The Jun kinase 2 isoform is preferentially required for epidermal growth factor-induced transformation of human A549 lung carcinoma cells. (1/1934)

We have previously found that epidermal growth factor (EGF) mediates growth through the Jun N-terminal kinase/stress-activated kinase (JNK/SAPK) pathway in A549 human lung carcinoma cells. As observed here, EGF treatment also greatly enhances the tumorigenicity of A549 cells, suggesting an important role for JNK in cancer cell growth (F. Bost, R. McKay, N. Dean, and D. Mercola, J. Biol. Chem. 272:33422-33429, 1997). Several isoforms families of JNK, JNK1, JNK2, and JNK3, have been isolated; they arise from alternative splicing of three different genes and have distinct substrate binding properties. Here we have used specific phosphorothioate oligonucleotides targeted against the two major isoforms, JNK1 and JNK2, to discriminate their roles in EGF-induced transformation. Multiple antisense sequences have been screened, and two high-affinity and specific candidates have been identified. Antisense JNK1 eliminated steady-state mRNA and JNK1 protein expression with a 50% effective concentration (EC50) of <0.1 microM but did not alter JNK2 mRNA or protein levels. Conversely, antisense JNK2 specifically eliminated JNK2 steady-state mRNA and protein expression with an EC50 of 0.1 microM. Antisense JNK1 and antisense JNK2 inhibited by 40 and 70%, respectively, EGF-induced total JNK activity, whereas sense and scrambled-sequence control oligonucleotides had no effect. The elimination of mRNA, protein, and JNK activities lasted 48 and 72 h following a single Lipofectin treatment with antisense JNK1 and JNK2, respectively, indicating sufficient duration for examining the impact of specific elimination on the phenotype. Direct proliferation assays demonstrated that antisense JNK2 inhibited EGF-induced doubling of growth as well as the combination of active antisense oligonucleotides did. EGF treatment also induced colony formation in soft agar. This effect was completely inhibited by antisense JNK2 and combined-antisense treatment but not altered by antisense JNK1 alone. These results show that EGF doubles the proliferation (growth in soft agar as well as tumorigenicity in athymic mice) of A549 lung carcinoma cells and that the JNK2 isoform but not JNK1 is utilized for mediating the effects of EGF. This study represents the first demonstration of a cellular phenotype regulated by a JNK isoform family, JNK2.  (+info)

RNA antisense abrogation of MAT1 induces G1 phase arrest and triggers apoptosis in aortic smooth muscle cells. (2/1934)

The human MAT1 gene (menage a trois 1) is an assembly factor and a targeting subunit of cyclin-dependent kinase (CDK)-activating kinase. The novel mechanisms by which MAT1 forms an active CDK-activating kinase and determines substrate specificity of CDK7-cyclin H are involved in the cell cycle, DNA repair, and transcription. Hyperplasia of vascular smooth muscle cells (SMC) is a fundamental pathologic feature of luminal narrowing in vascular occlusive diseases, and nothing is yet known regarding the cell cycle phase specificity of the MAT1 gene in its involvement in SMC proliferation. To investigate such novel regulatory pathways, MAT1 expression was abrogated by retrovirus-mediated gene transfer of antisense MAT1 RNA in cultured rat aortic SMCs. We show that abrogation of MAT1 expression retards SMC proliferation and inhibits cell activation from a nonproliferative state. Furthermore, we have demonstrated that these effects are due to G1 phase arrest and apoptotic cell death. Our studies indicate a link between cell cycle control and apoptosis and reveal a potential mechanism for coupling the regulation of MAT1 with G1 exit and prevention of apoptosis.  (+info)

150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. (3/1934)

To determine the contribution of 150-kDa oxygen-regulated protein (ORP150) to cellular processes underlying adaptation to hypoxia, a cell line stably transfected to overexpress ORP150 antisense RNA was created. In human embryonic kidney (HEK) cells stably overexpressing ORP150 antisense RNA, ORP150 antigen and transcripts were suppressed to low levels in normoxia and hypoxia, whereas wild-type cells showed induction of ORP150 with oxygen deprivation. Inhibition of ORP150 in antisense transfectants was selective, as hypoxia-mediated enhancement of glucose-regulated protein (GRP) 78 and GRP94 was maintained. However, antisense ORP150 transfectants displayed reduced viability when subjected to hypoxia, compared with wild-type and sense-transfected HEK cells. In contrast, diminished levels of ORP150 had no effect on cytotoxicity induced by other stimuli, including oxygen-free radicals and sodium arsenate. Although cellular ATP content was similar in hypoxia, compared with ORP150 antisense transfectants and wild-type HEK cells, suppression of ORP150 expression was associated with accelerated apoptosis. Hypoxia-mediated cell death in antisense HEK transfectants did not cause an increase in caspase activity or in cytoplasmic cytochrome c antigen. A well recognized inducer of apoptosis in HEK cells, staurosporine, caused increased caspase activity and cytoplasmic cytochrome c levels in both wild-type and antisense cells. These data indicate that ORP150 has an important cytoprotective role in hypoxia-induced cellular perturbation and that ORP150-associated inhibition of apoptosis may involve mechanisms distinct from those triggered by other apoptotic stimuli.  (+info)

Otx expression during lamprey embryogenesis provides insights into the evolution of the vertebrate head and jaw. (4/1934)

Agnathan or jawless vertebrates, such as lampreys, occupy a critical phylogenetic position between the gnathostome or jawed vertebrates and the cephalochordates, represented by amphioxus. In order to gain insight into the evolution of the vertebrate head, we have cloned and characterized a homolog of the head-specific gene Otx from the lamprey Petromyzon marinus. This lamprey Otx gene is a clear phylogenetic outgroup to both the gnathostome Otx1 and Otx2 genes. Like its gnathostome counterparts, lamprey Otx is expressed throughout the presumptive forebrain and midbrain. Together, these results indicate that the divergence of Otx1 and Otx2 took place after the gnathostome/agnathan divergence and does not correlate with the origin of the vertebrate brain. Intriguingly, Otx is also expressed in the cephalic neural crest cells as well as mesenchymal and endodermal components of the first pharyngeal arch in lampreys, providing molecular evidence of homology with the gnathostome mandibular arch and insights into the evolution of the gnathostome jaw.  (+info)

Antisense downregulation of a mouse mammary tumor virus activated protooncogene in mouse mammary tumor cells reverses the malignant phenotype. (5/1934)

Activation of the protooncogene Wnt-1 by insertion of the mouse mammary tumor virus (MMTV) is known to cause mammary tumors in mice. Wnt-1 expression in mammary glands has been postulated to confer direct local growth stimulation of mammary epithelial cells leading to their acquisition of a preneoplastic state. Wnt-1 expression also induces morphological alterations in cultured normal mammary cells. However, it has not been determined whether or not transformed mammary cells require continuous Wnt-1 expression for their ability to form tumors in vivo. To address this question, we constructed antisense and sense Wnt-1 expression vectors containing a synthetic promoter composed of five high-affinity glucocorticoid response elements (GRE5). This promoter is at least 50-fold more inducible by dexamethasone than the promoter contained in the long terminal repeats of MMTV. The vectors were introduced into a mouse mammary tumor cell line (R/Sa-MT) that expresses high levels of endogenous Wnt-1 mRNA and forms rapidly growing tumors when transplanted into syngeneic hosts. Of the 12 stably transfected cell lines established (9 with antisense and 3 with sense constructs), 2 antisense cell lines (R/Sa-MT/antisense) and 1 sense cell line (R/Sa-MT/sense) were examined for inducibility by dexamethasone of antisense and sense Wnt-1 RNAs, changes in endogenous Wnt-1 RNA expression, and changes in cell morphology. The growth patterns of the cells in vitro and in vivo were also examined. Our results show that (1) the levels of the expression of endogenous Wnt-1 mRNA and protein were reduced significantly (>80%) in those cells (R/Sa-MT/antisense) that expressed antisense Wnt-1 RNA at high levels following exposure to dexamethasone, compared to the R/Sa-MT/sense and R/Sa-MT control cells and (2) transplantation of the R/Sa-MT/antisense cells produced smaller tumors ( approximately 0.2 cm in 16 weeks) compared to the tumors ( approximately 2.0 cm in 8 weeks) that were produced by the R/Sa-MT/sense and R/Sa-MT cells. We therefore suggest that Wnt-1 expression is required not only for the transformation of normal mammary cells into tumor cells, but also for the maintenance of their tumorigenicity.  (+info)

Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. (6/1934)

We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.  (+info)

Variation of liver-type fatty acid binding protein content in the human hepatoma cell line HepG2 by peroxisome proliferators and antisense RNA affects the rate of fatty acid uptake. (7/1934)

The liver-type fatty acid binding protein (L-FABP), a member of a family of mostly cytosolic 14-15 kDa proteins known to bind fatty acids in vitro and in vivo, is discussed to play a role in fatty acid uptake. Cells of the hepatoma HepG2 cell line endogenously express this protein to approximately 0.2% of cytosolic proteins and served as a model to study the effect of L-FABP on fatty acid uptake, by manipulating L-FABP expression in two approaches. First, L-FABP content was more than doubled upon treating the cells with the potent peroxisome proliferators bezafibrate and Wy14,643 and incubation of these cells with [1-14C]oleic acid led to an increase in fatty acid uptake rate from 0.55 to 0.74 and 0.98 nmol/min per mg protein, respectively. In the second approach L-FABP expression was reduced by stable transfection with antisense L-FABP mRNA yielding seven clones with L-FABP contents ranging from 0.03% to 0.14% of cytosolic proteins. This reduction to one sixth of normal L-FABP content reduced the rate of [1-14C]oleic acid uptake from 0.55 to 0. 19 nmol/min per mg protein, i.e., by 66%. The analysis of peroxisome proliferator-treated cells and L-FABP mRNA antisense clones revealed a direct correlation between L-FABP content and fatty acid uptake.  (+info)

beta-thymosin is required for axonal tract formation in developing zebrafish brain. (8/1934)

beta-Thymosins are polypeptides that bind monomeric actin and thereby function as actin buffers in many cells. We show that during zebrafish development, &bgr;-thymosin expression is tightly correlated with neuronal growth and differentiation. It is transiently expressed in a subset of axon-extending neurons, essentially primary neurons that extend long axons, glia and muscle. Non-neuronal expression in the brain is restricted to a subset of glia surrounding newly forming axonal tracts. Skeletal muscle cells in somites, jaw and fin express beta-thymosin during differentiation, coinciding with the time of innervation. Injection of beta-thymosin antisense RNA into zebrafish embryos results in brain defects and impairment of the development of beta-thymosin-associated axon tracts. Furthermore, irregularities in somite formation can be seen in a subset of embryos. Compared to wild-type, antisense-injected embryos show slightly weaker and more diffuse engrailed staining at the midbrain-hindbrain boundary and a strong reduction of Isl-1 labeling in Rohon Beard and trigeminal neurons. The decreased expression is not based on a loss of neurons indicating that beta-thymosin may be involved in the maintenance of the expression of molecules necessary for neuronal differentiation. Taken together, our results strongly indicate that beta-thymosin is an important regulator of development.  (+info)