Globular domains of agrin are functional units that collaborate to induce acetylcholine receptor clustering. (1/422)

Agrin, an extracellular matrix protein involved in neuromuscular junction formation, directs clustering of postsynaptic molecules, including acetylcholine receptors (AChRs). This activity resides entirely in the C-terminal portion of the protein, which consists of three laminin-like globular domains (G-domains: G1, G2 and G3) and four EGF-like repeats. Additionally, alternate mRNA splicing yields G-domain variants G2(0,4) with 0- or 4-amino-acid inserts, and G3(0, 8,11,19) with 0-, 8-, 11- or 19-amino-acid inserts. In order to better understand the contributions of individual domains and alternate splicing to agrin activity, single G-domains and covalently linked pairs of G-domains were expressed as soluble proteins and their AChR clustering activity measured on cultured C2 myotubes. These analyses reveal the following: (1) While only G3(8) exhibits detectable activity by itself, all G-domains studied (G1, G2(0), G2(4), G3(0) and G3(8)) enhance G3(8) activity when physically linked to G3(8). This effect is most pronounced when G2(4) is linked to G3(8) and is independent of the order of the G-domains. (2) The deletion of EGF-like repeats enhances activity. (3) Increasing the physical separation between linked G1 and G3(8) domains produces a significant increase in activity; similar alterations to linked G2 and G3(8) domains are without effect. (4) Clusters induced by two concatenated G3(8) domains are significantly smaller than all other agrin forms studied. These data suggest that agrin G-domains are the functional units which interact independently of their specific organization to yield AChR clustering. G-domain synergism resulting in biological output could be due to physical interactions between G-domains or, alternatively, independent interactions of G-domains with cell surface receptors which require spatially localized coactivation for optimal signal transduction.  (+info)

Pseudomonas ribosomal vaccines: preparation, properties, and immunogenicity. (2/422)

The preparation, properties, and immunogenicity of ribosomal vaccines from Pseudomonas aeruginosa are described. These preparations, containing protein and RNA, were tested for immunogenicity by active immunization of mice and subsequent challenge with homologous, live bacteria. The results demonstrated that vaccines prepared from a majority of serotypes used were immunogenic, i.e., afforded 60 to 100% mouse protection against a challenge inoculum containing 8 to 50 50% lethal doses. In some cases vaccine doses as low as 1 microgram of RNA provided 100% mouse protection. Molecular sieve chromatography of a highly immunogenic ribosomal preparation on Sepharose 4B demonstrated the presence of two molecular weight fractions: (i) peak A, an excluded peak (thus having a molecular weight of at least 2 times 10(7)), and (ii) peak B, considerably retarded, with an elution position corresponding to a molecular weight of about 2.2 X 10(6), approximating that of typical 70S ribosomes. Both peaks A and B were immunogenic; however, the immunogenicity of peak A was greater (i.e., a smaller immunizing dose was required) than that of peak B. Peak A was shown to contain components of lipopolysaccharide in addition to protein and RNA (which comprised 80% of the dry weight of peak A). On the other hand, peak B was shown to be free of lipopolysaccharide, and 100% of its dry weight consisted of protein and RNA.  (+info)

Isolation and characterization of linear polylactosamines containing one and two site-specifically positioned Lewis x determinants: WGA agarose chromatography in fractionation of mixtures generated by random, partial enzymatic alpha3-fucosylation of pure polylactosamines. (3/422)

We report that isomeric monofucosylhexasaccharides, Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4(Fucalpha1-3) GlcNAc, Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4 GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 GlcNAc, and bifucosylhexasaccharides Galbeta1-4GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3) GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc, Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1- 4GlcNAcbeta1-3Galbeta1-4 (Fucalpha1-3)GlcNAc and Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4( Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4GlcNAc can be isolated in pure form from reaction mixtures of the linear hexasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1- 3Galbeta1-4GlcNAc with GDP-fucose and alpha1,3-fucosyltransferases of human milk. The pure isomers were characterized in several ways;1H-NMR spectroscopy, for instance, revealed distinct resonances associated with the Lewis x group [Galbeta1-4(Fucalpha1-3)GlcNAc] located at the proximal, middle, and distal positions of the polylactosamine chain. Chromatography on immobilized wheat germ agglutinin was crucial in the separation process used; the isomers carrying the fucose at the reducing end GlcNAc possessed particularly low affinities for the lectin. Isomeric monofucosyl derivatives of the pentasaccharides GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1- 4Gl cNAc and Galalpha1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4G lcN Ac and the tetrasaccharide Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc were also obtained in pure form, implying that the methods used are widely applicable. The isomeric Lewis x glycans proved to be recognized in highly variable binding modes by polylactosamine-metabolizing enzymes, e.g., the midchain beta1,6-GlcNAc transferase (Leppanen et al., Biochemistry, 36, 13729-13735, 1997).  (+info)

IgA interaction with carboxy-terminal 43-kD fragment of fibronectin in IgA nephropathy. (4/422)

IgA deposition in the glomerular mesangial matrix is a prerequisite for the diagnosis of IgA nephropathy, and circulating IgA-containing complex has been implicated in this process. Since fibronectin is known to be involved in the assembly of extracellular matrix, this study was conducted to investigate whether fibronectin and its fragments are present in sera of patients and are capable of binding IgA1. Sera from patients with IgA nephropathy were purified by heparin-affinity chromatography, and column eluate were analyzed for the presence of fibronectin using Western blot and a set of anti-fibronectin monoclonal antibodies. Native fibronectin was digested with cathepsin D to obtain fragments similar to those of serum fibronectin. The capacity of fibronectin to bind IgA was examined with a mixture of purified IgA1 and cathepsin D-digested fibronectin fragments. A 43-kD carboxy-terminal fragment of fibronectin was detected in samples derived from sera of patients with IgA nephropathy but not in healthy control subjects. A similar-sized fragment was generated by cathepsin D digestion of the native molecule and was shown to bind to IgA1 in vitro. Since the carboxy-terminal domain is known to be critical in assembling exogenous fibronectin into the extracellular matrix, the affinity to IgA1 to a fragment found in patients may have pathogenic potential to mediate extracellular IgA deposition in IgA nephropathy.  (+info)

Chimeras of human extracellular and intracellular superoxide dismutases. Analysis of structure and function of the individual domains. (5/422)

Human extracellular superoxide dismutase (hEC-SOD) is a secreted tetrameric protein involved in protection against oxygen free radicals. Since EC-SOD is too large a protein for structural determination by multi-dimensional NMR and attempts to crystallize the protein for X-ray structural determination have failed, the three-dimensional structure of hEC-SOD is unknown. By fusion protein techniques we have previously shown that an amphipathic alpha-helix in the N-terminal domain of hEC-SOD is essential for the tetramer interaction. However, the central domain, which is homologous to intracellular hCuZnSOD, has also been proposed to be involved in the tetramer formation. Despite great efforts, the production of recombinant hEC-SOD in prokaryotic systems or simple eukaryotes (such as yeast) has failed. This lack of success has greatly complicated large-scale production and genetic engineering of the protein. In the study reported here, we constructed two chimeras comprising the N- or the N- and C-terminal domains from hEC-SOD fused to hCuZnSOD, called FusNCZ and PseudoEC-SOD, respectively. We show that these proteins can be produced in large quantities in Escherichia coli, that they can be purified with high yields and that the characteristics of PseudoEC-SOD closely resemble those of hEC-SOD. Further, we extended our studies of the nature of the subunit interaction by investigating the involvement of the central domain.  (+info)

Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. (6/422)

The human telomerase RNA component (hTR) is present in normal somatic cells at lower levels than in cancer-derived cell lines. To understand the mechanisms regulating hTR levels in different cell types, we have compared the steady-state hTR levels in three groups of cells: (i) normal telomerase-negative human diploid cells; (ii) normal cells transfected with the human telomerase catalytic subunit, hTERT; and (iii) cells immortalized in vitro and cancer cells expressing their own endogenous hTERT. To account for the differences in steady-state hTR levels observed in these cell types, we compared the transcription rate and half-life of hTR in a subset of these cells. The half-life of hTR in telomerase-negative cells is about 5 days and is increased 1.6-fold in the presence of hTERT. The transcription rate of hTR is essentially unchanged in cells expressing exogenous hTERT, and the increased steady-state hTR level appears to be due to the increased half-life. However, the transcription rate of hTR is greatly increased in cells expressing endogenous hTERT, suggesting some overlap in transcriptional regulatory control. We conclude that the higher hTR level in cells expressing an endogenous telomerase can be a result of both increased transcription and a longer half-life and that the longer half-life might be partially a result of protection or stabilization by the telomerase catalytic subunit. The 4-week half-life of hTR in H1299 tumor cells is the longest half-life yet reported for any RNA.  (+info)

Occurrence of P-flavin binding protein in Vibrio fischeri and properties of the protein. (7/422)

In previous studies involving Photobacterium species we proposed that (i) P-flavin is the product of luciferase, (ii) the physiological function of the lux operon is not to produce light but to produce FP(390) (luxF protein), including its prosthetic group, P-flavin, and (iii) FP(390) reactivates oxidatively inactivated cobalamin-dependent methionine synthase similar to flavodoxin but at relatively high ionic strength. It seems difficult to extend this idea to all luminous bacteria because the luxF gene is not present in the lux operon in Vibrio or Xenorhabdus. But we predicted that a luciferase fragment which binds P-flavin should function like FP(390) in these species. In this study, we isolated P-flavin binding protein from Vibrio fischeri ATCC 7744. The obtained protein was a modified luciferase as expected, in which the beta-subunit was intact but about 25 amino acid residues at the C-terminus of the alpha-subunit were deleted and the prosthetic group was the fully reduced P-flavin. These results strongly support that the physiological function of the lux operon is as described above even in luminous bacteria other than Photobacterium species. We propose that chromophore B reported by Tu and Hastings [Tu, S.-C. and Hastings, J.W. (1975) Biochemistry 14, 1975-1980] is the reduced P-flavin.  (+info)

Bovine liver phosphoamidase as a protein histidine/lysine phosphatase. (8/422)

A 13-kDa phosphoamidase was isolated as a single band on SDS-PAGE from bovine liver. Its Stokes' radius, sedimentation coefficient, molecular mass, and optimal pH were estimated to be 1.6 nm, 1.8 s, 13 kDa, and 6.5, respectively. The enzyme released P(i) from 3-phosphohistidine, 6-phospholysine, and amidophosphate at rates of 0.9, 0.6, and 2.6 micromol/min/mg protein, respectively. However, it did not dephosphorylate phosphocreatine, N(omega)-phosphoarginine, imidodiphosphate, or O-phosphorylated compounds including inorganic pyrophosphate. It also dephosphorylated succinic thiokinase and nucleoside diphosphate kinase autophosphorylated at His residues, indicating that it works as a protein histidine phosphatase. A thiol reagent, 30 microM N-ethylmaleimide, depressed the activity by half, while a thiol compound, 2-mercaptoethanol, protected the enzyme from heat-inactivation. Five millimolar divalent cations, such as Mg2+ and Mn2+, and 5 mM EDTA, had no effect on the activity.  (+info)