Quantitative and qualitative analysis of type III antifreeze protein structure and function. (1/194)

Some cold water marine fishes avoid cellular damage because of freezing by expressing antifreeze proteins (AFPs) that bind to ice and inhibit its growth; one such protein is the globular type III AFP from eel pout. Despite several studies, the mechanism of ice binding remains unclear because of the difficulty in modeling the AFP-ice interaction. To further explore the mechanism, we have determined the x-ray crystallographic structure of 10 type III AFP mutants and combined that information with 7 previously determined structures to mainly analyze specific AFP-ice interactions such as hydrogen bonds. Quantitative assessment of binding was performed using a neural network with properties of the structure as input and predicted antifreeze activity as output. Using the cross-validation method, a correlation coefficient of 0.60 was obtained between measured and predicted activity, indicating successful learning and good predictive power. A large loss in the predictive power of the neural network occurred after properties related to the hydrophobic surface were left out, suggesting that van der Waal's interactions make a significant contribution to ice binding. By combining the analysis of the neural network with antifreeze activity and x-ray crystallographic structures of the mutants, we extend the existing ice-binding model to a two-step process: 1) probing of the surface for the correct ice-binding plane by hydrogen-bonding side chains and 2) attractive van der Waal's interactions between the other residues of the ice-binding surface and the ice, which increases the strength of the protein-ice interaction.  (+info)

A leucine-rich repeat protein of carrot that exhibits antifreeze activity. (2/194)

A gene encoding an antifreeze protein (AFP) was isolated from carrot (Daucus carota) using sequence information derived from the purified protein. The carrot AFP is highly similar to the polygalacturonase inhibitor protein (PGIP) family of apoplastic plant leucine-rich repeat (LRR) proteins. Expression of the AFP gene is rapidly induced by low temperatures. Furthermore, expression of the AFP gene in transgenic Arabidopsis thaliana plants leads to an accumulation of antifreeze activity. Our findings suggest that a new type of plant antifreeze protein has recently evolved from PGIPs.  (+info)

Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). (3/194)

A modified assay for inhibition of ice recrystallization which allows unequivocal identification of activity in plant extracts is described. Using this assay a novel, cold-induced, 36 kDa antifreeze protein has been isolated from the tap root of cold-acclimated carrot (Daucus carota) plants. This protein inhibits the recrystallization of ice and exhibits thermal-hysteresis activity. The polypeptide behaves as monomer in solution and is N-glycosylated. The corresponding gene is unique in the carrot genome and induced by cold. The antifreeze protein appears to be localized within the apoplast.  (+info)

Studies of a putative ice-binding motif in winter flounder skin-type anti-freeze polypeptide. (4/194)

Winter flounder contains two distinct anti-freeze protein isoforms, which are the liver-type extracellular anti-freeze proteins and the skin-type intracellular anti-freeze protein. The skin-type anti-freeze proteins exhibit lower anti-freeze activities than the liver-type isoforms and this might be due to their lacking complete ice-binding motifs. One of the skin-type anti-freeze proteins, skin-type anti-freeze protein-3, does contain putative overlapping ice-binding motifs with the sequences '-K-DT-' and '-DT-K-'. Synthetic anti-freezes containing 0-3 repeats of the '-DT-K-' motif were tested for stability and activity. Loss of the single '-DT-K-' of skin-type anti-freeze protein-3 increases the anti-freeze activity and increasing the number of motifs to two or three lowers the activity. The decrease in activity with an increasing frequency of the motif correlates with a decrease in the helical content of these peptides at 0 degrees C.  (+info)

Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties. (5/194)

Antifreeze polypeptides from fish are generally thought to inhibit ice crystal growth by specific adsorption onto ice surfaces and preventing addition of water molecules to the ice lattice. Recent studies have suggested that this adsorption results from hydrogen bonding through the side chains of polar amino acids as well as hydrophobic interactions between the non-polar domains on the ice-binding side of antifreeze polypeptides and the clathrate-like surfaces of ice. In order to better understand the activity of one of the antifreeze polypeptide families, namely the alpha-helical type I antifreeze polypeptides, four alpha-helical peptides having sequences not directly analogous to those of known antifreeze polypeptides and containing only positively charged and non-polar side chains were synthesized. Two peptides with regularly spaced lysine residues, GAAKAAKAAAAAAAKAAKAAAAAAAKAAKAAGGY-NH2 and GAALKAAKAAAAAALKAAKAAAAAALKAAKAAGGY-NH2, showed antifreeze activity, albeit weaker than seen in natural antifreeze polypeptides, by the criteria of freezing point depression (thermal hysteresis) and ice crystal modification to a hexagonal trapezohedron. Peptides with irregular spacing of Lys residues were completely inactive. Up to now, lysine residues have not been generally associated with antifreeze activity, though they have been implicated in some antifreeze polypeptides. This work also shows that lysine residues in themselves, when properly positioned on an alpha-helical polyalanine scaffold, have all the requisite properties needed for such an activity.  (+info)

Secretory expression and site-directed mutagenesis studies of the winter flounder skin-type antifreeze polypeptides. (6/194)

Winter flounder contains both liver-type, extracellular antifreeze polypeptides (wflAFPs) and less active skin-type, intracellular antifreeze polypeptides (wfsAFPs). The lower activity of wfsAFPs might be due to their lack of complete ice-binding motifs '-K-DT-'. In order to test the functional role of this putative ice-binding motif, mutations were introduced into the N-terminal or C-terminal regions of wfsAFP-2, which lack any presumptive ice-binding motifs. The wild-type and mutant wfsAFP-2 were secreted in Escherichia coli culture media as mature antifreeze proteins and purified to homogeneity. Surprisingly, the antifreeze activity decreased with the introduction of ice-binding motifs. However, there was a corresponding decrease in alpha-helical content as well as thermal stability and this would suggest a compromise in retaining helical structure with the presence of ice-binding motifs. These studies have brought new definitions of the roles of ice-binding motif residues in type I antifreeze proteins.  (+info)

Ice-binding surface of fish type III antifreeze. (7/194)

We employed computational techniques, including molecular docking, energy minimization, and molecular dynamics simulation, to investigate the ice-binding surface of fish type III antifreeze protein (AFP). The putative ice-binding site was previously identified by mutagenesis, structural analysis, and flatness evaluation. Using a high-resolution x-ray structure of fish type III AFP as a model, we calculated the ice-binding interaction energy of 11 surface patches chosen to cover the entire surface of the protein. These various surface patches exhibit small but significantly different ice-binding interaction energies. For both the prism ice plane and an "ice" plane in which water O atoms are randomly positioned, our calculations show that a surface patch containing 14 residues (L19, V20, T18, S42, V41, Q9, P12, A16, M21, T15, Q44, I13, N14, K61) has the most favorable interaction energy and corresponds to the previously identified ice-binding site of type III AFP. Although in general agreement with the earlier studies, our results also suggest that the ice-binding site may be larger than the previously identified "core" cluster that includes mostly hydrophilic residues. The enlargement mainly results from the inclusion of peripheral hydrophobic residues and K61.  (+info)

Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. (8/194)

The type I 'antifreeze' proteins, found in the body fluids of fish inhabiting polar oceans, are alanine-rich alpha-helical proteins that are able to inhibit the growth of ice. Within this class there are two distinct subclasses of proteins: those related to the winter flounder sequence HPLC6 and which contain 11-residue repeat units commencing with threonine; and those from the sculpins that are unique in the N-terminal region that contains established helix breakers and lacks the 11-residue repeat structure present in the rest of the protein. Although 14 type I proteins have been isolated, almost all research has focused on HPLC6, the 37-residue protein from the winter flounder Pseudopleuronectes americanus. This protein modifies both the rate and shape (or 'habit') of ice crystal growth, displays hysteresis and accumulates specifically at the {2 0 2; 1} ice plane. Until very recently, all models to explain the mechanism for this specific interaction have relied on the interaction of the four threonine hydroxyls, which are spaced equally apart on one face of the helix, with the ice lattice. In contrast, proteins belonging to the sculpin family accumulate specifically at the {2 1; 1; 0} plane. The molecular origin of this difference in specificity between the flounder and sculpin proteins is not understood. This review will summarize the structure-activity and molecular modelling and dynamics studies on HPLC6, with an emphasis on recent studies in which the threonine residues have been mutated. These studies have identified important hydrophobic contributions to the ice growth inhibition mechanism. Some 50 mutants of HPLC6 have been reported and the data is consistent with the following requirements for ice growth inhibition: (a) a minimum length of approx. 25 residues; (b) an alanine-rich sequence in order to induce a highly helical conformation; (c) a hydrophobic face; (d) a number of charged/polar residues which are involved in solubility and/or interaction with the ice surface. The emerging picture, that requires further dynamics studies including accurate modelling of the ice/water interface, suggests that a hydrophobic interaction between the surface of the protein and ice is the key to explaining accumulation at specific ice planes, and thus the molecular level mechanism for ice growth inhibition.  (+info)