The limited use of digital ink in the private-sector primary care physician's office. (9/7649)

Two of the greatest obstacles to the implementation of the standardized electronic medical record are physician and staff acceptance and the development of a complete standardized medical vocabulary. Physicians have found the familiar desktop computer environment cumbersome in the examination room and the coding and hierarchic structure of existing vocabulary inadequate. The author recommends the use of digital ink, the graphic form of the pen computer, in telephone messaging and as a supplement in the examination room encounter note. A key concept in this paper is that the development of a standard electronic medical record cannot occur without the thorough evaluation of the office environment and physicians' concerns. This approach reveals a role for digital ink in telephone messaging and as a supplement to the encounter note. It is hoped that the utilization of digital ink will foster greater physician participation in the development of the electronic medical record.  (+info)

Improving clinician acceptance and use of computerized documentation of coded diagnosis. (10/7649)

After the Northwest Division of Kaiser Permanente implemented EpicCare, a comprehensive electronic medical record, clinicians were required to directly document orders and diagnoses on this computerized system, a task they found difficult and time consuming. We analyzed the sources of this problem to improve the process and increase its acceptance by clinicians. One problem was the use of the International Classification of Diseases (ICD-9) as our coding scheme, even though ICD-9 is not a complete nomenclature of diseases and using it as such creates difficulties. In addition, the synonym list we used had some inaccurate associations, contributing to clinician frustration. Furthermore, the initial software program contained no adequate mechanism for adding qualifying comments or preferred terminology. We sought to address all these issues. Strategies included adjusting the available coding choices and descriptions and modifying the medical record software. In addition, the software vendor developed a utility that allows clinicians to replace the ICD-9 description with their own preferred terminology while preserving the ICD-9 code. We present an evaluation of this utility.  (+info)

Searching bibliographic databases effectively. (11/7649)

The ability to search bibliographic databases effectively is now an essential skill for anyone undertaking research in health. This article discusses the way in which databases are constructed and some of the important steps in planning and carrying out a search. Consideration is given to some of the advantages and limitations of searching using both thesaurus and natural language (textword) terms. A selected list of databases in health and medicine is included.  (+info)

Panning for genes--A visual strategy for identifying novel gene orthologs and paralogs. (12/7649)

We have developed a rapid visual method for identifying novel members of gene families. Starting with an evolutionary tree, 20-50 protein query sequences for a gene family are selected from different branches of the tree. These query sequences are used to search the GenBank and expressed sequence tag (EST) DNA databases and their nightly updates using the tfastx3 or tfasty3 programs. The results of all 20-50 searches are collated and resorted to highlight EST or genomic sequences that share significant similarity with the query sequences. The statistical significance of each DNA/protein alignment is plotted, highlighting the portion of the query sequence that is present in the database sequence and the percent identity in the aligned region. The collated results for database sequences are linked using the WWW to the underlying scores and alignments; these links can also be used to perform additional searches to characterize the novel sequence further. With traditional "deep" scoring matrices (BLOSUM50) one can search for previously unrecognized families of large protein superfamilies. Alternatively, by using query sequences and EST libraries from the same species (e. g., human or mouse) together with "shallow" scoring matrices and filters that remove high-identity sequences, one can highlight new paralogs of previously described subfamilies. Using query sequences from the glutathione transferase superfamily, we identified two novel mammalian glutathione transferase families that were recognized previously only in plants. Using query sequences from known mammalian glutathione transferase subfamilies, we identified new candidate paralogs from the mouse class-mu, class-pi, and class-theta families.  (+info)

Occupational stress in human computer interaction. (13/7649)

There have been a variety of research approaches that have examined the stress issues related to human computer interaction including laboratory studies, cross-sectional surveys, longitudinal case studies and intervention studies. A critical review of these studies indicates that there are important physiological, biochemical, somatic and psychological indicators of stress that are related to work activities where human computer interaction occurs. Many of the stressors of human computer interaction at work are similar to those stressors that have historically been observed in other automated jobs. These include high workload, high work pressure, diminished job control, inadequate employee training to use new technology, monotonous tasks, por supervisory relations, and fear for job security. New stressors have emerged that can be tied primarily to human computer interaction. These include technology breakdowns, technology slowdowns, and electronic performance monitoring. The effects of the stress of human computer interaction in the workplace are increased physiological arousal; somatic complaints, especially of the musculoskeletal system; mood disturbances, particularly anxiety, fear and anger; and diminished quality of working life, such as reduced job satisfaction. Interventions to reduce the stress of computer technology have included improved technology implementation approaches and increased employee participation in implementation. Recommendations for ways to reduce the stress of human computer interaction at work are presented. These include proper ergonomic conditions, increased organizational support, improved job content, proper workload to decrease work pressure, and enhanced opportunities for social support. A model approach to the design of human computer interaction at work that focuses on the system "balance" is proposed.  (+info)

Wrapping SRS with CORBA: from textual data to distributed objects. (14/7649)

MOTIVATION: Biological data come in very different shapes. Databanks are maintained and used by distinct organizations. Text is the de facto Standard exchange format. The SRS system can integrate heterogeneous textual databanks but it was lacking a way to structure the extracted data. RESULTS: This paper presents a CORBA interface to the SRS system which manages databanks in a flat file format. SRS Object Servers are CORBA wrappers for SRS. They allow client applications (visualisation tools, data mining tools, etc.) to access and query SRS servers remotely through an Object Request Broker (ORB). They provide loader objects that contain the information extracted from the databanks by SRS. Loader objects are not hard-coded but generated in a flexible way by using loader specifications which allow SRS administrators to package data coming from distinct databanks. AVAILABILITY: The prototype may be available for beta-testing. Please contact the SRS group (http://srs.ebi.ac.uk).  (+info)

Spilling the beans on java 3D: a tool for the virtual anatomist. (15/7649)

The computing world has just provided the anatomist with another tool: Java 3D, within the Java 2 platform. On December 9, 1998, Sun Microsystems released Java 2. Java 3D classes are now included in the jar (Java Archive) archives of the extensions directory of Java 2. Java 3D is also a part of the Java Media Suite of APIs (Application Programming Interfaces). But what is Java? How does Java 3D work? How do you view Java 3D objects? A brief introduction to the concepts of Java and object-oriented programming is provided. Also, there is a short description of the tools of Java 3D and of the Java 3D viewer. Thus, the virtual anatomist has another set of computer tools to use for modeling various aspects of anatomy, such as embryological development. Also, the virtual anatomist will be able to assist the surgeon with virtual surgery using the tools found in Java 3D. Java 3D will be able to fulfill gaps, such as the lack of platform independence, interactivity, and manipulability of 3D images, currently existing in many anatomical computer-aided learning programs.  (+info)

Continuous speech recognition for clinicians. (16/7649)

The current generation of continuous speech recognition systems claims to offer high accuracy (greater than 95 percent) speech recognition at natural speech rates (150 words per minute) on low-cost (under $2000) platforms. This paper presents a state-of-the-technology summary, along with insights the authors have gained through testing one such product extensively and other products superficially. The authors have identified a number of issues that are important in managing accuracy and usability. First, for efficient recognition users must start with a dictionary containing the phonetic spellings of all words they anticipate using. The authors dictated 50 discharge summaries using one inexpensive internal medicine dictionary ($30) and found that they needed to add an additional 400 terms to get recognition rates of 98 percent. However, if they used either of two more expensive and extensive commercial medical vocabularies ($349 and $695), they did not need to add terms to get a 98 percent recognition rate. Second, users must speak clearly and continuously, distinctly pronouncing all syllables. Users must also correct errors as they occur, because accuracy improves with error correction by at least 5 percent over two weeks. Users may find it difficult to train the system to recognize certain terms, regardless of the amount of training, and appropriate substitutions must be created. For example, the authors had to substitute "twice a day" for "bid" when using the less expensive dictionary, but not when using the other two dictionaries. From trials they conducted in settings ranging from an emergency room to hospital wards and clinicians' offices, they learned that ambient noise has minimal effect. Finally, they found that a minimal "usable" hardware configuration (which keeps up with dictation) comprises a 300-MHz Pentium processor with 128 MB of RAM and a "speech quality" sound card (e.g., SoundBlaster, $99). Anything less powerful will result in the system lagging behind the speaking rate. The authors obtained 97 percent accuracy with just 30 minutes of training when using the latest edition of one of the speech recognition systems supplemented by a commercial medical dictionary. This technology has advanced considerably in recent years and is now a serious contender to replace some or all of the increasingly expensive alternative methods of dictation with human transcription.  (+info)