Designing surfaces that kill bacteria on contact. (25/539)

Poly(4-vinyl-N-alkylpyridinium bromide) was covalently attached to glass slides to create a surface that kills airborne bacteria on contact. The antibacterial properties were assessed by spraying aqueous suspensions of bacterial cells on the surface, followed by air drying and counting the number of cells remaining viable (i.e., capable of growing colonies). Amino glass slides were acylated with acryloyl chloride, copolymerized with 4-vinylpyridine, and N-alkylated with different alkyl bromides (from propyl to hexadecyl). The resultant surfaces, depending on the alkyl group, were able to kill up to 94 +/- 4% of Staphylococcus aureus cells sprayed on them. A surface alternatively created by attaching poly(4-vinylpyridine) to a glass slide and alkylating it with hexyl bromide killed 94 +/- 3% of the deposited S. aureus cells. On surfaces modified with N-hexylated poly(4-vinylpyridine), the numbers of viable cells of another Gram-positive bacterium, Staphylococcus epidermidis, as well as of the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, dropped more than 100-fold compared with the original amino glass. In contrast, the number of viable bacterial cells did not decline significantly after spraying on such common materials as ceramics, plastics, metals, and wood.  (+info)

Eprosartan reduces cardiac hypertrophy, protects heart and kidney, and prevents early mortality in severely hypertensive stroke-prone rats. (26/539)

OBJECTIVE: Eprosartan is a selective angiotensin II type I receptor antagonist approved for the treatment of hypertension. In the present studies, eprosartan's ability to provide end-organ protection was evaluated in a model of cardiomyopathy and renal failure in stroke-prone rats (SP). METHODS: SP were fed a high fat (24.5% in food) and high salt (1% in water) diet (SFD). Eprosartan (60 mg/kg/day) or vehicle (saline control) (n = 25/group) was administered by intraperitoneally-implanted minipumps to these SP on the SFD for 12 weeks. Normal diet fed SP and WKY rats (n = 25/group) were also included for comparison (i.e. served as normal controls). Mortality, hemodynamics, and both renal and cardiac function and histopathology were monitored in all treatment groups. RESULTS: Eprosartan decreased the severely elevated arterial pressure (-12%; P < 0.05) produced by SFD but did not affect heart rate. Vehicle-treated SP-SFD control rats exhibited significant weight loss (-13%; P < 0.05) and marked mortality (50% by week 6 and 95% by week 9; P < 0.01). Eprosartan-treated SP-SFD rats maintained normal weight, and exhibited zero mortality at week 12 and beyond. Eprosartan prevented the increased urinary protein excretion (P < 0.05) that was observed in vehicle-treated SP-SFD rats. Echocardiographic (i.e. 2-D guided M-mode) evaluation indicated that SP-SFD vehicle control rats exhibited increased septal (+22.2%) and posterior left ventricular wall (+30.0%) thickness, and decreased left ventricular chamber diameter (-15.9%), chamber volume (-32.7%), stroke volume (-48.7%) and ejection fraction (-22.3%), and a remarkable decrease in cardiac output (-59.3%) compared to controls (all P < 0.05). These same parameters in eprosartan-treated SP-SFD rats were normal and differed markedly and consistently from vehicle-treated SP-SFD rats (i.e. treatment prevented pathology; all P < 0.05). Cardiac-gated MRI data confirmed the ability of eprosartan to prevent cardiac pathology/remodeling (P < 0.05). Histopathological analysis of hearts and kidneys indicated that eprosartan treatment significantly reduced end-organ damage (P < 0.01) and provided corroborative evidence that eprosartan reduced remodeling of these organs. Vehicle-treated SP-SFD rats exhibited a 40% increase in the plasma level of pro-atrial natiuretic factor that was reduced to normal by eprosartan (P < 0.05). CONCLUSION: These data demonstrate that eprosartan, at a clinically relevant dose, provides significant end-organ protection in the severely hypertensive stroke-prone rat. It preserves cardiac and renal structural integrity, reduces cardiac hypertrophy and indices of heart failure, maintains normal function of the heart and kidneys, and eliminates premature mortality due to hypertension-induced end-organ failure.  (+info)

Nuclear magnetic resonance analysis of [1-13C]dimethylsulfoniopropionate (DMSP) and [1-13C]acrylate metabolism by a DMSP lyase-producing marine isolate of the alpha-subclass of Proteobacteria. (27/539)

The prominence of the alpha-subclass of Proteobacteria in the marine bacterioplankton community and their role in dimethylsulfide (DMS) production has prompted a detailed examination of dimethylsulfoniopropionate (DMSP) metabolism in a representative isolate of this phylotype, strain LFR. [1-(13)C]DMSP was synthesized, and its metabolism and that of its cleavage product, [1-(13)C]acrylate, were studied using nuclear magnetic resonance (NMR) spectroscopy. [1-(13)C]DMSP additions resulted in the intracellular accumulation and then disappearance of both [1-(13)C]DMSP and [1-(13)C]beta-hydroxypropionate ([1-(13)C]beta-HP), a degradation product. Acrylate, the immediate product of DMSP cleavage, apparently did not accumulate to high enough levels to be detected, suggesting that it was rapidly beta-hydroxylated upon formation. When [1-(13)C]acrylate was added to cell suspensions of strain LFR it was metabolized to [1-(13)C]beta-HP extracellularly, where it first accumulated and was then taken up in the cytosol where it subsequently disappeared, indicating that it was directly decarboxylated. These results were interpreted to mean that DMSP was taken up and metabolized by an intracellular DMSP lyase and acrylase, while added acrylate was beta-hydroxylated on (or near) the cell surface to beta-HP, which accumulated briefly and was then taken up by cells. Growth on acrylate (versus that on glucose) stimulated the rate of acrylate metabolism eightfold, indicating that it acted as an inducer of acrylase activity. DMSP, acrylate, and beta-HP all induced DMSP lyase activity. A putative model is presented that best fits the experimental data regarding the pathway of DMSP and acrylate metabolism in the alpha-proteobacterium, strain LFR.  (+info)

Influence of glistenings on the optical quality of acrylic foldable intraocular lens. (28/539)

AIMS: To assess the influence of glistenings on the optical quality of acrylic foldable intraocular lens. METHODS: Several degrees of glistenings in the optic were experimentally created by immersing the lens in water at 37 degrees C for 48 hours and then at 25 degrees C for 24 hours. Optical bench tests were carried out in water including measurements of spectral transmittance with the spectrophotometer, intensity of forward scattering using the integrating sphere photometer, modulation transfer function, and resolving power at various contrasts with and without the veiling glare light source. RESULTS: Glistenings of 1+ to 4+ degrees were created, among which the 4+ glistenings seemed to be extremely intense and thought to be beyond the range of clinical settings. Clinically feasible level of glistenings, up to 3+, did not adversely influence spectral transmittance, scattering, modulation transfer function, and resolving power at various contrasts. The 4+ glistenings caused mild to moderate deteriorations of the optical quality of the lens. CONCLUSION: The optical quality of the acrylic foldable intraocular lens is not significantly affected by the level of glistenings usually seen in the clinical setting.  (+info)

Analysis of GABA(A)- and GABA(B)-receptor mediated effects on intracellular Ca(2+) in DRG hybrid neurones. (29/539)

1. Using pharmacological analysis and fura-2 spectrofluorimetry, we examined the effects of gamma-aminobutyric acid (GABA) and related substances on intracellular Ca(2+) concentration ([Ca(2+)]i) of hybrid neurones, called MD3 cells. The cell line was produced by fusion between a mouse neuroblastoma cell and a mouse dorsal root ganglion (DRG) neurone. 2. MD3 cells exhibited DRG neurone-like properties, such as immunoreactivity to microtubule-associated protein-2 and neurofilament proteins. Bath applications of capsaicin and alpha, beta-methylene adenosine triphosphate reversibly increased [Ca(2+)]i. However, repeated applications of capsaicin were much less effective. 3. Pressure applications of GABA (100 microM), (Z)-3-[(aminoiminomethyl) thio] prop-2-enoic acid sulphate (ZAPA; 100 microM), an agonist at low affinity GABA(A)-receptors, or KCl (25 mM), transiently increased [Ca(2+)]i. 4. Bath application of bicuculline (100 nM - 100 microM), but not picrotoxinin (10 - 25 microM), antagonized GABA-induced increases in [Ca(2+)]i in a concentration-dependent manner (IC(50)=9.3 microM). 5. Ca(2+)-free perfusion reversibly abolished GABA-evoked increases in [Ca(2+)]i. Nifedipine and nimodipine eliminated GABA-evoked increases in [Ca(2+)]i. These results imply GABA response dependence on extracellular Ca(2+). 6. Baclofen (500 nM - 100 microM) activation of GABA(B)-receptors reversibly attenuated KCl-induced increases in [Ca(2+)]i in a concentration-dependent manner (EC(50)=1.8 microM). 2-hydroxy-saclofen (1 - 20 microM) antagonized the baclofen-depression of the KCl-induced increase in [Ca(2+)]i. 7. In conclusion, GABA(A)-receptor activation had effects similar to depolarization by high external K(+), initiating Ca(2+) influx through high voltage-activated channels, thereby transiently elevating [Ca(2+)]i. GABA(B)-receptor activation reduced Ca(2+) influx evoked by depolarization, possibly at Ca(2+)-channel sites in MD3 cells.  (+info)

Calpains mediate acute renal cell death: role of autolysis and translocation. (30/539)

The goals of this study were to determine 1) the expression of calpain isoforms in rabbit renal proximal tubules (RPT); 2) calpain autolysis and translocation, and calpastatin levels during RPT injury; and 3) the effect of a calpain inhibitor (PD-150606) on calpain levels, mitochondrial function, and ion transport during RPT injury. RT-PCR, immunoblot analysis, and FITC-casein zymography demonstrated the presence of only mu- and m-calpains in rabbit RPT. The mitochondrial inhibitor antimycin A decreased RPT mu- and m-calpain and calpastatin levels in conjunction with cell death and increased plasma membrane permeability. No increases in either mu- or m-calpain were observed in the membrane nor were increases observed in autolytic forms of either mu- or m-calpain in antimycin A-exposed RPT. PD-150606 blocked antimycin A-induced cell death, preserved calpain levels in antimycin A-exposed RPT, and promoted the recovery of mitochondrial function and active Na+ transport in RPT after hypoxia and reoxygenation. The present study suggests that calpains mediate RPT injury without undergoing autolysis or translocation, and ultimately they leak from cells subsequent to RPT injury/death. Furthermore, PD-150606 allows functional recovery after injury.  (+info)

An IgM monoclonal protein with multiple serological specificities. (31/539)

An IgM lambda M-component with a false Wasserman reaction and 'false' rheumatoid factor activity from a patient suffering from a well-differentiated lymphocytic lymphoma is presented. The monoclonal protein showed antibody activity against cardiolipin and cross-reacted with acryl particles, not with human IgG. Both these activities were found in the Fab fragment. The reduction of the 19S IgM to 7S IgM subunits was responsible for a strong decrease in activity. The importance of the IgM quaternary structure in determining antibody affinity is emphasized.  (+info)

Preparation and characterization of insulin-loaded acrylic hydrogels containing absorption enhancers. (32/539)

The objectives of this study were to prepare insulin-loaded acrylic hydrogel formulations containing various absorption enhancers, to perform in vitro and in vivo characterization of these formulations, and to evaluate the factors which affecting insulin availability on rectal delivery of insulin using this hydrogel system. The acrylic block copolymer of methacrylic acid and methacrylate, Eudispert, was used to make the hydrogel formulations. As absorption enhancers, 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CyD), lauric acid (C12), or the sodium salt of C12 (C12Na), were incorporated into the hydrogels. In an in vitro release test, the release rate of insulin from the hydrogels decreased as the polymer concentration of the hydrogel increased. The addition of C12Na to the hydrogel further increased the insulin release rate, which was greater at higher concentrations of the enhancer. A portion of the C12Na was found to remain bound to the acrylic polymer in dissolution medium. Serum insulin levels were determined at various time points after the administration of insulin solution or insulin-loaded (50 units/kg body weight) Eudispert hydrogels containing 5% (w/w) of C12, C12Na, or DM-beta-CyD to in situ loops in various regions of the rat intestine. The most effective enhancement of insulin release was observed with formulations containing C12Na. The bioavailability of insulin from the hydrogels was lower than that from the insulin solutions. Hydrogel formulations containing 7% or 10% Eudispert remained in the rectum for 5 h after rectal administration. However, the 5% (w/w) C12Na solution stained with Evan's-blue had diffused out and the dye had reached the upper intestinal tract within 2 h. Finally, the rectal administration of insulin-loaded hydrogels, containing 4%, 7%, or 10% (w/w) Eudispert and 5% (w/w) of enhancer (C12, C12Na, or DM-beta-CyD) to normal rats was shown to decrease serum glucose concentrations. The greatest effect was found with insulin-loaded 7% (Eudispert) hydrogel containing C12Na which having cosiderable large insulin release rate and bioadhesive characteristics.  (+info)