pressure) could achieve an important reduction in mortality from ruptured AAA.  (+info)

Association of the inflammatory state in active juvenile rheumatoid arthritis with hypo-high-density lipoproteinemia and reduced lipoprotein-associated platelet-activating factor acetylhydrolase activity. (2/2985)

OBJECTIVE: To investigate the relationship between the quantitative and qualitative abnormalities of apolipoprotein B (Apo B)- and Apo A-I-containing lipoproteins and between lipoprotein-associated platelet-activating factor acetylhydrolase (PAF-AH) activity in patients with juvenile rheumatoid arthritis (JRA) as a function of the inflammatory state. METHODS: Twenty-six JRA patients and 22 age- and sex-matched control subjects with normal lipid levels participated in the study. Fourteen patients had active disease, and 12 had inactive disease. Plasma lipoproteins were fractionated by gradient ultracentrifugation into 9 subfractions, and their chemical composition and mass were determined. The PAF-AH activity associated with lipoprotein subfractions and the activity in plasma were also measured. RESULTS: Patients with active JRA had significantly lower plasma total cholesterol and high-density lipoprotein (HDL) cholesterol levels as compared with controls, due to the decrease in the mass of both the HDL2 and HDL3 subfractions. Patients with active JRA also had higher plasma triglyceride levels, mainly due to the higher triglyceride content of the very low-density lipoprotein plus the intermediate-density lipoprotein subfraction. The plasma PAF-AH activity in patients with active JRA was lower than that in controls, mainly due to the decrease in PAF-AH activity associated with the intermediate and dense low-density lipoprotein subclasses. The lipid abnormalities and the reduction in plasma PAF-AH activity were significantly correlated with plasma C-reactive protein levels and were not observed in patients with inactive JRA. CONCLUSION: This is the first study to show that patients with active JRA exhibit low levels of HDL2 and HDL3 and are deficient in plasma PAF-AH activity. These alterations suggest that active JRA is associated with partial loss of the antiinflammatory activity of plasma Apo B- and Apo A-I-containing lipoproteins.  (+info)

Liver-specific inactivation of the abetalipoproteinemia gene completely abrogates very low density lipoprotein/low density lipoprotein production in a viable conditional knockout mouse. (3/2985)

Conventional knockout of the microsomal triglyceride transfer protein large subunit (lMTP) gene is embryonic lethal in the homozygous state in mice. We have produced a conditional lMTP knockout mouse by inserting loxP sequences flanking exons 5 and 6 by gene targeting. Homozygous floxed mice were born live with normal plasma lipids. Intravenous injection of an adenovirus harboring Cre recombinase (AdCre1) produced deletion of exons 5 and 6 and disappearance of lMTP mRNA and immunoreactive protein in a liver-specific manner. There was also disappearance of plasma apolipoprotein (apo) B-100 and marked reduction in apoB-48 levels. Wild-type mice showed no response, and heterozygous mice, an intermediate response, to AdCre1. Wild-type mice doubled their plasma cholesterol level following a high cholesterol diet. This hypercholesterolemia was abolished in AdCre1-treated lMTP-/- mice, the result of a complete absence of very low/intermediate/low density lipoproteins and a slight reduction in high density lipoprotein. Heterozygous mice showed an intermediate lipoprotein phenotype. The rate of accumulation of plasma triglyceride following Triton WR1339 treatment in lMTP-/- mice was <10% that in wild-type animals, indicating a failure of triglyceride-rich lipoprotein production. Pulse-chase experiments using hepatocytes isolated from wild-type and lMTP-/- mice revealed a failure of apoB secretion in lMTP-/- animals. Therefore, the liver-specific inactivation of the lMTP gene completely abrogates apoB-100 and very low/intermediate/low density lipoprotein production. These conditional knockout mice are a useful in vivo model for studying the role of MTP in apoB biosynthesis and the biogenesis of apoB-containing lipoproteins.  (+info)

Insights into apolipoprotein B biology from transgenic and gene-targeted mice. (4/2985)

Over the past five years, several laboratories have used transgenic and gene-targeted mice to study apolipoprotein (apo) B biology. Genetically modified mice have proven useful for investigating the genetic and environmental factors affecting atherogenesis, for defining apoB structure/function relationships, for understanding the regulation of the apoB gene expression in the intestine, for defining the "physiologic rationale" for the existence of the two different forms of apoB (apoB48 and apoB100) in mammalian metabolism and for providing mechanistic insights into the human apoB deficiency syndrome, familial hypobetalipoproteinemia. This review will provide several examples of how genetically modified mice have contributed to our understanding of apoB biology, including our new discovery that human heart myocytes secrete nascent apoB-containing lipoproteins.  (+info)

Apolipoprotein B in the rough endoplasmic reticulum: translation, translocation and the initiation of lipoprotein assembly. (5/2985)

Apolipoprotein (apo) B and the microsomal triglyceride transfer protein are essential for the hepatic assembly and secretion of triglyceride-rich VLDL. To understand how apoB initiates the process of lipoprotein formation, interest has focused on the biogenesis of its amino terminal globular domain (alpha1 domain). When only this domain is expressed in hepatoma cells, no lipoprotein particle will form. However, proper folding of the alpha1 domain is essential for the internal lipophilic regions of apoB to engage in cotranslational lipid recruitment. The essential function of this domain may be related to its capacity to promote a specific physical interaction with the microsomal triglyceride transfer protein, necessary for apoB's proper folding and lipidation. Alternatively, this domain may promote an autonomous lipid recruitment step that nucleates microsomal triglyceride transfer protein-dependent lipid sequestration by apoB. Forms of apoB that fail to initiate particle assembly or forms associated with aberrant underlipidated particles are targeted for intracellular turnover. Two sites of apoB degradation have been identified. In hepatocarcinoma-derived cells, misassembled apoB may undergo progressive reverse translocation from the endoplasmic reticulum lumen to the cytosol, a process that is mechanistically coupled to polyubiquitination and proteasome-mediated degradation on the cytosolic side of the membrane. Alternatively, studies in primary hepatocytes reveal that apoB may undergo sorting to a post-endoplasmic reticulum compartment for presecretory degradation. In either case, the balance between assembly and presecretory degradation of apoB may represent a control point for the production of hepatic VLDL.  (+info)

Assembly of very low density lipoprotein: a two-step process of apolipoprotein B core lipidation. (6/2985)

The liver plays a primary role in lipid metabolism. Important functions include the synthesis and incorporation of hydrophobic lipids, triacylglycerols and cholesteryl esters into the core of water-miscible particles called lipoproteins and the secretion of these particles into the circulation for transport to distant tissues. In this article, we present a brief overview of one aspect of the assembly process of very low density lipoproteins, namely, possible mechanisms for combining core lipids with apolipoprotein B. This is a complex process in which apolipoprotein B interacts with core lipids to form very low density lipoproteins by a two-step process that can be dissociated biochemically.  (+info)

The LDL receptor gene family, apolipoprotein B and cholesterol in embryonic development. (7/2985)

In recent years, a number of genes that are involved in cholesterol synthesis, its systemic or intercellular transport or lipid metabolism in general have been found to play important roles during embryonic development. In this article, we present a brief overview of these genes, their molecular functions as we understand them to date and our current interpretation of possible mechanisms by which genetic deficiency states might affect the development of the embryo, in particular the formation of the central nervous system.  (+info)

Dietary fish oils inhibit early events in the assembly of very low density lipoproteins and target apoB for degradation within the rough endoplasmic reticulum of hamster hepatocytes. (8/2985)

Dietary fish oils inhibited secretion and stimulated intracellular degradation of apolipoprotein (apo)B in hamster hepatocytes, while dietary sunflower oils stimulated secretion and had no effect on degradation of apoB. To investigate the intracellular site at which fish oils act, we have made use of our previous observations that inhibition of degradation by N-acetyl-leucyl-leucyl-norleucinal (ALLN) results in accumulation of apoB in the trans -Golgi membrane and does not stimulate secretion, while inhibition of degradation by o-phenanthroline results in accumulation of apoB in the rough endoplasmic reticulum membrane and stimulates secretion. Thus, ALLN protects apoB which has been diverted from secretion and o -phenanthroline protects apoB which is targetted for secretion. Addition of o -phenantholine to the incubation medium of hepatocytes from fish oil-fed hamsters inhibited degradation of apoB and stimulated its secretion in particles of the density of VLDL, while addition of ALLN had no effect. These observations suggest that dietary fish oils reversibly inhibit early steps in the assembly of very low density lipoprotein precursors and target apoB for degradation in the rough endoplasmic reticulum.  (+info)