A branched-chain essential amino acid that has stimulant activity. It promotes muscle growth and tissue repair. It is a precursor in the penicillin biosynthetic pathway.
An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels.
An essential branched-chain amino acid important for hemoglobin formation.
Amino acids which have a branched carbon chain.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
A flavoprotein enzyme that catalyzes the formation of acetolactate from 2 moles of PYRUVATE in the biosynthesis of VALINE and the formation of acetohydroxybutyrate from pyruvate and alpha-ketobutyrate in the biosynthesis of ISOLEUCINE. This enzyme was formerly listed as EC 4.1.3.18.
'Keto acids', also known as ketone bodies, are water-soluble compounds - acetoacetic acid, beta-hydroxybutyric acid, and acetone - that are produced during fat metabolism when liver glycogen stores are depleted, providing an alternative energy source for the brain and other organs in states of carbohydrate restriction or intense physical exertion.
Valerates are salts or esters formed from the reaction between valerianic acid and a base, characterized by their tranquilizing and sedative properties, often used in pharmaceuticals and dietary supplements for promoting sleep and reducing anxiety.
An essential amino acid occurring naturally in the L-form, which is the active form. It is found in eggs, milk, gelatin, and other proteins.
Amino acids that are not synthesized by the human body in amounts sufficient to carry out physiological functions. They are obtained from dietary foodstuffs.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3.
Enzymes that catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the removal of water. EC 4.2.1.
A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A sulfur-containing essential L-amino acid that is important in many body functions.
The amounts of various substances in food needed by an organism to sustain healthy life.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
An enzyme that activates valine with its specific transfer RNA. EC 6.1.1.9
A mitosporic fungal genus with many reported ascomycetous teleomorphs. Cephalosporin antibiotics are derived from this genus.
An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE.
The rate dynamics in chemical or physical systems.
An enzyme that catalyzes the oxidation of (R)-2,3-dihydroxy-3-methylbutanoate to (S)-2-hydroxy-2-methyl-3-oxobutanoate in the presence of NADP. It is involved in the biosynthesis of VALINE; LEUCINE; ISOLEUCINE; pentothenate and COENZYME A. This enzyme was formerly classified as EC 1.1.1.89.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
An enzyme that activates isoleucine with its specific transfer RNA. EC 6.1.1.5.
Aliphatic acids that contain four carbons in a branched-chain configuration. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-carboxypropane structure.
The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis.
Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.
The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An enzyme that plays a role in the VALINE; LEUCINE; and ISOLEUCINE catabolic pathways by catalyzing the oxidation of 2-methyl-3-oxopropanate to propanoyl-CoA using NAD+ as a coenzyme. Methylmalonate semialdehyde dehydrogenase deficiency is characterized by elevated BETA-ALANINE and 3-hydropropionic acid.
An essential amino acid. It is often added to animal feed.
An unnatural amino acid that is used experimentally to study protein structure and function. It is structurally similar to METHIONINE, however it does not contain SULFUR.
An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter.
Nitrosoguanidines are organic compounds containing a nitroso group (-NO) and a guanidine group (-R1R2N-CN-), known for their alkylating properties and potential use as therapeutic agents or carcinogenic substances, depending on the specific compound and context.
Isomeric forms and derivatives of pentanol (C5H11OH).
An octameric enzyme belonging to the superfamily of amino acid dehydrogenases. Leucine dehydrogenase catalyzes the reversible oxidative deamination of L-LEUCINE, to 4-methyl-2-oxopentanoate (2-ketoisocaproate) and AMMONIA, with the corresponding reduction of the cofactor NAD+.

Reactivity of cyanate with valine-1 (alpha) of hemoglobin. A probe of conformational change and anion binding. (1/3052)

The 3-fold increase in the carbamylation rate of Val-1 (alpha) of hemoglobin upon deoxygenation described earlier is now shown to be a sensitive probe of conformational change. Thus, whereas this residue in methemoglobin A is carbamylated at the same rate as in liganded hemoglobin, upon addition of inositol hexaphosphate its carbamylation rate is enhanced 30% as much as the total change in the rate between the CO and deoxy states. For CO-hemoglobin Kansas in the presence of the organic phosphate, the relative increase in the carbamylation rate of this residue is about 50%. These results indicate that methemoglobin A and hemoglobin Kansas in the presence of inositol hexaphosphate do not assume a conformation identical with deoxyhemoglobin but rather form either a mixture of R and T states or an intermediate conformation in the region around Val-1 (alpha). Studies on the mechanism for the rate enhancement in deoxyhemoglobin suggest that the cyanate anion binds to groups in the vicinity of Val-1 (alpha) prior to proton transfer and carbamylation of this NH2-terminal residue. Thus, specific removal with carboxypeptidase B of Arg-141 (alpha), which is close to Val-1 (alpha) in deoxyhemoglobin, abolishes the enhancement in carbamylation. Chloride, which has the same valency as cyanate, is a better competitive inhibitor of the carbamylation of deoxyhemoglobin (Ki = 50 mM) compared with liganded hemoglobin. Nitrate and iodide are also effective inhibitors of the carbamylation of Val-1 (alpha) of deoxyhemoglobin (Ki = 35 mM); inorganic phosphate, sulfate, and fluoride are poor competitive inhibitors. The change in pKa of Val-1 (alpha) upon deoxygenation may be due to its differential interaction with chloride.  (+info)

Role of glucagon on the control of hepatic protein synthesis and degradation in the rat in vivo. (2/3052)

The effect of glucagon on hepatic protein systhesis and proteolysis has been investigated. The intraperitoneal administration of 200 mug of glucagon produced an increase of the polypeptide chains completion time which was maximal 5 min after its administration and approached control values at 20 min. The increase of the polypeptides chains completion time observed at 5 min after the hormone administration represents a 38% inhibition of the hepatic protein synthetic rate. When glucagon was continuously supplied by intravascular infusion, maximal inhibition was attained throughout the experiment. This inhibition of protein synthesis brought about by glucagon was accompanied by an increase in the polyribosomal state of aggregation, indicating that the hormone acts mainly if not exclusively, on the elongation or termination step, or both. The administration of glucagon produced also a progressive increase in the hepatic valine concentration. This increase could not be accounted for the the decrease in plasma valine levels, suggesting that the rise in haptic valine concentration is an expression of hepatic proteolysis rather than the result of an accelerated transport of amino acids across the hepatocyte plasma membrane. The different time sequence in the glucagon-induced effects of protein synthesis and proteolysis suggests that both effects are independent and probably mediated by different mechanisms.  (+info)

Structural determinants of the eosinophil: chemotactic activity of the acidic tetrapeptides of eosinophil chemotactic factor of anaphylaxis. (3/3052)

The acidic tetrapeptides of ECF-A, Ala/Val-Gly-Ser-Glu, exhibit peak in vitro chemotactic activity for human eosinophils at concentrations of 3 X 10(-8) M to 10(-6) M, and rapidly deactivate eosinophils to homologous and other stimuli at concentrations as low as 10(-10) M. The analogue Leu-Gly-Ser-Glu reaches peak activity at 10(-8)M-10(-7)M, while Phe-Gly-Ser-Glu requires 10(-4)M to elicit a peak response. Although inversion of the order of glycine and serine does not alter the eosinophil chemotactic activity of the tetrapeptides, deletion of glycine increases by 10-fold the concentration required for peak chemotactic activity, indicating the critical nature of the spacing between NH2- and COOH-terminal residues. The substituent COOH-terminal tripeptide, which is only marginally chemotactic, irreversibly suppresses eosinophil chemotactic responsiveness at a concentration 10,000-fold higher than concentrations necessary for deactivation by the intact tetrapeptide. The high concentration of tripeptide required for this cell directed effect, which is assumed to be analogous to deactivation, is attributed to the absence of the NH2-terminal residue which would facilitate effective interaction with the eosinophil. A substituent NH2-terminal tripeptide and amides of the NH2-terminal amino acids, which are devoid of chemotactic and deactivating activities, reversibly inhibit the tetrapeptide stimulus in a dose-response fashion. The additional finding that the NH2-terminal tripeptide protects the eosinophil from deactivation by the intact tetrapeptide confirms that the competitive interaction is stimulus specific.  (+info)

Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. (4/3052)

Dendritic spines receive most excitatory inputs in the vertebrate brain, but their function is still poorly understood. Using two-photon calcium imaging of CA1 pyramidal neurons in rat hippocampal slices, we investigated the mechanisms by which calcium enters into individual spines in the stratum radiatum. We find three different pathways for calcium influx: high-threshold voltage-sensitive calcium channels, NMDA receptors, and an APV-resistant influx consistent with calcium-permeable AMPA or kainate receptors. These pathways vary among different populations of spines and are engaged under different stimulation conditions, with peak calcium concentrations reaching >10 microM. Furthermore, as a result of the biophysical properties of the NMDA receptor, the calcium dynamics of spines are exquisitely sensitive to the temporal coincidence of the input and output of the neuron. Our results confirm that individual spines are chemical compartments that can perform coincidence detection. Finally, we demonstrate that functional studies and optical quantal analysis of single, identified synapses is feasible in mammalian CNS neurons in brain slices.  (+info)

Identification and functional analysis of novel human melanocortin-4 receptor variants. (5/3052)

Inactivation of the melanocortin-4 receptor (MC4-R) by gene-targeting results in mice that develop maturity-onset obesity, hyperinsulinemia, and hyperglycemia. These phenotypes resemble common forms of human obesity, which are late-onset and frequently accompanied by NIDDM. It is not clear whether sequence variation of the MC4-R gene contributes to obesity in humans. Therefore, we examined the human MC4-R gene polymorphism in 190 individuals ascertained on obesity status. Three allelic variants were identified, including two novel ones, Thr112Met and Ile137Thr. To analyze possible functional alterations, the variants were cloned and expressed in vitro and compared with the wild-type receptor. One of the novel variants, Ile137Thr, identified in an extremely obese proband (BMI 57), was found to be severely impaired in ligand binding and signaling, raising the possibility that it may contribute to development of obesity. Furthermore, our results also suggest that sequence polymorphism in the MC4-R coding region is unlikely to be a common cause of obesity in the population studied, given the low frequency of functionally significant mutations.  (+info)

Angiotensin II receptor blockade in normotensive subjects: A direct comparison of three AT1 receptor antagonists. (6/3052)

Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.  (+info)

Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line. (7/3052)

The results of previous work performed in our laboratory using an in situ perfusion technique in rats and rabbit apical brush border membrane vesicles have suggested that the intestinal uptake of valacyclovir (VACV) appears to be mediated by multiple membrane transporters. Using these techniques, it is difficult to characterize the transport kinetics of VACV with each individual transporter in the presence of multiple known or unknown transporters. The purpose of this study was to characterize the interaction of VACV and the human intestinal peptide transporter using Chinese hamster ovary (CHO) cells that overexpress the human intestinal peptide transporter (hPEPT1) gene. VACV uptake was significantly greater in CHO cells transfected with hPEPT1 than in cells transfected with only the vector, pcDNA3. The optimum pH for VACV uptake was determined to occur at pH 7.5. Proton cotransport was not observed in hPEPT1/CHO cells, consistent with previously observed results in tissues and Caco-2 cells. VACV uptake was concentration dependent and saturable with a Michaelis-Menten constant and maximum velocity of 1.64 +/- 0.06 mM and 23.34 +/- 0.36 nmol/mg protein/5 min, respectively. A very similar Km value was obtained in hPEPT1/CHO cells and in rat and rabbit tissues and Caco-2 cells, suggesting that hPEPT1 dominates the intestinal transport properties of VACV in vitro. VACV uptake was markedly inhibited by various dipeptides and beta-lactam antibiotics, and Ki values of 12.8 +/- 2.7 and 9.1 +/- 1.2 mM were obtained for Gly-Sar and cefadroxil at pH 7.5, respectively. The present results demonstrate that VACV is a substrate for the human intestinal peptide transporter in hPEPT1/CHO cells and that although transport is pH dependent, proton cotransport is not apparent. Also, the results demonstrate that the hPEPT1/CHO cell system has use in investigating the transport kinetics of drugs with the human intestinal peptide transporter hPEPT1; however, the extrapolation of these transport properties to the in vivo situation requires further investigation.  (+info)

Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. (8/3052)

A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1alpha (dehydrogenase), E1beta (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a -12, -24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions.  (+info)

Valine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet. It is a hydrophobic amino acid, with a branched side chain, and is necessary for the growth, repair, and maintenance of tissues in the body. Valine is also important for muscle metabolism, and is often used by athletes as a supplement to enhance physical performance. Like other essential amino acids, valine must be obtained through foods such as meat, fish, dairy products, and legumes.

Isoleucine is an essential branched-chain amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C6H13NO2. Isoleucine is crucial for muscle protein synthesis, hemoglobin formation, and energy regulation during exercise or fasting. It is found in various foods such as meat, fish, eggs, dairy products, legumes, and nuts. Deficiency of isoleucine may lead to various health issues like muscle wasting, fatigue, and mental confusion.

Leucine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through the diet. It is one of the three branched-chain amino acids (BCAAs), along with isoleucine and valine. Leucine is critical for protein synthesis and muscle growth, and it helps to regulate blood sugar levels, promote wound healing, and produce growth hormones.

Leucine is found in various food sources such as meat, dairy products, eggs, and certain plant-based proteins like soy and beans. It is also available as a dietary supplement for those looking to increase their intake for athletic performance or muscle recovery purposes. However, it's important to consult with a healthcare professional before starting any new supplement regimen.

Branched-chain amino acids (BCAAs) are a group of three essential amino acids: leucine, isoleucine, and valine. They are called "branched-chain" because of their chemical structure, which has a side chain that branches off from the main part of the molecule.

BCAAs are essential because they cannot be produced by the human body and must be obtained through diet or supplementation. They are crucial for muscle growth and repair, and play a role in energy production during exercise. BCAAs are also important for maintaining proper immune function and can help to reduce muscle soreness and fatigue after exercise.

Foods that are good sources of BCAAs include meat, poultry, fish, eggs, dairy products, and legumes. BCAAs are also available as dietary supplements, which are often used by athletes and bodybuilders to enhance muscle growth and recovery. However, it is important to note that excessive intake of BCAAs may have adverse effects on liver function and insulin sensitivity, so it is recommended to consult with a healthcare provider before starting any new supplement regimen.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Acetolactate synthase (ALS), also known as acetohydroxyacid synthase (AHAS), is a key enzyme in the biosynthetic pathway of branched-chain amino acids (valine, leucine, and isoleucine) in bacteria, fungi, and plants. It catalyzes the first step in the pathway, which is the condensation of two molecules of pyruvate to form acetolactate.

Inhibitors of ALS, such as sulfonylureas and imidazolinones, are widely used as herbicides because they disrupt the biosynthesis of amino acids that are essential for plant growth and development. These inhibitors work by binding to the active site of the enzyme and preventing the substrate from accessing it.

In humans, ALS is not involved in the biosynthesis of branched-chain amino acids, but a homologous enzyme called dihydroorotate dehydrogenase (DHOD) plays a crucial role in the synthesis of pyrimidine nucleotides. Inhibitors of DHOD are used as immunosuppressants to treat autoimmune diseases, such as rheumatoid arthritis and multiple sclerosis.

Keto acids, also known as ketone bodies, are not exactly the same as "keto acids" in the context of amino acid metabolism.

In the context of metabolic processes, ketone bodies are molecules that are produced as byproducts when the body breaks down fat for energy instead of carbohydrates. When carbohydrate intake is low, the liver converts fatty acids into ketone bodies, which can be used as a source of energy by the brain and other organs. The three main types of ketone bodies are acetoacetate, beta-hydroxybutyrate, and acetone.

However, in the context of amino acid metabolism, "keto acids" refer to the carbon skeletons of certain amino acids that remain after their nitrogen-containing groups have been removed during the process of deamination. These keto acids can then be converted into glucose or used in other metabolic pathways. For example, the keto acid produced from the amino acid leucine is called beta-ketoisocaproate.

Therefore, it's important to clarify the context when discussing "keto acids" as they can refer to different things depending on the context.

"Valerates" is not a recognized medical term. However, it may refer to a salt or ester of valeric acid, which is a carboxylic acid with the formula CH3CH2CH2CO2H. Valeric acid and its salts and esters are used in pharmaceuticals and perfumes. Valerates can have a sedative effect and are sometimes used as a treatment for anxiety or insomnia. One example is sodium valerate, which is used in the manufacture of some types of medical-grade polyester. Another example is diethyl valerate, an ester of valeric acid that is used as a flavoring agent and solvent.

Threonine is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is HO2CCH(NH2)CH(OH)CH3. Threonine plays a crucial role in various biological processes, including protein synthesis, immune function, and fat metabolism. It is particularly important for maintaining the structural integrity of proteins, as it is often found in their hydroxyl-containing regions. Foods rich in threonine include animal proteins such as meat, dairy products, and eggs, as well as plant-based sources like lentils and soybeans.

Essential amino acids are a group of 9 out of the 20 standard amino acids that cannot be synthesized by the human body and must be obtained through diet. They include: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. These amino acids are essential for various biological processes such as protein synthesis, growth, and repair of body tissues. A deficiency in any of these essential amino acids can lead to impaired physical development and compromised immune function. Foods that provide all nine essential amino acids are considered complete proteins and include animal-derived products like meat, poultry, fish, eggs, and dairy, as well as soy and quinoa.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Oxo-acid lyases are a class of enzymes that catalyze the cleavage of a carbon-carbon bond in an oxo-acid to give a molecule with a carbonyl group and a carbanion, which then reacts non-enzymatically with a proton to form a new double bond. The reaction is reversible, and the enzyme can also catalyze the reverse reaction.

Oxo-acid lyases play important roles in various metabolic pathways, such as the citric acid cycle, glyoxylate cycle, and the degradation of certain amino acids. These enzymes are characterized by the presence of a conserved catalytic mechanism involving a nucleophilic attack on the carbonyl carbon atom of the oxo-acid substrate.

The International Union of Biochemistry and Molecular Biology (IUBMB) has classified oxo-acid lyases under EC 4.1.3, which includes enzymes that catalyze the formation of a carbon-carbon bond by means other than carbon-carbon bond formation to an enolate or carbonion, a carbanionic fragment, or a Michael acceptor.

I'm sorry for any confusion, but "Hydro-Lyases" is not a recognized medical term or category in biochemistry. It seems like there might be a misunderstanding or a typo in the term.

In biochemistry, "lyases" are enzymes that catalyze the removal of groups from substrates by means other than hydrolysis or oxidation, often forming a double bond or a ring-forming reaction. They are classified and named based on the type of bond they break.

If you meant to ask about a specific enzyme or reaction, could you please provide more context or clarify the term? I'd be happy to help further with accurate information.

Alanine is an alpha-amino acid that is used in the biosynthesis of proteins. The molecular formula for alanine is C3H7NO2. It is a non-essential amino acid, which means that it can be produced by the human body through the conversion of other nutrients, such as pyruvate, and does not need to be obtained directly from the diet.

Alanine is classified as an aliphatic amino acid because it contains a simple carbon side chain. It is also a non-polar amino acid, which means that it is hydrophobic and tends to repel water. Alanine plays a role in the metabolism of glucose and helps to regulate blood sugar levels. It is also involved in the transfer of nitrogen between tissues and helps to maintain the balance of nitrogen in the body.

In addition to its role as a building block of proteins, alanine is also used as a neurotransmitter in the brain and has been shown to have a calming effect on the nervous system. It is found in many foods, including meats, poultry, fish, eggs, dairy products, and legumes.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Methionine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. It plays a crucial role in various biological processes, including:

1. Protein synthesis: Methionine is one of the building blocks of proteins, helping to create new proteins and maintain the structure and function of cells.
2. Methylation: Methionine serves as a methyl group donor in various biochemical reactions, which are essential for DNA synthesis, gene regulation, and neurotransmitter production.
3. Antioxidant defense: Methionine can be converted to cysteine, which is involved in the formation of glutathione, a potent antioxidant that helps protect cells from oxidative damage.
4. Homocysteine metabolism: Methionine is involved in the conversion of homocysteine back to methionine through a process called remethylation, which is essential for maintaining normal homocysteine levels and preventing cardiovascular disease.
5. Fat metabolism: Methionine helps facilitate the breakdown and metabolism of fats in the body.

Foods rich in methionine include meat, fish, dairy products, eggs, and some nuts and seeds.

Nutritional requirements refer to the necessary amount of nutrients, including macronutrients (carbohydrates, proteins, and fats) and micronutrients (vitamins and minerals), that an individual requires to maintain good health, support normal growth and development, and promote optimal bodily functions. These requirements vary based on factors such as age, sex, body size, pregnancy status, and physical activity level. Meeting one's nutritional requirements typically involves consuming a balanced and varied diet, with additional consideration given to any specific dietary restrictions or medical conditions that may influence nutrient needs.

Transaminases, also known as aminotransferases, are a group of enzymes found in various tissues of the body, particularly in the liver, heart, muscle, and kidneys. They play a crucial role in the metabolism of amino acids, the building blocks of proteins.

There are two major types of transaminases: aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Both enzymes are normally present in low concentrations in the bloodstream. However, when tissues that contain these enzymes are damaged or injured, such as during liver disease or muscle damage, the levels of AST and ALT in the blood may significantly increase.

Measurement of serum transaminase levels is a common laboratory test used to assess liver function and detect liver injury or damage. Increased levels of these enzymes in the blood can indicate conditions such as hepatitis, liver cirrhosis, drug-induced liver injury, heart attack, and muscle disorders. It's important to note that while elevated transaminase levels may suggest liver disease, they do not specify the type or cause of the condition, and further diagnostic tests are often required for accurate diagnosis and treatment.

Valine-tRNA Ligase is an enzyme that plays a crucial role in protein synthesis in the body. Its specific function is to catalyze the attachment of the amino acid valine to its corresponding transfer RNA (tRNA) molecule during translation, the process by which genetic information encoded in messenger RNA (mRNA) is used to synthesize proteins.

The reaction catalyzed by Valine-tRNA Ligase involves the activation of valine through the formation of an adenylate intermediate with ATP, followed by the transfer of valine to the appropriate tRNA molecule. This enzyme is essential for maintaining the fidelity and efficiency of protein synthesis, as it ensures that the correct amino acid is incorporated into the growing polypeptide chain during translation.

Valine-tRNA Ligase is a member of the class II aminoacyl-tRNA synthetases and contains several functional domains, including an anticodon-binding domain that recognizes and binds to specific tRNA molecules, and a catalytic domain that carries out the reaction with valine. Mutations in the gene encoding Valine-tRNA Ligase have been associated with various genetic disorders, highlighting its importance in maintaining normal cellular function.

"Acremonium" is a genus of filamentous fungi that are commonly found in soil, decaying vegetation, and water. Some species of Acremonium can cause infections in humans, particularly in individuals with weakened immune systems. These infections can affect various organs and tissues, including the skin, nails, lungs, and eyes.

The medical definition of "Acremonium" is therefore a type of fungus that can cause a variety of infectious diseases, particularly in immunocompromised individuals. It's important to note that Acremonium infections are relatively rare, but they can be serious and require prompt medical treatment.

Phenylalanine is an essential amino acid, meaning it cannot be produced by the human body and must be obtained through diet or supplementation. It's one of the building blocks of proteins and is necessary for the production of various molecules in the body, such as neurotransmitters (chemical messengers in the brain).

Phenylalanine has two forms: L-phenylalanine and D-phenylalanine. L-phenylalanine is the form found in proteins and is used by the body for protein synthesis, while D-phenylalanine has limited use in humans and is not involved in protein synthesis.

Individuals with a rare genetic disorder called phenylketonuria (PKU) must follow a low-phenylalanine diet or take special medical foods because they are unable to metabolize phenylalanine properly, leading to its buildup in the body and potential neurological damage.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Ketol-acid reductoisomerase (KARI) is an enzyme involved in the second step of the heterofuran biosynthesis pathway. It catalyzes the conversion of 2-keto-3-deoxy-D-arabino-heptonic acid (KDHA) to 2,3,4-trihydroxy-heptanoic acid (THHA) through an intermediate ketol form. This enzyme is important for the biosynthesis of certain antibiotics and other natural products. The reaction catalyzed by KARI involves the reduction of a keto group to a hydroxyl group, as well as the isomerization of the carbonyl group.

Ketol-acid reductoisomerase is also known as D-1-deoxyxylulose 5-phosphate reductoisomerase (DXR) and it plays a crucial role in the non-mevalonate pathway of isoprenoid biosynthesis, which is present in many bacteria, algae, and plants. In this pathway, KARI catalyzes the conversion of 1-deoxy-D-xylulose 5-phosphate (DXP) to 2-C-methyl-D-erythritol 4-phosphate (MEP), which is a key intermediate in the biosynthesis of isoprenoids, such as sterols, carotenoids, and terpenes.

Ketol-acid reductoisomerase is a target for the development of antibiotics and herbicides because of its essential role in the biosynthesis of important natural products. Inhibitors of KARI have been shown to have antibacterial and herbicidal activity.

'Escherichia coli' (E. coli) is a type of gram-negative, facultatively anaerobic, rod-shaped bacterium that commonly inhabits the intestinal tract of humans and warm-blooded animals. It is a member of the family Enterobacteriaceae and one of the most well-studied prokaryotic model organisms in molecular biology.

While most E. coli strains are harmless and even beneficial to their hosts, some serotypes can cause various forms of gastrointestinal and extraintestinal illnesses in humans and animals. These pathogenic strains possess virulence factors that enable them to colonize and damage host tissues, leading to diseases such as diarrhea, urinary tract infections, pneumonia, and sepsis.

E. coli is a versatile organism with remarkable genetic diversity, which allows it to adapt to various environmental niches. It can be found in water, soil, food, and various man-made environments, making it an essential indicator of fecal contamination and a common cause of foodborne illnesses. The study of E. coli has contributed significantly to our understanding of fundamental biological processes, including DNA replication, gene regulation, and protein synthesis.

Isoleucine-tRNA ligase is an enzyme involved in the process of protein synthesis in cells. Its specific role is to catalyze the attachment of the amino acid isoleucine to its corresponding transfer RNA (tRNA) molecule, which then participates in the translation of genetic information from messenger RNA (mRNA) into a polypeptide chain during protein synthesis. This enzyme helps ensure that the correct amino acids are incorporated into proteins according to the genetic code.

Isobutyrates are not a medical term, but they are compounds that can be encountered in medicine and biochemistry.

The term "isobutyrate" refers to the salt or ester of isobutyric acid (2-methylpropanoic acid), an organic compound with the formula (CH3)2CHCO2H. Isobutyric acid is a naturally occurring fatty acid, and its salts and esters are known as isobutyrates.

In medicine, isobutyrates may be encountered in the context of metabolic disorders or toxicology. For example, abnormal levels of isobutyric acid and its derivatives can indicate certain metabolic conditions such as short-chain acyl-CoA dehydrogenase deficiency (SCAD) or methylmalonic acidemia. Additionally, isobutyrates may be encountered in cases of exposure to certain chemicals or substances that contain or break down into isobutyric acid.

However, it's important to note that "isobutyrates" do not have a specific medical definition and can refer to any salt or ester of isobutyric acid.

Decarboxylation is a chemical reaction that removes a carboxyl group from a molecule and releases carbon dioxide (CO2) as a result. In the context of medical chemistry, decarboxylation is a crucial process in the activation of certain acidic precursor compounds into their biologically active forms.

For instance, when discussing phytocannabinoids found in cannabis plants, decarboxylation converts non-psychoactive tetrahydrocannabinolic acid (THCA) into psychoactive delta-9-tetrahydrocannabinol (Δ9-THC) through the removal of a carboxyl group. This reaction typically occurs when the plant material is exposed to heat, such as during smoking or vaporization, or when it undergoes aging.

In summary, decarboxylation refers to the chemical process that removes a carboxyl group from a molecule and releases CO2, which can activate certain acidic precursor compounds into their biologically active forms in medical chemistry.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Enzyme repression is a type of gene regulation in which the production of an enzyme is inhibited or suppressed, thereby reducing the rate of catalysis of the chemical reaction that the enzyme facilitates. This process typically occurs when the end product of the reaction binds to the regulatory protein, called a repressor, which then binds to the operator region of the operon (a group of genes that are transcribed together) and prevents transcription of the structural genes encoding for the enzyme. Enzyme repression helps maintain homeostasis within the cell by preventing the unnecessary production of enzymes when they are not needed, thus conserving energy and resources.

Carbon isotopes are variants of the chemical element carbon that have different numbers of neutrons in their atomic nuclei. The most common and stable isotope of carbon is carbon-12 (^{12}C), which contains six protons and six neutrons. However, carbon can also come in other forms, known as isotopes, which contain different numbers of neutrons.

Carbon-13 (^{13}C) is a stable isotope of carbon that contains seven neutrons in its nucleus. It makes up about 1.1% of all carbon found on Earth and is used in various scientific applications, such as in tracing the metabolic pathways of organisms or in studying the age of fossilized materials.

Carbon-14 (^{14}C), also known as radiocarbon, is a radioactive isotope of carbon that contains eight neutrons in its nucleus. It is produced naturally in the atmosphere through the interaction of cosmic rays with nitrogen gas. Carbon-14 has a half-life of about 5,730 years, which makes it useful for dating organic materials, such as archaeological artifacts or fossils, up to around 60,000 years old.

Carbon isotopes are important in many scientific fields, including geology, biology, and medicine, and are used in a variety of applications, from studying the Earth's climate history to diagnosing medical conditions.

An amino acid substitution is a type of mutation in which one amino acid in a protein is replaced by another. This occurs when there is a change in the DNA sequence that codes for a particular amino acid in a protein. The genetic code is redundant, meaning that most amino acids are encoded by more than one codon (a sequence of three nucleotides). As a result, a single base pair change in the DNA sequence may not necessarily lead to an amino acid substitution. However, if a change does occur, it can have a variety of effects on the protein's structure and function, depending on the nature of the substituted amino acids. Some substitutions may be harmless, while others may alter the protein's activity or stability, leading to disease.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

Norleucine is not typically defined in a medical context, but it is a chemical compound used in research and biochemistry. It is an unnatural amino acid that is sometimes used as a substitute for the naturally occurring amino acid methionine in scientific studies. Norleucine has a different side chain than methionine, which can affect the properties of proteins when it is substituted for methionine.

In terms of its chemical structure, norleucine is a straight-chain aliphatic amino acid with a four-carbon backbone and a carboxyl group at one end and an amino group at the other end. It has a branched side chain consisting of a methyl group and an ethyl group.

While norleucine is not typically used as a therapeutic agent in medicine, it may have potential applications in the development of new drugs or in understanding the functions of proteins in the body.

Nitrogen is not typically referred to as a medical term, but it is an element that is crucial to medicine and human life.

In a medical context, nitrogen is often mentioned in relation to gas analysis, respiratory therapy, or medical gases. Nitrogen (N) is a colorless, odorless, and nonreactive gas that makes up about 78% of the Earth's atmosphere. It is an essential element for various biological processes, such as the growth and maintenance of organisms, because it is a key component of amino acids, nucleic acids, and other organic compounds.

In some medical applications, nitrogen is used to displace oxygen in a mixture to create a controlled environment with reduced oxygen levels (hypoxic conditions) for therapeutic purposes, such as in certain types of hyperbaric chambers. Additionally, nitrogen gas is sometimes used in cryotherapy, where extremely low temperatures are applied to tissues to reduce pain, swelling, and inflammation.

However, it's important to note that breathing pure nitrogen can be dangerous, as it can lead to unconsciousness and even death due to lack of oxygen (asphyxiation) within minutes.

Glycine is a simple amino acid that plays a crucial role in the body. According to the medical definition, glycine is an essential component for the synthesis of proteins, peptides, and other biologically important compounds. It is also involved in various metabolic processes, such as the production of creatine, which supports muscle function, and the regulation of neurotransmitters, affecting nerve impulse transmission and brain function. Glycine can be found as a free form in the body and is also present in many dietary proteins.

Nitrosoguanidines are a type of organic compound that contain a nitroso (NO) group and a guanidine group. They are known to be potent nitrosating agents, which means they can release nitrous acid or related nitrosating species. Nitrosation is a reaction that leads to the formation of N-nitroso compounds, some of which have been associated with an increased risk of cancer in humans. Therefore, nitrosoguanidines are often used in laboratory studies to investigate the mechanisms of nitrosation and the effects of N-nitroso compounds on biological systems. However, they are not typically used as therapeutic agents due to their potential carcinogenicity.

"Pentanols" is not a recognized medical term. However, in chemistry, pentanols refer to a group of alcohols containing five carbon atoms. The general formula for pentanols is C5H12O, and they have various subcategories such as primary, secondary, and tertiary pentanols, depending on the type of hydroxyl (-OH) group attachment to the carbon chain.

In a medical context, alcohols like methanol and ethanol can be toxic and cause various health issues. However, there is no specific medical relevance associated with "pentanols" as a group. If you have any further questions or need information about a specific chemical compound, please let me know!

Leucine dehydrogenase (LDH) is an enzyme that catalyzes the reversible conversion of leucine to α-ketoisocaproate, while simultaneously reducing NAD+ to NADH. It plays a crucial role in the metabolism of branched-chain amino acids and is widely distributed in various tissues such as liver, kidney, heart, skeletal muscle, and brain.

In clinical settings, LDH is often measured in serum or plasma as a biomarker for tissue damage since it is released into the bloodstream upon cell death or injury. Elevated levels of LDH can be observed in various conditions such as myocardial infarction, hemolysis, liver disease, muscle damage, and some types of cancer. However, an isolated increase in LDH may not be specific to a particular condition, and further diagnostic tests are usually required for accurate diagnosis.

  • Valine - Uses, Benefits, Sources and Dosage Valine is a branched chain amino acid and closely related to leucine and isoleucine in both structure and function. (planetayurveda.com)
  • Several studies have reported the ability of the lactotripeptides valine-proline- proline (VPP) and isoleucine-proline-proline (IPP) to lower systolic blood pressure (SBP), including in Japanese populations. (scirp.org)
  • BCAA' denotes valine, isoleucine and leucine which are branched chain essential amino acids. (selfdecode.com)
  • Despite their structural similarities, the branched amino acids have different metabolic routes, with valine going solely to carbohydrates, leucine solely to fats and isoleucine to both. (selfdecode.com)
  • The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. (selfdecode.com)
  • Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. (selfdecode.com)
  • Valine is one of three branched-chain amino acids (the others are leucine and isoleucine) that enhance energy, increase endurance, and aid in muscle tissue recovery and repair. (selfdecode.com)
  • Supplemental valine should always be combined with isoleucine and leucine at a respective milligram ratio of 2:1:2. (selfdecode.com)
  • Along with leucine and isoleucine, valine is a branched-chain amino acid. (selfdecode.com)
  • There are three BCAAs: leucine, isoleucine, and valine. (muscleandstrength.com)
  • This mutation led to a change in the structure of the protein on the surface of the virus, replacing one amino acid, isoleucine, with a different one, valine. (cdc.gov)
  • The valine at position 82 (ABL 84) was changed to isoleucine and the alanine at position 182 (ABL 184) was changed to valine. (lu.se)
  • Valine (symbol Val or V) is an α-amino acid that is used in the biosynthesis of proteins. (wikipedia.org)
  • An amino acid oxidoreductase that catalyzes the oxidative hydroxylation of L-VALINE to 3-methyl-2-oxobutanoate and AMMONIA in the presence of NADP . (online-medical-dictionary.org)
  • The surface of α-manganese dioxide (α-MnO 2 ) nanorods was modified chemically with L -valine amino acid by a solvothermal strategy. (rsc.org)
  • Thus valine, a hydrophic amnio acid, replaces glutamic acid, a hydrophilic amino acid, causing hemoglobin to not fold correctly. (loinc.org)
  • Valine is a branched-chain amino acid that stimulates activity and promotes muscle growth and tissue repair. (loinc.org)
  • The goals of these trials were to investigate the effects of different dietary amino acid concentrations and valine:lysine ratios on piglet performance and health. (agrarforschungschweiz.ch)
  • The supplementation of the essential amino acid valine did not affect performance or animal health in either trial. (agrarforschungschweiz.ch)
  • L-valine is a branched-chain essential amino acid (BCAA) that has stimulant activity. (selfdecode.com)
  • In sickle-cell disease, valine substitutes for the hydrophilic amino acid glutamic acid in hemoglobin. (selfdecode.com)
  • Valine is an essential amino acid, hence it must be ingested, usually as a component of proteins. (selfdecode.com)
  • Valine is an essential branched chain amino acid (BCAA) that promotes muscle repair and growth. (myfooddata.com)
  • Our L-Valine is a pure and potent form of the amino acid that can be taken as part of a daily supplement regimen or used before, during, or after physical activity. (bulksupplements.com)
  • Research studies have found that branched-chain amino acids (BCAAs) are associated with diabetes and obesity , and the branched-chain amino acid valine is the culprit! (advancedmolecularlabs.com)
  • The branched-chain amino acid valine had the highest risk prediction of incidents of type 2 diabetes! (advancedmolecularlabs.com)
  • Valine is a glucogenic amino acid, meaning it can create and/or be converted into glucose 1,2 . (muscleandstrength.com)
  • Unfortunately for valine, it is far less effective at this than Leucine (a theme that repeats itself). (muscleandstrength.com)
  • Located in Tongliao, Inner Mongolia, theplant of threonine, capacity currently is 250,000 tonnes/year and there will havea production capacity of 21,811 tonnes/year of valine after the project iscompleted. (agromate.com)
  • According to IUPAC, carbon atoms forming valine are numbered sequentially starting from 1 denoting the carboxyl carbon, whereas 4 and 4' denote the two terminal methyl carbons. (wikipedia.org)
  • The methyl carbons of valine can be utilized to produce glucose and ultimately glycogen. (muscleandstrength.com)
  • Valine, one of the 20 proteinogenic amino acids, is nutritionally essential. (loinc.org)
  • Mice fed a BCAA-deprived diet for one day had improved insulin sensitivity, and feeding of a valine-deprived diet for one week significantly decreases blood glucose levels. (wikipedia.org)
  • The valine catabolite 3-hydroxyisobutyrate promotes insulin resistance in mice by stimulating fatty acid uptake into muscle and lipid accumulation. (wikipedia.org)
  • Recently, the valine catabolite 3-hydroxyisobuterate (3HIB) was shown to promote insulin resistance in skeletal muscle by increasing lipid content in vivo. (advancedmolecularlabs.com)
  • It was reported in the journal Nature Medicine in 2015 that valine catabolite 3-hydroxyisobuterate (3HIB) promoted the accumulation of fat within muscle tissue by directly stimulating fatty uptake in the muscle. (advancedmolecularlabs.com)
  • In this study, we investigated the metabolic effects of γ -glutamyl valine (γ -EV) in diabetic obese mice. (unl.edu)
  • Dietary valine is essential for hematopoietic stem cell (HSC) self-renewal, as demonstrated by experiments in mice. (wikipedia.org)
  • Dietary valine restriction selectively depletes long-term repopulating HSC in mouse bone marrow. (wikipedia.org)
  • The reference dietary intake (RDI) for valine is 26mg per kilogram of body weight or 12mg per pound. (myfooddata.com)
  • Valine is one of the three branched-chain amino acids (BCAAs) and is essential for human nutrition. (bulksupplements.com)
  • Valine is the least researched or well understood of the 3 BCAAs, and as such the currently known biological effects of it are minimal. (muscleandstrength.com)
  • In sickle cell disease, the replacement of an A by T in the beta chain gene of hemoglobin changes the codon GAG (for glutamic acid) to GTG (which encodes valine). (loinc.org)
  • In a most recent study in the journal Mediators of Inflammation , on November 11, 2019, researchers undertook a study, "aimed at assessing circulating valine concentrations in subjects with type 2 diabetes," noting that "Circulating valine level might be a novel biomarker for type 2 diabetes. (advancedmolecularlabs.com)
  • Enzymes involved in this biosynthesis include: Acetolactate synthase (also known as acetohydroxy acid synthase) Acetohydroxy acid isomeroreductase Dihydroxyacid dehydratase Valine aminotransferase Like other branched-chain amino acids, the catabolism of valine starts with the removal of the amino group by transamination, giving alpha-ketoisovalerate, an alpha-keto acid, which is converted to isobutyryl-CoA through oxidative decarboxylation by the branched-chain α-ketoacid dehydrogenase complex. (wikipedia.org)
  • In diet-induced obese and insulin resistant mice, a diet with decreased levels of valine and the other branched-chain amino acids resulted in a rapid reversal of the adiposity and an improvement in glucose-level control. (wikipedia.org)
  • Valine was first isolated from casein in 1901 by Hermann Emil Fischer. (wikipedia.org)
  • Valine was discovered in 1901 by Emil Fischer, a German scientist. (planetayurveda.com)
  • These valine adducts are considered a biomarker of long-term acrylamide exposure. (cdc.gov)
  • Valine" is a descriptor in the National Library of Medicine's controlled vocabulary thesaurus, MeSH (Medical Subject Headings) . (childrensmercy.org)
  • for the production of premixes and enrichment of rations of farm animals and poultry with valine. (ecofeedgroup.ru)
  • This process of valine oxidation for glucose is increased in skeletal muscle following injury, which suggests that consuming extra valine in times of muscle injury (i.e. heavy training) might be beneficial for muscle recovery. (muscleandstrength.com)
  • By day 12, systolic blood pressure (SBP) increases significantly in Angiotensin II 5-valine infused rats (197±7 mm Hg).The development of hypertension in ANG II infused rats is prevented by losartan treatment. (medchemexpress.com)
  • In the Angiotensin II 5-valine infused rats treated with losartan, total plasma ANG II levels are elevated to a greater extent than in rats not treated with losartan (289±20 v 119±14 fmol/mL). (medchemexpress.com)
  • Male Sprague Dawley rats are uninephrectomized and divided into three groups: control (n=6), Angiotensin II 5-valine (exogenous form) infused (n=8), and Angiotensin II 5-valine infused rats treat with losartan (n=8). (medchemexpress.com)
  • Valaciclovir is rapidly and almost entirely (~99%) converted to the active compound, acyclovir, and L-valine by first-pass intestinal and hepatic metabolism by enzymatic hydrolysis. (selfdecode.com)
  • Valine metabolite, 3-hydroxyisobutyrate (3- HIB ), also plays an important role in metabolism , whilst its effect has been rarely examined. (bvsalud.org)
  • Below is a list of the top 10 foods highest in valine with the %RDI calculated for someone weighing 70kg (154lbs). (myfooddata.com)
  • γ-Glutamyl Valine, Found in Dry Edible Beans, Is Anti-diabetic in db/" by Bikram Upadhyaya, Kaustav Majumder et al. (unl.edu)
  • See more beans high in valine . (myfooddata.com)
  • The L-Valine- 15 N is an organic compound with the formula C 5 H 11 NO 2 . (lookchem.com)
  • The researchers analyzed blood valine levels in type 2 diabetes after sitagliptin treatment, an anti-diabetic drug. (advancedmolecularlabs.com)
  • Research has also shown that the anti-diabetic drug metformin can also lower valine in the blood of diabetics. (advancedmolecularlabs.com)
  • Because valine is hydrophobic, the hemoglobin does not fold correctly. (selfdecode.com)
  • Both acrylamide and glycidamide react with hemoglobin (HGB), specifically at the N-(2 carbamoylethyl) valine residue of the ß-peptide subunit. (cdc.gov)
  • Valine in particular, has been established as a useful supplemental therapy to the ailing liver. (selfdecode.com)
  • Additionally, valine supports liver function and promotes gallbladder health. (bulksupplements.com)
  • L-valine also supports liver function and promotes a healthy gallbladder. (bulksupplements.com)
  • Successful stem cell transplantation was achieved in mice without irradiation after 3 weeks on a valine restricted diet. (wikipedia.org)
  • Long-term survival of the transplanted mice was achieved when valine was returned to the diet gradually over a 2-week period to avoid refeeding syndrome. (wikipedia.org)
  • Valine levels were higher in type 2 diabetes patients, while decreased in sitagliptin monotherapy. (advancedmolecularlabs.com)
  • These results suggest that valine might be involved in the pathogenesis in type 2 diabetes," the researchers said. (advancedmolecularlabs.com)
  • Using genetics to examine the overall and sex-specific associations of branch-chain amino acids and the valine metabolite, 3-hydroxyisobutyrate, with ischemic heart disease and diabetes: A two-sample Mendelian randomization study. (bvsalud.org)
  • Blood and kidney samples are harvested, subjected to HPLC to separate Angiotensin II 5-valine (exogenous) from Ile5-ANG II (endogenous) and the fractions are measured by radioimmunoassay. (medchemexpress.com)
  • Following this, the effects of α-MnO 2 - L -valine nanorods on the properties of NCs, such as the mechanical and thermal properties, were studied. (rsc.org)
  • L-Valine is said to be one of the most important amino acids which is required by body for synthesis of protein. (nutraceuticalproducts.net)

No images available that match "valine"