Thiolester HydrolasesHydrolases: Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3.Protein Footprinting: A method for determining points of contact between interacting proteins or binding sites of proteins to nucleic acids. Protein footprinting utilizes a protein cutting reagent or protease. Protein cleavage is inhibited where the proteins, or nucleic acids and protein, contact each other. After completion of the cutting reaction, the remaining peptide fragments are analyzed by electrophoresis.EstersUbiquitin-Conjugating Enzymes: A class of enzymes that form a thioester bond to UBIQUITIN with the assistance of UBIQUITIN-ACTIVATING ENZYMES. They transfer ubiquitin to the LYSINE of a substrate protein with the assistance of UBIQUITIN-PROTEIN LIGASES.Ubiquitin-Activating Enzymes: A class of enzymes that catalyzes the ATP-dependent formation of a thioester bond between itself and UBIQUITIN. It then transfers the activated ubiquitin to one of the UBIQUITIN-PROTEIN LIGASES.MethylaminesSulfhydryl Compounds: Compounds containing the -SH radical.Ligases: A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6.alpha-Macroglobulins: Glycoproteins with a molecular weight of approximately 620,000 to 680,000. Precipitation by electrophoresis is in the alpha region. They include alpha 1-macroglobulins and alpha 2-macroglobulins. These proteins exhibit trypsin-, chymotrypsin-, thrombin-, and plasmin-binding activity and function as hormonal transporters.Glycoside HydrolasesUbiquitin: A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Epoxide Hydrolases: Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Carboxylic Ester Hydrolases: Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion.Lysosomes: A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured. Such rupture is supposed to be under metabolic (hormonal) control. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Acid Phosphatase: An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.2.GlucuronidaseHexosaminidases: Enzymes that catalyze the hydrolysis of N-acylhexosamine residues in N-acylhexosamides. Hexosaminidases also act on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES.Mannosephosphates: Phosphoric acid esters of mannose.N-Acetylmuramoyl-L-alanine Amidase: An autolytic enzyme bound to the surface of bacterial cell walls. It catalyzes the hydrolysis of the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell wall glycopeptides, particularly peptidoglycan. EC 3.5.1.28.Peptide Hydrolases: Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES.Mucolipidoses: A group of inherited metabolic diseases characterized by the accumulation of excessive amounts of acid mucopolysaccharides, sphingolipids, and/or glycolipids in visceral and mesenchymal cells. Abnormal amounts of sphingolipids or glycolipids are present in neural tissue. INTELLECTUAL DISABILITY and skeletal changes, most notably dysostosis multiplex, occur frequently. (From Joynt, Clinical Neurology, 1992, Ch56, pp36-7)Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Receptor, IGF Type 2: A receptor that is specific for IGF-II and mannose-6-phosphate. The receptor is a 250-kDa single chain polypeptide which is unrelated in structure to the type 1 IGF receptor (RECEPTOR, IGF TYPE 1) and does not have a tyrosine kinase domain.Acetylglucosaminidase: A beta-N-Acetylhexosaminidase that catalyzes the hydrolysis of terminal, non-reducing 2-acetamido-2-deoxy-beta-glucose residues in chitobiose and higher analogs as well as in glycoproteins. Has been used widely in structural studies on bacterial cell walls and in the study of diseases such as MUCOLIPIDOSIS and various inflammatory disorders of muscle and connective tissue.alpha-L-Fucosidase: An enzyme that catalyzes the hydrolysis of an alpha L-fucoside to yield an alcohol and L-fucose. Deficiency of this enzyme can cause FUCOSIDOSIS. EC 3.2.1.51.Hydrolysis: The process of cleaving a chemical compound by the addition of a molecule of water.Xylosidases: A group of enzymes that catalyze the hydrolysis of alpha- or beta-xylosidic linkages. EC 3.2.1.8 catalyzes the endo-hydrolysis of 1,4-beta-D-xylosidic linkages; EC 3.2.1.32 catalyzes the endo-hydrolysis of 1,3-beta-D-xylosidic linkages; EC 3.2.1.37 catalyzes the exo-hydrolysis of 1,4-beta-D-linkages from the non-reducing termini of xylans; and EC 3.2.1.72 catalyzes the exo-hydrolysis of 1,3-beta-D-linkages from the non-reducing termini of xylans. Other xylosidases have been identified that catalyze the hydrolysis of alpha-xylosidic bonds.Cellulase: An endocellulase with specificity for the hydrolysis of 1,4-beta-glucosidic linkages in CELLULOSE, lichenin, and cereal beta-glucans.Cellvibrio: A genus of aerobic, gram-negative, motile, slightly curved, rod-shaped bacteria. (From Bergey's Manual of Determinative Bacteriology, 9th ed)beta-Glucosidase: An exocellulase with specificity for a variety of beta-D-glycoside substrates. It catalyzes the hydrolysis of terminal non-reducing residues in beta-D-glucosides with release of GLUCOSE.Galactosidases: A family of galactoside hydrolases that hydrolyze compounds with an O-galactosyl linkage. EC 3.2.1.-.beta-Mannosidase: An enzyme that catalyzes the hydrolysis of terminal, non-reducing beta-D-mannose residues in beta-D-mannosides. The enzyme plays a role in the lysosomal degradation of the N-glycosylprotein glycans. Defects in the lysosomal form of the enzyme in humans result in a buildup of mannoside intermediate metabolites and the disease BETA-MANNOSIDOSIS.Endo-1,4-beta Xylanases: Enzymes which catalyze the endohydrolysis of 1,4-beta-D-xylosidic linkages in XYLANS.Xylans: Polysaccharides consisting of xylose units.Acid Anhydride Hydrolases: A group of enzymes that catalyze the hydrolysis of diphosphate bonds in compounds such as nucleoside di- and tri-phosphates, and sulfonyl-containing anhydrides such as adenylylsulfate. (Enzyme Nomenclature, 1992) EC 3.6.Arylsulfatases: Enzymes that catalyze the hydrolysis of a phenol sulfate to yield a phenol and sulfate. Arylsulfatase A, B, and C have been separated. A deficiency of arylsulfatases is one of the causes of metachromatic leukodystrophy (LEUKODYSTROPHY, METACHROMATIC). EC 3.1.6.1.beta-N-Acetylhexosaminidases: A hexosaminidase specific for non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides. It acts on GLUCOSIDES; GALACTOSIDES; and several OLIGOSACCHARIDES. Two specific mammalian isoenzymes of beta-N-acetylhexoaminidase are referred to as HEXOSAMINIDASE A and HEXOSAMINIDASE B. Deficiency of the type A isoenzyme causes TAY-SACHS DISEASE, while deficiency of both A and B isozymes causes SANDHOFF DISEASE. The enzyme has also been used as a tumor marker to distinguish between malignant and benign disease.DisaccharidasesSequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Pyrophosphatases: A group of enzymes within the class EC 3.6.1.- that catalyze the hydrolysis of diphosphate bonds, chiefly in nucleoside di- and triphosphates. They may liberate either a mono- or diphosphate. EC 3.6.1.-.Cathepsins: A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES.AmidohydrolasesGlucosidases: Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-.Mannosidases: Glycoside hydrolases that catalyze the hydrolysis of alpha or beta linked MANNOSE.N-Glycosyl Hydrolases: A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars.

*  Concomitant increase by peroxisome proliferators of fatty acid-binding protein, peroxisomal beta-oxidation and cytosolic acyl...

Thiolester Hydrolases; EC 3.1.2.2/Palmitoyl-CoA Hydrolase From MEDLINE®/PubMed®, a database of the U.S. National Library of ... The peroxisome proliferators caused an induction of acyl-CoA hydrolase of lower-molecular-weight form alone in hepatic cytosol ... There was no essential difference in the inductions of FABP, acyl-CoA hydrolases and peroxisomal beta-oxidation between ... Guinea-pigs lacked the peroxisome proliferator-caused inductions of FABP, peroxisomal beta-oxidation and acyl-CoA hydrolase. ...

*  Human Metabolome Database: Showing metabocard for Linoleic acid (HMDB0000673)

Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in thiolester hydrolase activity. Specific function:. Involved in bile acid metabolism. In liver hepatocytes catalyzes ... Cytosolic acyl coenzyme A thioester hydrolase. General function:. Lipid transport and metabolism. Specific function:. Acyl-CoA ...

*  Human Metabolome Database: Showing metabocard for Propionyl-CoA (HMDB0001275)

Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in hydrolase activity. Specific function:. Hydrolyzes acyl-CoA thioesters (in vitro). Has a preference for substrates ...

*  Human Metabolome Database: Showing metabocard for Stearic acid (HMDB0000827)

Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in thiolester hydrolase activity. Specific function:. Acyl-CoA thioesterases are a group of enzymes that catalyze the ... Involved in thiolester hydrolase activity. Specific function:. Involved in bile acid metabolism. In liver hepatocytes catalyzes ... Involved in hydrolase activity, acting on ester bonds. Specific function:. Catalyzes the deacetylation of N-acetylaspartic acid ...

*  D P Brazil

thiolester hydrolases*membrane proteins*oncogenic retroviridae proteins*recombinant fusion proteins*transformed cell line* ...

*  Immunity and other defenses in pea aphids, Acyrthosiphon pisum | Genome Biology | Full Text

JAK/STAT pathway induction appears to lead to overproliferation of hemocytes, upregulation of thiolester-containing proteins ( ... Chitinases and lysozymes represent a superfamily of hydrolases, and their catalytic activities are similar. Indeed, some ...

PPT2: Lysosomal thioesterase PPT2 (PPT-2), also known as S-thioesterase G14, is an enzyme that in humans is encoded by the PPT2 gene.Arginine repressor ArgR: In molecular biology, the arginine repressor (ArgR) is a repressor of prokaryotic arginine deiminase pathways.ForskolinUbiquitin-conjugating enzymeUbiquitin-activating enzymeTrimethylaminuriaPerchloromethyl mercaptanList of glycoside hydrolase families: Glycoside hydrolases (O-Glycosyl hydrolases) are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycosyl hydrolases, based on sequence similarity, has led to the definition of numerous different families.Ubiquitin: Ubiquitin is a small (8.5 kDa) regulatory protein that has been found in almost all tissues (ubiquitously) of eukaryotic organisms.Protein primary structure: The primary structure of a peptide or protein is the linear sequence of its amino acid structural units, and partly comprises its overall biomolecular structure. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end.Epoxide hydrolase: ; ; rendered via PyMOLColes PhillipsChlorophyllase: Chlorophyllase (klawr-uh-fil-eys)chlorophyllase - Definitions from Dictionary.com is the key enzyme in chlorophyll metabolism.Lysosome: A lysosome (derived from the Greek words lysis, meaning "to loosen", and soma, "body") is a membrane-bound cell organelle found in most animal cells (they are absent in red blood cells). Structurally and chemically, they are spherical vesicles containing hydrolytic enzymes capable of breaking down virtually all kinds of biomolecules, including proteins, nucleic acids, carbohydrates, lipids, and cellular debris.Tartrate-resistant acid phosphatase: Tartrate-resistant acid phosphatase (TRAP or TRAPase), also called acid phosphatase 5, tartrate resistant (ACP5), is a glycosylated monomeric metalloprotein enzyme expressed in mammals. It has a molecular weight of approximately 35kDa, a basic isoelectric point (7.Beta-glucuronidaseVanY protein domain: In molecular biology, VanY are protein domains found in enzymes named metallopeptidases. They are vital to bacterial cell wall synthesis and antibiotic resistance.SialidosisSpecificity constant: In the field of biochemistry, the specificity constant (also called kinetic efficiency or k_{cat}/K_{M}), is a measure of how efficiently an enzyme converts substrates into products. A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.Glycoside hydrolase family 29: In molecular biology, glycoside hydrolase family 29 is a family of glycoside hydrolases.Glycoside hydrolase family 48: In molecular biology, glycoside hydrolase family 48 is a family of glycoside hydrolases.Glycoside hydrolase family 43: In molecular biology, glycoside hydrolase family 43 is a family of glycoside hydrolases.GBA3: Cytosolic beta-glucosidase, also known as cytosolic beta-glucosidase-like protein 1, is a beta-glucosidase () enzyme that in humans is encoded by the GBA3 gene.Mana Ariki MaraeXylanase: Xylanase (, endo-(1->4)-beta-xylan 4-xylanohydrolase, endo-1,4-xylanase, endo-1,4-beta-xylanase, beta-1,4-xylanase, endo-1,4-beta-D-xylanase, 1,4-beta-xylan xylanohydrolase, beta-xylanase, beta-1,4-xylan xylanohydrolase, beta-D-xylanase) is the name given to a class of enzymes which degrade the linear polysaccharide beta-1,4-xylan into xylose, thus breaking down hemicellulose, one of the major components of plant cell walls.Glucuronoxylan: Glucuronoxylans are the primary components of hemicellulose as found in hardwood trees, for example birch.http://www.Disaccharidase: Disaccharidases are glycoside hydrolases, enzymes that break down certain types of sugars called disaccharides into simpler sugars called monosaccharides. A genetic defect in one of these enzymes will cause a disaccharide intolerance, such as lactose intolerance or sucrose intolerance.Nucleotide Pyrophosphatase/Phosphodiesterase (NPP): Nucleotide pyrophosphatase/phosphodiesterase (NPP) is a class of dimeric enzymes that catalyze the hydrolysis of phosphate diester bonds. NPP belongs to the alkaline phosphatase (AP) superfamily of enzymes.Cathepsin: Cathepsins (Ancient Greek kata- "down" and hepsein "boil"; abbreviated CTS) are proteases (enzymes that degrade proteins) found in all animals as well as other organisms. There are approximately a dozen members of this family, which are distinguished by their structure, catalytic mechanism, and which proteins they cleave.CHAP domain: In molecular biology, the CHAP domain is a region between 110 and 140 amino acids that is found in proteins from bacteria, bacteriophages, archaea and eukaryotes of the Trypanosomidae family. The domain is named after the acronym cysteine, histidine-dependent amidohydrolases/peptidases.Golgi alpha-mannosidase II: Golgi α-mannosidase II is a key enzyme involved in N-linked Glycan processing. It is inhibited by small molecule swainsonine.

(1/598) Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase.

BACKGROUND: Polyketides are important compounds with antibiotic and anticancer activities. Several modular polyketide synthases (PKSs) contain a terminal thioesterase (TE) domain probably responsible for the release and concomitant cyclization of the fully processed polyketide chain. Because the TE domain influences qualitative aspects of product formation by engineered PKSs, its mechanism and specificity are of considerable interest. RESULTS: The TE domain of the 6-deoxyerythronolide B synthase was overexpressed in Escherichia coli. When tested against a set of N-acetyl cysteamine thioesters the TE domain did not act as a cyclase, but showed significant hydrolytic specificity towards substrates that mimic important features of its natural substrate. Also the overall rate of polyketide chain release was strongly enhanced by a covalent connection between the TE domain and the terminal PKS module (by as much as 100-fold compared with separate TE and PKS 'domains'). CONCLUSIONS: The inability of the TE domain alone to catalyze cyclization suggests that macrocycle formation results from the combined action of the TE domain and a PKS module. The chain-length and stereochemical preferences of the TE domain might be relevant in the design and engineered biosynthesis of certain novel polyketides. Our results also suggest that the TE domain might loop back to catalyze the release of polyketide chains from both terminal and pre-terminal modules, which may explain the ability of certain naturally occurring PKSs, such as the picromycin synthase, to generate both 12-membered and 14-membered macrolide antibiotics.  (+info)

(2/598) Morphology of intraepithelial corpuscular nerve endings in the nasal respiratory mucosa of the dog.

Corpuscular nerve endings in the nasal respiratory mucosa of the dog were investigated by immunohistochemical staining specific for protein gene product 9.5 by light and electron microscopy. In the nasal respiratory mucosa, complex corpuscular endings, which displayed bulbous, laminar and varicose expansions, were distributed on the dorsal elevated part of the nasal septum and on the dorsal nasal concha. The endings were 300-500 microm long and 100-250 microm wide. Some axons gave rise to a single ending while others branched into 2 endings. Cryostat sections revealed that the corpuscular endings were located within the nasal respiratory epithelium. On electron microscopy, immunoreactive nerve terminals that contained organelles, including mitochondria and neurofilaments, were observed within the epithelial layer near the lumen of the nasal cavity. Some terminals contacted the goblet cell. Such terminal regions were covered by the cytoplasmic process of ciliated cells and were never exposed to the lumen of the nasal cavity. These nerve endings are probably activated by pressure changes.  (+info)

(3/598) Depletion of cutaneous peptidergic innervation in HIV-associated xerosis.

Severe xerosis occurs in approximately 20% of human immunodeficiency virus seropositive patients. Changes in cutaneous innervation have been found in various inflammatory skin diseases and in xerotic skin in familial amyloid. We have therefore carried out a quantitative examination of the cutaneous peptidergic innervation in human immunodeficiency virus-associated xerosis. Immunohistochemistry and image analysis quantitation were used to compare total cutaneous innervation (protein gene product 9.5), calcitonin gene-related peptide, substance P, and vasoactive intestinal peptide peptidergic fibers, at two sites in the skin of human immunodeficiency virus-associated xerosis patients (upper arm, n = 12; upper leg, n = 11) and site-matched seronegative controls (upper arm, n = 10; upper leg, n = 10). Measurement of lengths of fibers of each type was carried out for each subject in the epidermis and papillary dermis, and around the sweat glands. Immunostained mast cells in these areas were counted. Epidermal integrity and maturation were assessed by immunostaining for involucrin. There were significant (Mann-Whitney U test; p < 0.02) decreases in total lengths of protein gene product 9.5 fibers in both epidermis/papillary dermis and sweat gland fields; of calcitonin gene-related peptide innervation in the epidermis/papillary dermis; and of substance P innervation of the sweat glands. There were no differences in the distribution of mast cells, or in the epidermal expression of involucrin. Depletion of the calcitonin gene-related peptide innervation may affect the nutrient blood supply of the upper dermis, and the integrity and function of basal epidermis and Langerhans cells. Diminished substance P innervation of the sweat glands may affect their secretory activity. Both of these changes may be implicated in the development of xerosis.  (+info)

(4/598) The synthesis and hydrolysis of long-chain fatty acyl-coenzyme A thioesters by soluble and microsomal fractions from the brain of the developing rat.

1. The specific activities of long-chain fatty acid-CoA ligase (EC6.2.1.3) and of long-chain fatty acyl-CoA hydrolase (EC3.1.2.2) were measured in soluble and microsomal fractions from rat brain. 2. In the presence of either palmitic acid or stearic acid, the specific activity of the ligase increased during development; the specific activity of this enzyme with arachidic acid or behenic acid was considerably lower. 3. The specific activities of palmitoyl-CoA hydrolase and of stearoyl-CoA hydrolase in the microsomal fraction decreased markedly (75%) between 6 and 20 days after birth; by contrast, the corresponding specific activities in the soluble fraction showed no decline. 4. Stearoyl-CoA hydrolase in the microsomal fraction is inhibited (99%) by bovine serum albumin; this is in contrast with the microsomal fatty acid-chain-elongation system, which is stimulated 3.9-fold by albumin. Inhibition of stearoyl-CoA hydrolase does not stimulate stearoyl-CoA chain elongation. Therefore it does not appear likely that the decline in the specific activity of hydrolase during myelogenesis is responsible for the increased rate of fatty acid chain elongation. 5. It is suggested that the decline in specific activity of the microsomal hydrolase and to a lesser extent the increase in the specific activity of the ligase is directly related to the increased demand for long-chain acyl-CoA esters during myelogenesis as substrates in the biosynthesis of myelin lipids.  (+info)

(5/598) Identification of peroxisomal acyl-CoA thioesterases in yeast and humans.

A computer-based screen of the Saccharomyces cerevisiae genome identified YJR019C as a candidate oleate-induced gene. YJR019C mRNA levels were increased significantly during growth on fatty acids, suggesting that it may play a role in fatty acid metabolism. The YJR019C product is highly similar to tesB, a bacterial acyl-CoA thioesterase, and carries a tripeptide sequence, alanine-lysine-phenylalanineCOOH, that closely resembles the consensus sequence for type-1 peroxisomal targeting signals. YJR019C directed green fluorescence protein to peroxisomes, and biochemical studies revealed that YJR019C is an abundant component of purified yeast peroxisomes. Disruption of the YJR019C gene caused a significant decrease in total cellular thioesterase activity, and recombinant YJR019C was found to exhibit intrinsic acyl-CoA thioesterase activity of 6 units/mg. YJR019C also shared significant sequence similarity with hTE, a human thioesterase that was previously identified because of its interaction with human immunodeficiency virus-Nef in the yeast two-hybrid assay. We report here that hTE is also a peroxisomal protein, demonstrating that thioesterase activity is a conserved feature of peroxisomes. We propose that YJR019C and hTE be renamed as yeast and human PTE1 to reflect the fact that they encode peroxisomal thioesterases. The physical segregation of yeast and human PTE1 from the cytosolic fatty acid synthase suggests that these enzymes are unlikely to play a role in formation of fatty acids. Instead, the observation that PTE1 contributes to growth on fatty acids implicates this thioesterase in fatty acid oxidation.  (+info)

(6/598) Morphological changes in periodontal mechanoreceptors of mouse maxillary incisors after the experimental induction of anterior crossbite: a light and electron microscopic observation using immunohistochemistry for PGP 9.5.

Ruffini nerve endings (mechanoreceptors) in the periodontal ligament (PDL) of mouse incisors were examined to elucidate whether experimentally-induced crossbites cause any changes or abnormalities in their morphology and distribution. Anterior guiding planes were attached to the mandibular incisors of 3-week-old C3H/HeSlc mice. At 3 days and 1, 2, 4, 6, and 8 weeks post-attachment of the appliance, the mice were sacrificed by perfusion fixation. Frozen sagittal cryostat sections of the decalcified maxillary incisors were processed for immunohistochemistry of protein gene product 9.5, followed by histochemical determination of tartrate-resistant acid phosphatase activity to reveal sites of alveolar bone resorption. Despite the absence of bone resorption within the lingual PDL of control mice, distinct resorption sites were seen in the respective regions of the experimental animals. Unlike the controls, many Ruffini endings showing vague and swollen contours, with unusually long and pedunculated micro-projections were observed in the affected lingual PDL of the incisors in the experimental animals with short-term anterior crossbite induction. Club-shaped nerve terminations with few, if any, micro-projections were observed in the lingual PDL of experimental animals with long-term induction, as well as in aged control mouse incisors. Differences in the distribution of Ruffini endings were also observed. These results indicate that changing the direction of the force applied to the PDL results in rapid and prolonged changes in the morphology of Ruffini-like mechanoreceptors.  (+info)

(7/598) Development of the chick olfactory nerve.

Gonadotropin releasing hormone (GnRH) is produced and secreted by neurons dispersed throughout the septal-preoptic and anterior hypothalamic areas in adult birds and mammals. These neurons, essential for a functional brain-pituitary-gonadal axis, differentiate in the olfactory placode, the superior aspect of which forms the olfactory epithelium. To reach their final placement within the brain, GnRH neurons migrate out of the epithelium and along the olfactory nerve to the CNS. This nerve is essential for the entrance of GnRH neurons into the CNS. Due to the importance of the nerve for the proper migration of these neurons, we have used immunocytochemistry, DiI labeling and 1 microm serial plastic-embedded sections to characterize the nerve's earliest development in the embryonic chick (stages 17-21). Initially (stage 17) the zone between the placode and prosencephalon is a cellular mass contiguous with the placode. This cluster, known as epithelioid cells, is positive for some but not all neuronal markers studied. The epithelium itself is negative for all neuronal and glial markers at this early stage. By stage 18, the first neurites emerge from the epithelium; this was confirmed at stage 19 by examination of serial 1 microm plastic sections. There is sequential acquisition of immunoreactivity to neuronal markers from stage 18 to 21. The glial component of the nerve appears at stage 21. Axons originating from epithelium, extend to the border of the CNS as confirmed by DiI labeling at stage 21. Small fascicles have entered the CNS at this stage. As previously reported, GnRH neurons begin their migration between stages 20-21 and have also arrived at the border of the brain at stage 21. Despite the penetration of neurites from the olfactory nerve into the CNS, GnRH neurons pause at the nerve-brain junction until stage 29 (2 1/2 days later) before entering the brain. Subsequent studies will examine the nature of the impediment to continued GnRH neuronal migration.  (+info)

(8/598) Postnatal expression of calretinin-immunoreactivity in periodontal Ruffini endings in the rat incisor: a comparison with protein gene product 9.5 (PGP 9.5)-immunoreactivity.

The postnatal expression of immunoreactivity for calretinin, one of the calcium binding proteins, and for protein gene product 9.5 (PGP 9.5), a general neuronal marker, was investigated in mechanoreceptive Ruffini endings in the periodontal ligament of the rat incisor. Age-related changes in the expression of these two proteins in periodontal nerves were further quantified with a computerized image analysis. At 1 day after birth, a few PGP 9.5-immunoreactive nerve fibers and a still smaller number of calretinin-positive fibers were found in the periodontal ligament: they were thin and beaded in appearance and no specialized nerve terminals were recognized. Tree-like terminals, reminiscent of immature Ruffini endings, were recognizable in 4-day-old rats by PGP 9.5-immunohistochemistry, while calretinin-immunostaining failed to reveal these specialized endings. At postnatal 7-11 days when PGP 9.5-immunostaining could demonstrate typical Ruffini endings, calretinin-immunopositive nerve fibers merely tapered off without forming the Ruffini type endings. A small number of Ruffini endings showing calretinin-immunoreactivity began to occur in the periodontal ligament at 24-26 days after birth when the occlusion of the first molars had been established. At the functional occlusion stage (60-80 days after birth), the Ruffini endings showing calretinin-immunoreactivity drastically increased in number and density, but less so than those positive for PGP 9.5-immunoreaction. The delayed expression of calretinin suggests that the function of the periodontal Ruffini endings is established after the completion of terminal formation because Ca2+, which binds to calcium binding proteins including calretinin with high affinity, plays an important role in mechano-electric transduction.  (+info)



No FAQ available that match "Thiolester Hydrolases"

Clic on a term on the left