A pattern recognition receptor that interacts with LYMPHOCYTE ANTIGEN 96 and LIPOPOLYSACCHARIDES. It mediates cellular responses to GRAM-NEGATIVE BACTERIA.
A family of pattern recognition receptors characterized by an extracellular leucine-rich domain and a cytoplasmic domain that share homology with the INTERLEUKIN 1 RECEPTOR and the DROSOPHILA toll protein. Following pathogen recognition, toll-like receptors recruit and activate a variety of SIGNAL TRANSDUCING ADAPTOR PROTEINS.
A pattern recognition receptor that forms heterodimers with TLR2 RECEPTOR. The complex interacts with a variety of ligands including LIPOPROTEINS from MYCOPLASMA.
A pattern recognition receptor that binds unmethylated CPG CLUSTERS. It mediates cellular responses to bacterial pathogens by distinguishing between self and bacterial DNA.
A pattern recognition receptor that forms heterodimers with other TOLL-LIKE RECEPTORS. It interacts with multiple ligands including PEPTIDOGLYCAN, bacterial LIPOPROTEINS, lipoarabinomannan, and a variety of PORINS.
An intracellular signaling adaptor protein that plays a role in TOLL-LIKE RECEPTOR and INTERLEUKIN 1 RECEPTORS signal transduction. It forms a signaling complex with the activated cell surface receptors and members of the IRAK KINASES.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D1-class receptor genes lack INTRONS, and the receptors stimulate ADENYLYL CYCLASES.
A subfamily of G-PROTEIN-COUPLED RECEPTORS that bind the neurotransmitter DOPAMINE and modulate its effects. D2-class receptor genes contain INTRONS, and the receptors inhibit ADENYLYL CYCLASES.
Drugs that bind to and activate dopamine receptors.
Drugs that bind to but do not activate DOPAMINE RECEPTORS, thereby blocking the actions of dopamine or exogenous agonists. Many drugs used in the treatment of psychotic disorders (ANTIPSYCHOTIC AGENTS) are dopamine antagonists, although their therapeutic effects may be due to long-term adjustments of the brain rather than to the acute effects of blocking dopamine receptors. Dopamine antagonists have been used for several other clinical purposes including as ANTIEMETICS, in the treatment of Tourette syndrome, and for hiccup. Dopamine receptor blockade is associated with NEUROLEPTIC MALIGNANT SYNDROME.
A dopamine D2/D3 receptor agonist.
Compounds with BENZENE fused to AZEPINES.
A selective D1 dopamine receptor agonist used primarily as a research tool.
A serotonin receptor antagonist in the CENTRAL NERVOUS SYSTEM used as an antipsychotic.
A serotonin agonist that acts selectively at 5HT1 receptors. It is used in the treatment of MIGRAINE DISORDERS.
A dopamine D1 receptor agonist that is used as an antihypertensive agent. It lowers blood pressure through arteriolar vasodilation.
A subtype of dopamine D1 receptors that has higher affinity for DOPAMINE and differentially couples to GTP-BINDING PROTEINS.
A subtype of dopamine D2 receptors that are highly expressed in the LIMBIC SYSTEM of the brain.
One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action.
Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.
A specific blocker of dopamine receptors. It speeds gastrointestinal peristalsis, causes prolactin release, and is used as antiemetic and tool in the study of dopaminergic mechanisms.
Amides of salicylic acid.
Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action.
A dopamine agonist and serotonin antagonist. It has been used similarly to BROMOCRIPTINE as a dopamine agonist and also for MIGRAINE DISORDERS therapy.
A dopamine D2-receptor antagonist. It has been used therapeutically as an antidepressant, antipsychotic, and as a digestive aid. (From Merck Index, 11th ed)
A selective serotonin receptor antagonist with weak adrenergic receptor blocking properties. The drug is effective in lowering blood pressure in essential hypertension. It also inhibits platelet aggregation. It is well tolerated and is particularly effective in older patients.
Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells.
A spiro butyrophenone analog similar to HALOPERIDOL and other related compounds. It has been recommended in the treatment of SCHIZOPHRENIA.
A subtype of dopamine D2 receptors that has high affinity for the antipsychotic CLOZAPINE.
An antipsychotic agent that is specific for dopamine D2 receptors. It has been shown to be effective in the treatment of schizophrenia.
A derivative of morphine that is a dopamine D2 agonist. It is a powerful emetic and has been used for that effect in acute poisoning. It has also been used in the diagnosis and treatment of parkinsonism, but its adverse effects limit its use.
Drugs that bind to but do not activate serotonin receptors, thereby blocking the actions of serotonin or SEROTONIN RECEPTOR AGONISTS.
A butyrophenone with general properties similar to those of HALOPERIDOL. It has been used in the treatment of aberrant sexual behavior. (From Martindale, The Extra Pharmacopoeia, 30th ed, p567)
A vessel that directly interconnects an artery and a vein, and that acts as a shunt to bypass the capillary bed. Not to be confused with surgical anastomosis, nor with arteriovenous fistula.
A subclass of G-protein coupled SEROTONIN receptors that couple preferentially to the GQ-G11 G-PROTEINS resulting in increased intracellular levels of INOSITOL PHOSPHATES and free CALCIUM.
Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS.
Any drugs that are used for their effects on dopamine receptors, on the life cycle of dopamine, or on the survival of dopaminergic neurons.
A substituted benzamide that has antipsychotic properties. It is a dopamine D2 receptor (see RECEPTORS, DOPAMINE D2) antagonist.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
A semisynthetic ergotamine alkaloid that is a dopamine D2 agonist. It suppresses prolactin secretion.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Cell surface receptors that are specific for INTERLEUKIN-1. Included under this heading are signaling receptors, non-signaling receptors and accessory proteins required for receptor signaling. Signaling from interleukin-1 receptors occurs via interaction with SIGNAL TRANSDUCING ADAPTOR PROTEINS such as MYELOID DIFFERENTIATION FACTOR 88.
Cytosolic signaling adaptor proteins that were initially discovered by their role in the innate immunity (IMMUNITY, INNATE) response of organisms that lack an adaptive immune system. This class of proteins contains three domains, a C-terminal ligand recognition domain, an N-terminal effector-binding domain, and a centrally located nuclear-binding oligomerization domain. Many members of this class contain a C-terminal leucine rich domain which binds to PEPTIDOGLYCAN on the surface of BACTERIA and plays a role in pathogen resistance.
N-methyl-8-azabicyclo[3.2.1]octanes best known for the ones found in PLANTS.
A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279)
A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator.
Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE.
A dopamine D2 agonist. It is used in the treatment of parkinson disease, particularly for alleviation of tremor. It has also been used for circulatory disorders and in other applications as a D2 agonist.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The phylogenetically newer part of the CORPUS STRIATUM consisting of the CAUDATE NUCLEUS and PUTAMEN. It is often called simply the striatum.
A vasoconstrictor found in ergot of Central Europe. It is a serotonin agonist that has been used as an oxytocic agent and in the treatment of MIGRAINE DISORDERS.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
The observable response an animal makes to any situation.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA.
Proteins found in any species of insect.
An ergot derivative that is a congener of LYSERGIC ACID DIETHYLAMIDE. It antagonizes the effects of serotonin in blood vessels and gastrointestinal smooth muscle, but has few of the properties of other ergot alkaloids. Methysergide is used prophylactically in migraine and other vascular headaches and to antagonize serotonin in the carcinoid syndrome.
An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake.
The amount of PLASMA that perfuses the KIDNEYS per unit time, approximately 10% greater than effective renal plasma flow (RENAL PLASMA FLOW, EFFECTIVE). It should be differentiated from the RENAL BLOOD FLOW; (RBF), which refers to the total volume of BLOOD flowing through the renal vasculature, while the renal plasma flow refers to the rate of plasma flow (RPF).
A large family of cell surface receptors that bind conserved molecular structures (PAMPS) present in pathogens. They play important roles in host defense by mediating cellular responses to pathogens.
The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Endogenous compounds and drugs that specifically stimulate SEROTONIN 5-HT2 RECEPTORS. Included under this heading are agonists for one or more of the specific 5-HT2 receptor subtypes.
Partially saturated 1,2,3,4-tetrahydronaphthalene compounds.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A group of compounds that contain the structure SO2NH2.
Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
A mitosporic fungal genus. Teleomorphs are found in the family Clavicipitaceae and include Cordyceps bassiana. The species Beauveria bassiana is a common pathogen of ARTHROPODS and is used in PEST CONTROL.
A tricylic dibenzodiazepine, classified as an atypical antipsychotic agent. It binds several types of central nervous system receptors, and displays a unique pharmacological profile. Clozapine is a serotonin antagonist, with strong binding to 5-HT 2A/2C receptor subtype. It also displays strong affinity to several dopaminergic receptors, but shows only weak antagonism at the dopamine D2 receptor, a receptor commonly thought to modulate neuroleptic activity. Agranulocytosis is a major adverse effect associated with administration of this agent.
Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders).
Hormones secreted by insects. They influence their growth and development. Also synthetic substances that act like insect hormones.
Established cell cultures that have the potential to propagate indefinitely.
The physical activity of a human or an animal as a behavioral phenomenon.
Drugs that block the transport of DOPAMINE into axon terminals or into storage vesicles within terminals. Most of the ADRENERGIC UPTAKE INHIBITORS also inhibit dopamine uptake.
Glycoproteins found on the membrane or surface of cells.
Portion of midbrain situated under the dorsal TECTUM MESENCEPHALI. The two ventrolateral cylindrical masses or peduncles are large nerve fiber bundles providing a tract of passage between the FOREBRAIN with the HINDBRAIN. Ventral MIDBRAIN also contains three colorful structures: the GRAY MATTER (PERIAQUEDUCTAL GRAY), the black substance (SUBSTANTIA NIGRA), and the RED NUCLEUS.
A genus of beetles which infests grain products. Its larva is called mealworm.
New World marsupials of the family Didelphidae. Opossums are omnivorous, largely nocturnal and arboreal MAMMALS, grow to about three feet in length, including the scaly prehensile tail, and have an abdominal pouch in which the young are carried at birth.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A serotonin 1A-receptor agonist that is used experimentally to test the effects of serotonin.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.
Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere.
The ability of the BRAIN to suppress neuronal responses to external sensory inputs, such as auditory and visual stimuli. Sensory filtering (or gating) allows humans to block out irrelevant, meaningless, or redundant stimuli.
A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
A class of proteins involved in the transport of molecules via TRANSPORT VESICLES. They perform functions such as binding to the cell membrane, capturing cargo molecules and promoting the assembly of CLATHRIN. The majority of adaptor proteins exist as multi-subunit complexes, however monomeric varieties have also been found.
A large family of RNA helicases that share a common protein motif with the single letter amino acid sequence D-E-A-D (Asp-Glu-Ala-Asp). In addition to RNA helicase activity, members of the DEAD-box family participate in other aspects of RNA metabolism and regulation of RNA function.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH.
BENZOIC ACID amides.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A NOD-signaling adaptor protein that contains a C-terminal leucine-rich domain which recognizes bacterial PEPTIDOGLYCAN. It signals via an N-terminal caspase recruitment domain that interacts with other CARD SIGNALING ADAPTOR PROTEINS such as RIP SERINE-THEONINE KINASES. It plays a role in the host defense response by signaling the activation of CASPASES and the MAP KINASE SIGNALING SYSTEM.
Phenanthridines are a class of heterocyclic aromatic organic compounds consisting of two benzene rings fused to a pyridine ring, which have been extensively studied for their biological activities, including antimalarial, antibacterial, and antitumor properties.
The action of a drug that may affect the activity, metabolism, or toxicity of another drug.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed)
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Administration of a drug or chemical by the individual under the direction of a physician. It includes administration clinically or experimentally, by human or animal.
Sodium excretion by URINATION.
An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients.
A narcotic analgesic that may be habit-forming. It is a controlled substance (opium derivative) listed in the U.S. Code of Federal Regulations, Title 21 Parts 329.1, 1308.11 (1987). Sale is forbidden in the United States by Federal statute. (Merck Index, 11th ed)
A series of structurally-related alkaloids that contain the ergoline backbone structure.
A family of intracellular signaling kinases that were identified by their ability to signal from the activated INTERLEUKIN-1 RECEPTORS. Signaling from these kinases involves their interaction with SIGNAL TRANSDUCING ADAPTOR PROTEINS such as MYELOID DIFFERENTIATION FACTOR 88 and TNF RECEPTOR-ASSOCIATED FACTOR 6.
A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable.
The largest and most lateral of the BASAL GANGLIA lying between the lateral medullary lamina of the GLOBUS PALLIDUS and the EXTERNAL CAPSULE. It is part of the neostriatum and forms part of the LENTIFORM NUCLEUS along with the GLOBUS PALLIDUS.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
The blood/lymphlike nutrient fluid of some invertebrates.
A subclass of purinergic P2 receptors that signal by means of a ligand-gated ion channel. They are comprised of three P2X subunits which can be identical (homotrimeric form) or dissimilar (heterotrimeric form).
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE.
Activities performed to obtain licit or illicit substances.
A serotonin receptor subtype found at high levels in the BASAL GANGLIA and the frontal cortex. It plays a role as a terminal autoreceptor that regulates the rate of SEROTONIN release from nerve endings. This serotonin receptor subtype is closely related to and has similar drug binding properties as the 5-HT1D RECEPTOR. It is particularly sensitive to the agonist SUMATRIPTAN and may be involved in mediating the drug's antimigraine effect.
A NOD signaling adaptor protein that contains two C-terminal leucine-rich domains which recognize bacterial PEPTIDOGLYCAN. It signals via an N-terminal capase recruitment domain that interacts with other CARD SIGNALING ADAPTOR PROTEINS such as RIP SERINE-THEONINE KINASES. The protein plays a role in the host defense response by signaling the activation of CASPASES and the MAP KINASE SIGNALING SYSTEM. Mutations of the gene encoding the nucleotide oligomerization domain 2 protein have been associated with increased susceptibility to CROHN DISEASE.
The function of opposing or restraining the excitation of neurons or their target excitable cells.
A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The first mixed agonist-antagonist analgesic to be marketed. It is an agonist at the kappa and sigma opioid receptors and has a weak antagonist action at the mu receptor. (From AMA Drug Evaluations Annual, 1991, p97)
A phosphoprotein that was initially identified as a major target of DOPAMINE activated ADENYLYL CYCLASE in the CORPUS STRIATUM. It regulates the activities of PROTEIN PHOSPHATASE-1 and PROTEIN KINASE A, and it is a key mediator of the biochemical, electrophysiological, transcriptional, and behavioral effects of DOPAMINE.
Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A branch of the abdominal aorta which supplies the kidneys, adrenal glands and ureters.
A species of gram-positive, spherical bacteria whose organisms occur in tetrads and in irregular clusters of tetrads. The primary habitat is mammalian skin.
Interferon inducer consisting of a synthetic, mismatched double-stranded RNA. The polymer is made of one strand each of polyinosinic acid and polycytidylic acid.
Pyrrolidines are saturated, heterocyclic organic compounds containing a five-membered ring with four carbon atoms and one nitrogen atom (NRCH2CH2), commonly found as structural components in various alkaloids and used in the synthesis of pharmaceuticals and other organic materials.
Nerve fibers liberating acetylcholine at the synapse after an impulse.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
A pattern recognition receptor that binds DOUBLE-STRANDED RNA. It mediates cellular responses to certain viral pathogens.
An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.
An enzyme of the lyase class that catalyzes the formation of CYCLIC AMP and pyrophosphate from ATP. EC 4.6.1.1.
A nutritional reservoir of fatty tissue found mainly in insects and amphibians.
Piperazines are a class of heterocyclic organic compounds containing a seven-membered ring with two nitrogen atoms at positions 1 and 4, often used in pharmaceuticals as smooth muscle relaxants, antipsychotics, antidepressants, and antihistamines, but can also be found as recreational drugs with stimulant and entactogen properties.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
The nonstriated involuntary muscle tissue of blood vessels.
The representation of the phylogenetically oldest part of the corpus striatum called the paleostriatum. It forms the smaller, more medial part of the lentiform nucleus.
The rostral part of the frontal lobe, bounded by the inferior precentral fissure in humans, which receives projection fibers from the MEDIODORSAL NUCLEUS OF THE THALAMUS. The prefrontal cortex receives afferent fibers from numerous structures of the DIENCEPHALON; MESENCEPHALON; and LIMBIC SYSTEM as well as cortical afferents of visual, auditory, and somatic origin.
The emission of SEMEN to the exterior, resulting from the contraction of muscles surrounding the male internal urogenital ducts.
A family of heterotrimeric GTP-binding protein alpha subunits that were originally identified by their ability to inhibit ADENYLYL CYCLASES. Members of this family can couple to beta and gamma G-protein subunits that activate POTASSIUM CHANNELS. The Gi-Go part of the name is also spelled Gi/Go.
Compounds that bind to and stimulate PURINERGIC P2 RECEPTORS.
A region in the MESENCEPHALON which is dorsomedial to the SUBSTANTIA NIGRA and ventral to the RED NUCLEUS. The mesocortical and mesolimbic dopaminergic systems originate here, including an important projection to the NUCLEUS ACCUMBENS. Overactivity of the cells in this area has been suspected to contribute to the positive symptoms of SCHIZOPHRENIA.
Elements of limited time intervals, contributing to particular results or situations.
A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The interactions between a host and a pathogen, usually resulting in disease.
Multiprotein complexes that mediate the activation of CASPASE-1. Dysregulation of inflammasomes has also been linked to a number of autoinflammatory and autoimmune disorders.
Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS.
A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments.
Drugs used to cause constriction of the blood vessels.
Relatively invariant mode of behavior elicited or determined by a particular situation; may be verbal, postural, or expressive.
The distal terminations of axons which are specialized for the release of neurotransmitters. Also included are varicosities along the course of axons which have similar specializations and also release transmitters. Presynaptic terminals in both the central and peripheral nervous systems are included.
A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies.
A pattern recognition receptor that binds FLAGELLIN. It mediates cellular responses to certain bacterial pathogens.
Use of electric potential or currents to elicit biological responses.
Learning situations in which the sequence responses of the subject are instrumental in producing reinforcement. When the correct response occurs, which involves the selection from among a repertoire of responses, the subject is immediately reinforced.
A family of hexahydropyridines.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
Disorders related or resulting from use of cocaine.
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Hyperpolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during NEUROTRANSMISSION. They are local changes which diminish responsiveness to excitatory signals.
A signal transducing tumor necrosis factor receptor associated factor that is involved in regulation of NF-KAPPA B signalling and activation of JNK MITOGEN-ACTIVATED PROTEIN KINASES.
The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc.
Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation.
The functional hereditary units of INSECTS.
Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
A purinergic P2X neurotransmitter receptor that plays a role in pain sensation signaling and regulation of inflammatory processes.
Wave-like oscillations of electric potential between parts of the brain recorded by EEG.
The strengthening of a conditioned response.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR).
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Large subcortical nuclear masses derived from the telencephalon and located in the basal regions of the cerebral hemispheres.
A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).
A pattern recognition receptor that is expressed in LUNG and in B-LYMPHOCYTES.
A state characterized by loss of feeling or sensation. This depression of nerve function is usually the result of pharmacologic action and is induced to allow performance of surgery or other painful procedures.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-.
Nucleotides in which the base moiety is substituted with one or more sulfur atoms.
Refers to animals in the period of time just after birth.
A group of ISOQUINOLINES in which the nitrogen containing ring is protonated. They derive from the non-enzymatic Pictet-Spengler condensation of CATECHOLAMINES with ALDEHYDES.
A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.
Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
Quinolines are heterocyclic aromatic organic compounds consisting of a two-nitrogened benzene ring fused to a pyridine ring, which have been synthesized and used as building blocks for various medicinal drugs, particularly antibiotics and antimalarials.
The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065)
The most common inhibitory neurotransmitter in the central nervous system.
An outbred strain of rats developed in 1915 by crossing several Wistar Institute white females with a wild gray male. Inbred strains have been derived from this original outbred strain, including Long-Evans cinnamon rats (RATS, INBRED LEC) and Otsuka-Long-Evans-Tokushima Fatty rats (RATS, INBRED OLETF), which are models for Wilson's disease and non-insulin dependent diabetes mellitus, respectively.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes.
A family of serine proteinase inhibitors which are similar in amino acid sequence and mechanism of inhibition, but differ in their specificity toward proteolytic enzymes. This family includes alpha 1-antitrypsin, angiotensinogen, ovalbumin, antiplasmin, alpha 1-antichymotrypsin, thyroxine-binding protein, complement 1 inactivators, antithrombin III, heparin cofactor II, plasminogen inactivators, gene Y protein, placental plasminogen activator inhibitor, and barley Z protein. Some members of the serpin family may be substrates rather than inhibitors of SERINE ENDOPEPTIDASES, and some serpins occur in plants where their function is not known.
Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA).
A long pro-domain caspase that has specificity for the precursor form of INTERLEUKIN-1BETA. It plays a role in INFLAMMATION by catalytically converting the inactive forms of CYTOKINES such as interleukin-1beta to their active, secreted form. Caspase 1 is referred as interleukin-1beta converting enzyme and is frequently abbreviated ICE.

Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. (1/3916)

TLR4 is a member of the recently identified Toll-like receptor family of proteins and has been putatively identified as Lps, the gene necessary for potent responses to lipopolysaccharide in mammals. In order to determine whether TLR4 is involved in lipopolysaccharide-induced activation of the nuclear factor-kappaB (NF-kappaB) pathway, HEK 293 cells were transiently transfected with human TLR4 cDNA and an NF-kappaB-dependent luciferase reporter plasmid followed by stimulation with lipopolysaccharide/CD14 complexes. The results demonstrate that lipopolysaccharide stimulates NF-kappaB-mediated gene expression in cells transfected with the TLR4 gene in a dose- and time-dependent fashion. Furthermore, E5531, a lipopolysaccharide antagonist, blocked TLR4-mediated transgene activation in a dose-dependent manner (IC50 approximately 30 nM). These data demonstrate that TLR4 is involved in lipopolysaccharide signaling and serves as a cell-surface co-receptor for CD14, leading to lipopolysaccharide-mediated NF-kappaB activation and subsequent cellular events.  (+info)

Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. (2/3916)

The induction of immunity genes in Drosophila has been proposed to be dependent on Dorsal, Dif, and Relish, the NF-kappaB-related factors. Here we provide genetic evidence that Dif is required for the induction of only a subset of antimicrobial peptide genes. The results show that the presence of Dif without Dorsal is sufficient to mediate the induction of drosomycin and defensin. We also demonstrate that Dif is a downstream component of the Toll signaling pathway in activating the drosomycin expression. These results reveal that individual members of the NF-kappaB family in Drosophila have distinct roles in immunity and development.  (+info)

Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. (3/3916)

The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-kappaB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.  (+info)

Cutting edge: functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: in vivo evidence for a dominant negative mutation. (4/3916)

A point mutation in the Tlr4 gene, which encodes Toll-like receptor 4, has recently been proposed to underlie LPS hyporesponsiveness in C3H/HeJ mice (Lpsd). The data presented herein demonstrate that F1 progeny from crosses between mice that carry a approximately 9-cM deletion of chromosome 4 (including deletion of LpsTlr4) and C3H/HeJ mice (i.e., Lps0 x Lpsd F1 mice) exhibit a pattern of LPS sensitivity, measured by TNF activity, that is indistinguishable from that exhibited by Lpsn x Lpsd F1 progeny and whose average response is "intermediate" to parental responses. Thus, these data provide clear functional support for the hypothesis that the C3H/HeJ defect exerts a dominant negative effect on LPS sensitivity; however, expression of a normal Toll-like receptor 4 molecule is apparently not required.  (+info)

Cutting edge: cells that carry A null allele for toll-like receptor 2 are capable of responding to endotoxin. (5/3916)

Toll-like receptor (TLR) 2 and TLR4 have been implicated in the responses of cells to LPS (endotoxin). CD14-transfected Chinese hamster ovary (CHO)-K1 fibroblasts (CHO/CD14) are exquisitely sensitive to endotoxin. Sequence analysis of CHO-TLR2, compared with human and mouse TLR2, revealed a single base pair deletion. This frameshift mutation resulted in an alternative stop codon, encoding a protein devoid of transmembrane and intracellular domains. CHO-TLR2 cDNA failed to enable LPS signaling upon transient transfection into human epithelial kidney 293 cells. Site-directed mutagenesis of CHO-TLR2 enabled expression of a presumed full-length hamster TLR2 that conferred LPS responsiveness in human epithelial kidney 293 cells. Genomic TLR2 DNA from primary hamster macrophages also contained the frameshift mutation found in CHO fibroblasts. Nevertheless, hamster peritoneal macrophages were found to respond normally to LPS, as evidenced by the induction of cytokines. These results imply that expression of TLR2 is sufficient but not essential for mammalian responses to endotoxin.  (+info)

MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. (6/3916)

Toll-like receptor 4 (TLR4) is a mammalian homologue of Drosophila Toll, a leucine-rich repeat molecule that can trigger innate responses against pathogens. The TLR4 gene has recently been shown to be mutated in C3H/HeJ and C57BL/10ScCr mice, both of which are low responders to lipopolysaccharide (LPS). TLR4 may be a long-sought receptor for LPS. However, transfection of TLR4 does not confer LPS responsiveness on a recipient cell line, suggesting a requirement for an additional molecule. Here, we report that a novel molecule, MD-2, is requisite for LPS signaling of TLR4. MD-2 is physically associated with TLR4 on the cell surface and confers responsiveness to LPS. MD-2 is thus a link between TLR4 and LPS signaling. Identification of this new receptor complex has potential implications for understanding host defense, as well as pathophysiologic, mechanisms.  (+info)

Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. (7/3916)

The life-threatening complications of sepsis in humans are elicited by infection with Gram-negative as well as Gram-positive bacteria. Recently, lipopolysaccharide (LPS), a major biologically active agent of Gram-negative bacteria, was shown to mediate cellular activation by a member of the human Toll-like receptor family, Toll-like receptor (TLR) 2. Here we investigate the mechanism of cellular activation by soluble peptidoglycan (sPGN) and lipoteichoic acid (LTA), main stimulatory components of Gram-positive bacteria. Like LPS, sPGN and LTA bind to the glycosylphosphatidylinositol-anchored membrane protein CD14 and induce activation of the transcription factor NF-kappaB in host cells like macrophages. We show that whole Gram-positive bacteria, sPGN and LTA induce the activation of NF-kappaB in HEK293 cells expressing TLR2 but not in cells expressing TLR1 or TLR4. The sPGN- and LTA-induced NF-kappaB activation was not inhibited by polymyxin B, an antibiotic that binds and neutralizes LPS. Coexpression together with membrane CD14 enhances sPGN signal transmission through TLR2. In contrast to LPS signaling, activation of TLR2 by sPGN and LTA does not require serum. These findings identify TLR2 as a signal transducer for sPGN and LTA in addition to LPS.  (+info)

A single growth cone is capable of integrating simultaneously presented and functionally distinct molecular cues during target recognition. (8/3916)

A variety of cell recognition pathways affect neuronal target recognition. However, whether such pathways can converge at the level of a single growth cone is not well known. The RP3 motoneuron in Drosophila has previously been shown to respond to the muscle cell surface molecules TOLL and fasciclin III (FAS3), which are normally encountered during RP3 pathfinding in a sequential manner. TOLL and FAS3, putative "negative" and "positive" recognition molecules, respectively, affect RP3 antagonistically. Under normal conditions, TOLL and FAS3 together improve the accuracy of its target recognition. Here, we show that, when presented with concurrent TOLL and FAS3 expression, RP3 responds to both, integrating their effects. This was demonstrated most succinctly by single cell visualization methods. When a balance in relative expression levels between the two antagonistic cues is achieved, the RP3 growth cone exhibits a phenotype virtually identical to that seen when neither TOLL nor FAS3 is misexpressed. Thus, growth cones are capable of quantitatively evaluating distinct recognition cues and integrating them to attain a net result, in effect responding to the "balance of power" between positive and negative influences. We suggest that the ability to integrate multiple recognition pathways in real-time is one important way in which an individual growth cone interprets and navigates complex molecular environments.  (+info)

Toll-Like Receptor 4 (TLR4) is a type of protein found on the surface of some cells in the human body, including immune cells like macrophages and dendritic cells. It belongs to a class of proteins called pattern recognition receptors (PRRs), which play a crucial role in the innate immune system's response to infection.

TLR4 recognizes and responds to specific molecules found on gram-negative bacteria, such as lipopolysaccharide (LPS), also known as endotoxin. When TLR4 binds to LPS, it triggers a signaling cascade that leads to the activation of immune cells, production of pro-inflammatory cytokines and chemokines, and initiation of the adaptive immune response.

TLR4 is an essential component of the body's defense against gram-negative bacterial infections, but its overactivation can also contribute to the development of various inflammatory diseases, such as sepsis, atherosclerosis, and certain types of cancer.

Toll-like receptors (TLRs) are a type of pattern recognition receptors (PRRs) that play a crucial role in the innate immune system. They are transmembrane proteins located on the surface of various immune cells, including macrophages, dendritic cells, and B cells. TLRs recognize specific patterns of molecules called pathogen-associated molecular patterns (PAMPs) that are found on microbes such as bacteria, viruses, fungi, and parasites.

Once TLRs bind to PAMPs, they initiate a signaling cascade that activates the immune response, leading to the production of cytokines and chemokines, which in turn recruit and activate other immune cells. TLRs also play a role in the adaptive immune response by activating antigen-presenting cells and promoting the differentiation of T cells.

There are ten known human TLRs, each with distinct ligand specificity and cellular localization. TLRs can be found on the cell surface or within endosomes, where they recognize different types of PAMPs. For example, TLR4 recognizes lipopolysaccharides (LPS) found on gram-negative bacteria, while TLR3 recognizes double-stranded RNA from viruses.

Overall, TLRs are critical components of the immune system's ability to detect and respond to infections, and dysregulation of TLR signaling has been implicated in various inflammatory diseases and cancers.

Toll-like receptor 6 (TLR6) is a type of protein belonging to the Toll-like receptor (TLR) family, which plays a crucial role in the innate immune system. TLRs are responsible for recognizing various pathogen-associated molecular patterns (PAMPs) derived from microbes such as bacteria, viruses, fungi, and parasites.

TLR6 is primarily expressed on the surface of sentinel cells like macrophages, dendritic cells, and B cells. It functions in conjunction with another TLR, TLR2, forming a heterodimer (TLR2/6) to recognize specific PAMPs. The TLR2/6 complex is known to detect diacylated lipopeptides found on the cell walls of certain Gram-positive bacteria and mycoplasma.

Once TLR6 recognizes its ligand, it triggers a signaling cascade that leads to the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs). These transcription factors induce the expression of proinflammatory cytokines, chemokines, and costimulatory molecules necessary for initiating an immune response against the invading pathogen.

In summary, TLR6 is a vital component of the innate immune system that helps recognize specific microbial components and subsequently activates downstream signaling pathways to orchestrate an effective immune response.

Toll-like receptor 9 (TLR9) is a type of protein belonging to the family of Toll-like receptors, which play a crucial role in the innate immune system. TLR9 is primarily expressed on the endosomal membranes of various immune cells, including dendritic cells, B cells, and macrophages. It recognizes specific molecular patterns, particularly unmethylated CpG DNA motifs, which are commonly found in bacterial and viral genomes but are underrepresented in vertebrate DNA.

Upon recognition and binding to its ligands, TLR9 initiates a signaling cascade that activates various transcription factors, such as NF-κB and IRF7, leading to the production of proinflammatory cytokines, type I interferons, and the activation of adaptive immune responses. This process is essential for the clearance of pathogens and the development of immunity against them. Dysregulation of TLR9 signaling has been implicated in several autoimmune diseases and chronic inflammatory conditions.

Toll-like receptor 2 (TLR2) is a type of protein belonging to the family of pattern recognition receptors (PRRs), which play a crucial role in the innate immune system's response to pathogens. TLR2 is primarily expressed on the surface of various immune cells, including monocytes, macrophages, dendritic cells, and B cells.

TLR2 recognizes a wide range of microbial components, such as lipopeptides, lipoteichoic acid, and zymosan, derived from both gram-positive and gram-negative bacteria, fungi, and certain viruses. Upon recognition and binding to these ligands, TLR2 initiates a signaling cascade that activates various transcription factors, leading to the production of proinflammatory cytokines, chemokines, and costimulatory molecules. This response is essential for the activation and recruitment of immune cells to the site of infection, thereby contributing to the clearance of invading pathogens.

In summary, TLR2 is a vital pattern recognition receptor that helps the innate immune system detect and respond to various microbial threats by initiating an inflammatory response upon ligand binding.

Myeloid Differentiation Factor 88 (MYD88) is a signaling adaptor protein that plays a crucial role in the innate immune response. It is involved in the signal transduction pathways of several Toll-like receptors (TLRs), which are pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs).

Upon activation of TLRs, MYD88 is recruited to the receptor complex where it interacts with IL-1 receptor-associated kinase 4 (IRAK4) and activates IRAK1. This leads to the activation of downstream signaling pathways, including the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB), resulting in the production of proinflammatory cytokines and type I interferons.

MYD88 is widely expressed in various cell types, including hematopoietic cells, endothelial cells, and fibroblasts. Mutations in MYD88 have been associated with several human diseases, such as lymphomas, leukemias, and autoimmune disorders.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Innate immunity, also known as non-specific immunity or natural immunity, is the inherent defense mechanism that provides immediate protection against potentially harmful pathogens (like bacteria, viruses, fungi, and parasites) without the need for prior exposure. This type of immunity is present from birth and does not adapt to specific threats over time.

Innate immune responses involve various mechanisms such as:

1. Physical barriers: Skin and mucous membranes prevent pathogens from entering the body.
2. Chemical barriers: Enzymes, stomach acid, and lysozyme in tears, saliva, and sweat help to destroy or inhibit the growth of microorganisms.
3. Cellular responses: Phagocytic cells (neutrophils, monocytes, macrophages) recognize and engulf foreign particles and pathogens, while natural killer (NK) cells target and eliminate virus-infected or cancerous cells.
4. Inflammatory response: When an infection occurs, the innate immune system triggers inflammation to increase blood flow, recruit immune cells, and remove damaged tissue.
5. Complement system: A group of proteins that work together to recognize and destroy pathogens directly or enhance phagocytosis by coating them with complement components (opsonization).

Innate immunity plays a crucial role in initiating the adaptive immune response, which is specific to particular pathogens and provides long-term protection through memory cells. Both innate and adaptive immunity work together to maintain overall immune homeostasis and protect the body from infections and diseases.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

Dopamine D1 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as D1-like receptors, along with D5 receptors, and are activated by dopamine through a stimulatory G protein (Gs).

D1 receptors are widely expressed in the central nervous system, including the striatum, prefrontal cortex, hippocampus, and amygdala. They play important roles in various physiological functions, such as movement control, motivation, reward processing, working memory, and cognition.

Activation of D1 receptors leads to increased levels of intracellular cyclic adenosine monophosphate (cAMP) and activation of protein kinase A (PKA), which in turn modulate the activity of various downstream signaling pathways. Dysregulation of dopamine D1 receptor function has been implicated in several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), and drug addiction.

Dopamine D2 receptor is a type of metabotropic G protein-coupled receptor that binds to the neurotransmitter dopamine. It is one of five subtypes of dopamine receptors (D1-D5) and is encoded by the gene DRD2. The activation of D2 receptors leads to a decrease in the activity of adenylyl cyclase, which results in reduced levels of cAMP and modulation of ion channels.

D2 receptors are widely distributed throughout the central nervous system (CNS) and play important roles in various physiological functions, including motor control, reward processing, emotion regulation, and cognition. They are also involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, drug addiction, and Tourette syndrome.

D2 receptors have two main subtypes: D2 short (D2S) and D2 long (D2L). The D2S subtype is primarily located in the presynaptic terminals and functions as an autoreceptor that regulates dopamine release, while the D2L subtype is mainly found in the postsynaptic neurons and modulates intracellular signaling pathways.

Antipsychotic drugs, which are used to treat schizophrenia and other psychiatric disorders, work by blocking D2 receptors. However, excessive blockade of these receptors can lead to side effects such as extrapyramidal symptoms (EPS), tardive dyskinesia, and hyperprolactinemia. Therefore, the development of drugs that selectively target specific subtypes of dopamine receptors is an active area of research in the field of neuropsychopharmacology.

Dopamine agonists are a class of medications that mimic the action of dopamine, a neurotransmitter in the brain that regulates movement, emotion, motivation, and reinforcement of rewarding behaviors. These medications bind to dopamine receptors in the brain and activate them, leading to an increase in dopaminergic activity.

Dopamine agonists are used primarily to treat Parkinson's disease, a neurological disorder characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. By increasing dopaminergic activity in the brain, dopamine agonists can help alleviate some of these symptoms.

Examples of dopamine agonists include:

1. Pramipexole (Mirapex)
2. Ropinirole (Requip)
3. Rotigotine (Neupro)
4. Apomorphine (Apokyn)

Dopamine agonists may also be used off-label to treat other conditions, such as restless legs syndrome or certain types of dopamine-responsive dystonia. However, these medications can have significant side effects, including nausea, dizziness, orthostatic hypotension, compulsive behaviors (such as gambling, shopping, or sexual addiction), and hallucinations. Therefore, they should be used with caution and under the close supervision of a healthcare provider.

Dopamine antagonists are a class of drugs that block the action of dopamine, a neurotransmitter in the brain associated with various functions including movement, motivation, and emotion. These drugs work by binding to dopamine receptors and preventing dopamine from attaching to them, which can help to reduce the symptoms of certain medical conditions such as schizophrenia, bipolar disorder, and gastroesophageal reflux disease (GERD).

There are several types of dopamine antagonists, including:

1. Typical antipsychotics: These drugs are primarily used to treat psychosis, including schizophrenia and delusional disorders. Examples include haloperidol, chlorpromazine, and fluphenazine.
2. Atypical antipsychotics: These drugs are also used to treat psychosis but have fewer side effects than typical antipsychotics. They may also be used to treat bipolar disorder and depression. Examples include risperidone, olanzapine, and quetiapine.
3. Antiemetics: These drugs are used to treat nausea and vomiting. Examples include metoclopramide and prochlorperazine.
4. Dopamine agonists: While not technically dopamine antagonists, these drugs work by stimulating dopamine receptors and can be used to treat conditions such as Parkinson's disease. However, they can also have the opposite effect and block dopamine receptors in high doses, making them functionally similar to dopamine antagonists.

Common side effects of dopamine antagonists include sedation, weight gain, and movement disorders such as tardive dyskinesia. It's important to use these drugs under the close supervision of a healthcare provider to monitor for side effects and adjust the dosage as needed.

Quinpirole is not a medical condition or disease, but rather a synthetic compound used in research and medicine. It's a selective agonist for the D2 and D3 dopamine receptors, which means it binds to and activates these receptors, mimicking the effects of dopamine, a neurotransmitter involved in various physiological processes such as movement, motivation, reward, and cognition.

Quinpirole is used primarily in preclinical research to study the role of dopamine receptors in different neurological conditions, including Parkinson's disease, schizophrenia, drug addiction, and others. It helps researchers understand how dopamine systems work and contributes to the development of new therapeutic strategies for these disorders.

It is important to note that quinpirole is not used as a medication in humans or animals but rather as a research tool in laboratory settings.

Benzazepines are a class of heterocyclic compounds that contain a benzene fused to a diazepine ring. In the context of pharmaceuticals, benzazepines refer to a group of drugs with various therapeutic uses, such as antipsychotics and antidepressants. Some examples of benzazepine-derived drugs include clozapine, olanzapine, and loxoprofen. These drugs have complex mechanisms of action, often involving multiple receptor systems in the brain.

The compound 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine is a type of benzazepine derivative. Benzazepines are a class of heterocyclic compounds containing a benzene fused to a diazepine ring. Specifically, 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine is a derivative with a phenyl group attached to the benzazepine ring and two hydroxyl groups at positions 7 and 8 of the diazepine ring.

This compound does not have a specific medical definition, as it is not a drug or a medication that is used in clinical practice. However, like many other chemical compounds, it may have potential uses in pharmaceutical research and development, including as a lead compound for the design and synthesis of new drugs with therapeutic activity.

It's worth noting that the specific biological activity and medical relevance of this compound would depend on its chemical properties and any interactions it may have with biological systems, which would need to be studied in detail through scientific research.

Methiothepin is a non-selective, irreversible antagonist of serotonin (5-HT) receptors, particularly 5-HT1, 5-HT2, and 5-HT3 receptors. It has also been found to act as an antagonist at dopamine D2 receptors and histamine H1 receptors. Methiothepin has been used in research to study the roles of serotonin and other neurotransmitters in various physiological processes, but it is not commonly used clinically due to its lack of selectivity and potential for causing severe side effects.

Sumatriptan is a selective serotonin receptor agonist, specifically targeting the 5-HT1D and 5-HT1B receptors. It is primarily used to treat migraines and cluster headaches. Sumatriptan works by narrowing blood vessels around the brain and reducing inflammation that leads to migraine symptoms.

The medication comes in various forms, including tablets, injectables, and nasal sprays. Common side effects of sumatriptan include feelings of warmth or hotness, tingling, tightness, pressure, heaviness, pain, or burning in the neck, throat, jaw, chest, or arms.

It is important to note that sumatriptan should not be used if a patient has a history of heart disease, stroke, or uncontrolled high blood pressure. Additionally, it should not be taken within 24 hours of using another migraine medication containing ergotamine or similar drugs such as dihydroergotamine, methysergide, or caffeine-containing analgesics.

Fenoldopam is a selective peripheral dopamine-1 receptor agonist used in the treatment of severe hypertension. It works by relaxing blood vessels, which lowers blood pressure. It is typically administered through a continuous intravenous (IV) infusion in a hospital setting.

Here's a brief medical definition:

Fenoldopam: A selective dopamine-1 receptor agonist, chemically described as (±)-(3-hydroxy-1,2,3,4-tetrahydro-2-naphthalenyl)methylamine, used as a potent vasodilator in the treatment of severe hypertension. It acts on dopamine receptors found in vascular smooth muscle, causing relaxation and decreased peripheral resistance, thereby reducing blood pressure. Fenoldopam is available for intravenous administration.

Dopamine D5 receptor is a type of dopamine receptor that belongs to the family of G protein-coupled receptors. It is also known as D5R or DRD5. These receptors are found in various parts of the brain, including the cortex and the hippocampus.

The activation of Dopamine D5 receptors leads to the stimulation of several intracellular signaling pathways, including the cAMP-dependent pathway, which results in the modulation of neuronal excitability, neurotransmitter release, and other cellular functions.

Dopamine D5 receptors have been implicated in various physiological processes, such as cognition, emotion, motor control, and reward processing. They have also been associated with several neurological and psychiatric disorders, including schizophrenia, Parkinson's disease, attention deficit hyperactivity disorder (ADHD), and drug addiction.

The medical definition of "Receptors, Dopamine D5" can be summarized as follows:

Dopamine D5 receptor is a type of G protein-coupled receptor that binds dopamine and activates several intracellular signaling pathways, leading to the modulation of various physiological processes. These receptors have been implicated in several neurological and psychiatric disorders and are a target for drug development.

Dopamine D3 receptors are a type of G protein-coupled receptor that bind to the neurotransmitter dopamine. They are classified as part of the D2-like family of dopamine receptors, which also includes the D2 and D4 receptors. The D3 receptor is primarily expressed in the limbic areas of the brain, including the hippocampus and the nucleus accumbens, where it plays a role in regulating motivation, reward, and cognition.

D3 receptors have been found to be involved in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, and drug addiction. In Parkinson's disease, the loss of dopamine-producing neurons in the substantia nigra results in a decrease in dopamine levels and an increase in D3 receptor expression. This increase in D3 receptor expression has been linked to the development of motor symptoms such as bradykinesia and rigidity.

In schizophrenia, antipsychotic medications that block D2-like receptors, including D3 receptors, are used to treat positive symptoms such as hallucinations and delusions. However, selective D3 receptor antagonists have also been shown to have potential therapeutic effects in treating negative symptoms of schizophrenia, such as apathy and anhedonia.

In drug addiction, D3 receptors have been found to play a role in the rewarding effects of drugs of abuse, such as cocaine and amphetamines. Selective D3 receptor antagonists have shown promise in reducing drug-seeking behavior and preventing relapse in animal models of addiction.

Overall, dopamine D3 receptors play an important role in several neurological and psychiatric disorders, and further research is needed to fully understand their functions and potential therapeutic uses.

Dopamine is a type of neurotransmitter, which is a chemical messenger that transmits signals in the brain and nervous system. It plays several important roles in the body, including:

* Regulation of movement and coordination
* Modulation of mood and motivation
* Control of the reward and pleasure centers of the brain
* Regulation of muscle tone
* Involvement in memory and attention

Dopamine is produced in several areas of the brain, including the substantia nigra and the ventral tegmental area. It is released by neurons (nerve cells) and binds to specific receptors on other neurons, where it can either excite or inhibit their activity.

Abnormalities in dopamine signaling have been implicated in several neurological and psychiatric conditions, including Parkinson's disease, schizophrenia, and addiction.

NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) is a protein complex that plays a crucial role in regulating the immune response to infection and inflammation, as well as in cell survival, differentiation, and proliferation. It is composed of several subunits, including p50, p52, p65 (RelA), c-Rel, and RelB, which can form homodimers or heterodimers that bind to specific DNA sequences called κB sites in the promoter regions of target genes.

Under normal conditions, NF-κB is sequestered in the cytoplasm by inhibitory proteins known as IκBs (inhibitors of κB). However, upon stimulation by various signals such as cytokines, bacterial or viral products, and stress, IκBs are phosphorylated, ubiquitinated, and degraded, leading to the release and activation of NF-κB. Activated NF-κB then translocates to the nucleus, where it binds to κB sites and regulates the expression of target genes involved in inflammation, immunity, cell survival, and proliferation.

Dysregulation of NF-κB signaling has been implicated in various pathological conditions such as cancer, chronic inflammation, autoimmune diseases, and neurodegenerative disorders. Therefore, targeting NF-κB signaling has emerged as a potential therapeutic strategy for the treatment of these diseases.

Domperidone is a medication that belongs to the class of dopamine antagonists. It works by blocking the action of dopamine, a chemical in the brain that can cause nausea and vomiting. Domperidone is primarily used to treat symptoms of gastroesophageal reflux disease (GERD) and gastric motility disorders, including bloating, fullness, and regurgitation. It works by increasing the contractions of the stomach muscles, which helps to move food and digestive juices through the stomach more quickly.

Domperidone is available in various forms, such as tablets, suspension, and injection. The medication is generally well-tolerated, but it can cause side effects such as dry mouth, diarrhea, headache, and dizziness. In rare cases, domperidone may cause more serious side effects, including irregular heart rhythms, tremors, or muscle stiffness.

It is important to note that domperidone has a risk of causing cardiac arrhythmias, particularly at higher doses and in patients with pre-existing heart conditions. Therefore, it should be used with caution and only under the supervision of a healthcare professional.

Salicylamides are organic compounds that consist of a salicylic acid molecule (a type of phenolic acid) linked to an amide group. They are derivatives of salicylic acid and are known for their analgesic, anti-inflammatory, and antipyretic properties. Salicylamides have been used in various pharmaceutical and therapeutic applications, including the treatment of pain, fever, and inflammation. However, they have largely been replaced by other compounds such as acetylsalicylic acid (aspirin) due to their lower potency and potential side effects.

Serotonin receptors are a type of cell surface receptor that bind to the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). They are widely distributed throughout the body, including the central and peripheral nervous systems, where they play important roles in regulating various physiological processes such as mood, appetite, sleep, memory, learning, and cognition.

There are seven different classes of serotonin receptors (5-HT1 to 5-HT7), each with multiple subtypes, that exhibit distinct pharmacological properties and signaling mechanisms. These receptors are G protein-coupled receptors (GPCRs) or ligand-gated ion channels, which activate intracellular signaling pathways upon serotonin binding.

Serotonin receptors have been implicated in various neurological and psychiatric disorders, including depression, anxiety, schizophrenia, and migraine. Therefore, selective serotonin receptor agonists or antagonists are used as therapeutic agents for the treatment of these conditions.

Methysergide, commonly known as methylergometrine or metergoline, is not typically considered a medication in the medical field. It is actually a derivative of ergot alkaloids, which are fungal metabolites that have been used in medicine for their vasoconstrictive and oxytocic properties.

Methysergide has been used in the past as a migraine prophylaxis medication due to its ability to block serotonin receptors in the brain. However, its use is now limited due to its potential to cause serious side effects such as fibrotic reactions in various organs, including the heart, lungs, and kidneys.

Therefore, methysergide/metergoline is not commonly used in modern medical practice, and its use is typically reserved for highly specific cases under close medical supervision.

Sulpiride is an antipsychotic drug that belongs to the chemical class of benzamides. It primarily acts as a selective dopamine D2 and D3 receptor antagonist. Sulpiride is used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. In addition, it has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract.

The medical definition of Sulpiride is as follows:

Sulpiride (INN, BAN), also known as Sultopride (USAN) or SP, is a selective dopamine D2 and D3 receptor antagonist used in the treatment of various psychiatric disorders such as schizophrenia, psychosis, anxiety, and depression. It has been found to be effective in managing gastrointestinal disorders like gastroparesis due to its prokinetic effects on the gastrointestinal tract. Sulpiride is available under various brand names worldwide, including Dogmatil, Sulpitac, and Espirid."

Please note that this definition includes information about the drug's therapeutic uses, which are essential aspects of understanding a medication in its entirety.

Ketanserin is a medication that belongs to a class of drugs called serotonin antagonists. It works by blocking the action of serotonin, a neurotransmitter in the brain, on certain types of receptors. Ketanserin is primarily used for its blood pressure-lowering effects and is also sometimes used off-label to treat anxiety disorders and alcohol withdrawal syndrome.

It's important to note that ketanserin is not approved by the FDA for use in the United States, but it may be available in other countries as a prescription medication. As with any medication, ketanserin should only be used under the supervision of a healthcare provider and should be taken exactly as prescribed.

Dopamine receptors are a type of G protein-coupled receptor that bind to and respond to the neurotransmitter dopamine. There are five subtypes of dopamine receptors (D1-D5), which are classified into two families based on their structure and function: D1-like (D1 and D5) and D2-like (D2, D3, and D4).

Dopamine receptors play a crucial role in various physiological processes, including movement, motivation, reward, cognition, emotion, and neuroendocrine regulation. They are widely distributed throughout the central nervous system, with high concentrations found in the basal ganglia, limbic system, and cortex.

Dysfunction of dopamine receptors has been implicated in several neurological and psychiatric disorders, such as Parkinson's disease, schizophrenia, attention deficit hyperactivity disorder (ADHD), drug addiction, and depression. Therefore, drugs targeting dopamine receptors have been developed for the treatment of these conditions.

Spiperone is an antipsychotic drug that belongs to the chemical class of diphenylbutylpiperidines. It has potent dopamine D2 receptor blocking activity and moderate serotonin 5-HT2A receptor affinity. Spiperone is used primarily in research settings for its ability to bind to and block dopamine receptors, which helps scientists study the role of dopamine in various physiological processes.

In clinical practice, spiperone has been used off-label to treat chronic schizophrenia, but its use is limited due to its significant side effects, including extrapyramidal symptoms (involuntary muscle movements), tardive dyskinesia (irregular, jerky movements), and neuroleptic malignant syndrome (a rare but potentially fatal complication characterized by fever, muscle rigidity, and autonomic instability).

It's important to note that spiperone is not approved by the US Food and Drug Administration (FDA) for use in the United States. Its use is more common in research settings or in countries where it may be approved for specific indications.

Dopamine D4 receptor (DRD4) is a type of dopamine receptor that belongs to the family of G protein-coupled receptors. It is activated by the neurotransmitter dopamine and plays a role in various physiological functions, including regulation of movement, motivation, reward processing, cognition, and emotional responses.

The DRD4 gene contains a variable number of tandem repeats (VNTR) polymorphism in its coding region, which results in different isoforms of the receptor with varying lengths of the third intracellular loop. This genetic variation has been associated with several neuropsychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD), substance use disorders, and personality traits like novelty seeking.

The D4 receptor is widely expressed in the brain, particularly in the limbic system, prefrontal cortex, hippocampus, and amygdala. It has a lower affinity for dopamine than other dopamine receptors (D1-D3) and exhibits a slower rate of dissociation from dopamine, suggesting that it may act as a modulator of dopaminergic signaling rather than a primary mediator.

In summary, the Dopamine D4 receptor is a type of dopamine receptor involved in various physiological functions and has been associated with several neuropsychiatric disorders due to genetic variations in its coding region.

Remoxipride is not a medication that is currently in medical use. It was a antipsychotic drug that was used in the treatment of schizophrenia, but it was withdrawn from the market in the late 1990s due to concerns about its safety. Specifically, it was found to be associated with an increased risk of a serious side effect called agranulocytosis, which is a condition characterized by a dangerously low white blood cell count.

Remoxipride belongs to a class of drugs known as benzamides, which are a type of atypical antipsychotic. These medications work by blocking the action of dopamine, a neurotransmitter in the brain that is thought to play a role in the development of psychosis. However, remoxipride has been replaced by other, safer and more effective antipsychotic medications.

It's important to note that if you are taking any medication, it is always best to consult with your healthcare provider for accurate information about its uses, side effects, and potential risks. They can provide you with the most up-to-date information and help you make informed decisions about your treatment.

Apomorphine is a non-selective dopamine receptor agonist, which means that it activates dopamine receptors in the brain. It has a high affinity for D1 and D2 dopamine receptors and is used medically to treat Parkinson's disease, particularly in cases of severe or intractable motor fluctuations.

Apomorphine can be administered subcutaneously (under the skin) as a solution or as a sublingual (under the tongue) film. It works by stimulating dopamine receptors in the brain, which helps to reduce the symptoms of Parkinson's disease such as stiffness, tremors, and difficulty with movement.

In addition to its use in Parkinson's disease, apomorphine has also been investigated for its potential therapeutic benefits in other neurological disorders, including alcohol use disorder and drug addiction. However, more research is needed to establish its safety and efficacy in these conditions.

Serotonin antagonists are a class of drugs that block the action of serotonin, a neurotransmitter, at specific receptor sites in the brain and elsewhere in the body. They work by binding to the serotonin receptors without activating them, thereby preventing the natural serotonin from binding and transmitting signals.

Serotonin antagonists are used in the treatment of various conditions such as psychiatric disorders, migraines, and nausea and vomiting associated with cancer chemotherapy. They can have varying degrees of affinity for different types of serotonin receptors (e.g., 5-HT2A, 5-HT3, etc.), which contributes to their specific therapeutic effects and side effect profiles.

Examples of serotonin antagonists include ondansetron (used to treat nausea and vomiting), risperidone and olanzapine (used to treat psychiatric disorders), and methysergide (used to prevent migraines). It's important to note that these medications should be used under the supervision of a healthcare provider, as they can have potential risks and interactions with other drugs.

Benperidol is a butyrophenone derivative that is primarily used as an antipsychotic medication. Its medical definition can be broken down into its chemical class, mechanism of action, and clinical uses.

Chemical Class: Benperidol belongs to the chemical class of butyrophenones, which are a group of synthetic compounds with diverse pharmacological activities, including antipsychotic, antiemetic, and sedative effects.

Mechanism of Action: Benperidol works by blocking dopamine receptors in the brain, particularly the D2 receptor subtype. Dopamine is a neurotransmitter that plays a crucial role in regulating movement, emotion, and cognition. By blocking dopamine receptors, benperidol reduces the amount of dopamine available to stimulate these receptors, which can help alleviate symptoms of psychosis, such as hallucinations, delusions, and disorganized thinking.

Clinical Uses: Benperidol is primarily used to treat chronic schizophrenia and other related psychotic disorders. It may also be used off-label for the management of severe aggression or agitation in individuals with developmental disabilities or dementia. However, its use is limited due to its significant side effects, including extrapyramidal symptoms (EPS), such as rigidity, tremors, and involuntary movements, and potential for causing tardive dyskinesia, a neurological disorder characterized by involuntary movements of the face, tongue, or limbs.

It is important to note that benperidol should only be prescribed and administered under the supervision of a qualified healthcare professional, as its use requires careful monitoring and management of potential side effects.

An arteriovenous (AV) anastomosis is a connection or short channel between an artery and a vein that bypasses the capillary bed. In a normal physiological condition, blood flows from the arteries to the capillaries, where oxygen and nutrients are exchanged with the surrounding tissues, and then drains into veins. However, in an AV anastomosis, blood flows directly from the artery to the vein without passing through the capillary network.

AV anastomoses can occur naturally or be created surgically for various medical purposes. For example, they may be created during bypass surgery to reroute blood flow around a blocked or damaged vessel. In some cases, AV anastomoses may also develop as a result of certain medical conditions, such as cirrhosis or arteriovenous malformations (AVMs). AVMs are abnormal connections between arteries and veins that can lead to the formation of an AV anastomosis.

It is important to note that while AV anastomoses can be beneficial in certain medical situations, they can also have negative consequences if they occur inappropriately or become too large. For example, excessive AV anastomoses can lead to high-flow shunts, which can cause tissue damage and other complications.

'Receptors, Serotonin, 5-HT2' refer to a specific family of serotonin receptors that are activated by the neurotransmitter serotonin (5-hydroxytryptamine or 5-HT). These receptors are G protein-coupled receptors and are further divided into several subtypes, including 5-HT2A, 5-HT2B, and 5-HT2C. They are widely distributed throughout the body, including the central nervous system, cardiovascular system, gastrointestinal tract, and respiratory system.

The 5-HT2 receptors play a role in various physiological processes, such as neurotransmission, vasoconstriction, smooth muscle contraction, and cell growth regulation. They are also involved in several pathophysiological conditions, including psychiatric disorders (e.g., depression, anxiety, schizophrenia), migraine, cardiovascular diseases, and pulmonary hypertension.

The 5-HT2 receptors have been a focus of drug development for various therapeutic areas. For example, atypical antipsychotics used to treat schizophrenia work by blocking the 5-HT2A receptor, while certain migraine medications act as agonists at the 5-HT1B/1D and 5-HT2C receptors. However, drugs targeting these receptors must be carefully designed to avoid unwanted side effects, as activation or blockade of these receptors can have significant impacts on various physiological processes.

Serotonin receptor agonists are a class of medications that bind to and activate serotonin receptors in the body, mimicking the effects of the neurotransmitter serotonin. These drugs can have various effects depending on which specific serotonin receptors they act upon. Some serotonin receptor agonists are used to treat conditions such as migraines, cluster headaches, and Parkinson's disease, while others may be used to stimulate appetite or reduce anxiety. It is important to note that some serotonin receptor agonists can have serious side effects, particularly when taken in combination with other medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs) or monoamine oxidase inhibitors (MAOIs). This can lead to a condition called serotonin syndrome, which is characterized by symptoms such as agitation, confusion, rapid heart rate, high blood pressure, and muscle stiffness.

Dopamine agents are medications that act on dopamine receptors in the brain. Dopamine is a neurotransmitter, a chemical messenger that transmits signals in the brain and other areas of the body. It plays important roles in many functions, including movement, motivation, emotion, and cognition.

Dopamine agents can be classified into several categories based on their mechanism of action:

1. Dopamine agonists: These medications bind to dopamine receptors and mimic the effects of dopamine. They are used to treat conditions such as Parkinson's disease, restless legs syndrome, and certain types of dopamine-responsive dystonia. Examples include pramipexole, ropinirole, and rotigotine.
2. Dopamine precursors: These medications provide the building blocks for the body to produce dopamine. Levodopa is a commonly used dopamine precursor that is converted to dopamine in the brain. It is often used in combination with carbidopa, which helps to prevent levodopa from being broken down before it reaches the brain.
3. Dopamine antagonists: These medications block the action of dopamine at its receptors. They are used to treat conditions such as schizophrenia and certain types of nausea and vomiting. Examples include haloperidol, risperidone, and metoclopramide.
4. Dopamine reuptake inhibitors: These medications increase the amount of dopamine available in the synapse (the space between two neurons) by preventing its reuptake into the presynaptic neuron. They are used to treat conditions such as attention deficit hyperactivity disorder (ADHD) and depression. Examples include bupropion and nomifensine.
5. Dopamine release inhibitors: These medications prevent the release of dopamine from presynaptic neurons. They are used to treat conditions such as Tourette's syndrome and certain types of chronic pain. Examples include tetrabenazine and deutetrabenazine.

It is important to note that dopamine agents can have significant side effects, including addiction, movement disorders, and psychiatric symptoms. Therefore, they should be used under the close supervision of a healthcare provider.

Raclopride is not a medical condition but a drug that belongs to the class of dopamine receptor antagonists. It's primarily used in research and diagnostic settings as a radioligand in positron emission tomography (PET) scans to visualize and measure the distribution and availability of dopamine D2 and D3 receptors in the brain.

In simpler terms, Raclopride is a compound that can be labeled with a radioactive isotope and then introduced into the body to track the interaction between the radioligand and specific receptors (in this case, dopamine D2 and D3 receptors) in the brain. This information can help researchers and clinicians better understand neurochemical processes and disorders related to dopamine dysfunction, such as Parkinson's disease, schizophrenia, and drug addiction.

It is important to note that Raclopride is not used as a therapeutic agent in clinical practice due to its short half-life and the potential for side effects associated with dopamine receptor blockade.

'Drosophila proteins' refer to the proteins that are expressed in the fruit fly, Drosophila melanogaster. This organism is a widely used model system in genetics, developmental biology, and molecular biology research. The study of Drosophila proteins has contributed significantly to our understanding of various biological processes, including gene regulation, cell signaling, development, and aging.

Some examples of well-studied Drosophila proteins include:

1. HSP70 (Heat Shock Protein 70): A chaperone protein involved in protein folding and protection from stress conditions.
2. TUBULIN: A structural protein that forms microtubules, important for cell division and intracellular transport.
3. ACTIN: A cytoskeletal protein involved in muscle contraction, cell motility, and maintenance of cell shape.
4. BETA-GALACTOSIDASE (LACZ): A reporter protein often used to monitor gene expression patterns in transgenic flies.
5. ENDOGLIN: A protein involved in the development of blood vessels during embryogenesis.
6. P53: A tumor suppressor protein that plays a crucial role in preventing cancer by regulating cell growth and division.
7. JUN-KINASE (JNK): A signaling protein involved in stress response, apoptosis, and developmental processes.
8. DECAPENTAPLEGIC (DPP): A member of the TGF-β (Transforming Growth Factor Beta) superfamily, playing essential roles in embryonic development and tissue homeostasis.

These proteins are often studied using various techniques such as biochemistry, genetics, molecular biology, and structural biology to understand their functions, interactions, and regulation within the cell.

Bromocriptine is a dopamine receptor agonist drug, which means it works by binding to and activating dopamine receptors in the brain. It has several therapeutic uses, including:

* Treatment of Parkinson's disease: Bromocriptine can be used alone or in combination with levodopa to help manage the symptoms of Parkinson's disease, such as stiffness, tremors, spasms, and poor muscle control.
* Suppression of lactation: Bromocriptine can be used to suppress milk production in women who are not breastfeeding or who have stopped breastfeeding but still have high levels of prolactin, a hormone that stimulates milk production.
* Treatment of pituitary tumors: Bromocriptine can be used to shrink certain types of pituitary tumors, such as prolactinomas, which are tumors that secrete excessive amounts of prolactin.
* Management of acromegaly: Bromocriptine can be used to manage the symptoms of acromegaly, a rare hormonal disorder characterized by abnormal growth and enlargement of body tissues, by reducing the production of growth hormone.

Bromocriptine is available in immediate-release and long-acting formulations, and it is usually taken orally. Common side effects of bromocriptine include nausea, dizziness, lightheadedness, and drowsiness. Serious side effects are rare but can include hallucinations, confusion, and priapism (prolonged erection).

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Interleukin-1 (IL-1) receptors are a type of cell surface receptor that bind to and mediate the effects of interleukin-1 cytokines, which are involved in the regulation of inflammatory and immune responses. There are two main types of IL-1 receptors:

1. Type I IL-1 receptor (IL-1R1): This is a transmembrane protein that consists of three domains - an extracellular domain, a transmembrane domain, and an intracellular domain. The extracellular domain contains the binding site for IL-1 cytokines, while the intracellular domain is involved in signal transduction and activation of downstream signaling pathways.
2. Type II IL-1 receptor (IL-1R2): This is a decoy receptor that lacks an intracellular signaling domain and functions to regulate IL-1 activity by preventing its interaction with IL-1R1.

IL-1 receptors are widely expressed in various tissues and cell types, including immune cells, endothelial cells, and nervous system cells. Activation of IL-1 receptors leads to the induction of a variety of biological responses, such as fever, production of acute phase proteins, activation of immune cells, and modulation of pain sensitivity. Dysregulation of IL-1 signaling has been implicated in various pathological conditions, including autoimmune diseases, chronic inflammation, and neurodegenerative disorders.

Nod signaling adaptor proteins are a group of intracellular molecules that play a crucial role in the activation of immune responses to bacterial infections. These proteins are involved in the Nod-like receptor (NLR) signaling pathway, which is a key component of the innate immune system.

Nod signaling adaptor proteins include proteins such as Nod1, Nod2, and RIP2 (receptor-interacting protein 2). These proteins contain domains that allow them to interact with other molecules involved in the NLR signaling pathway, including Nod-like receptors, which are sensors of bacterial components such as peptidoglycan.

When Nod-like receptors detect the presence of bacterial components, they recruit and activate Nod signaling adaptor proteins, leading to the activation of downstream signaling pathways that ultimately result in the production of proinflammatory cytokines and the activation of immune cells. This helps to initiate an effective immune response against the invading bacteria.

Defects in Nod signaling adaptor proteins have been linked to various immune-related disorders, including susceptibility to bacterial infections and inflammatory diseases such as Crohn's disease.

Tropane alkaloids are a class of naturally occurring compounds that contain a tropane ring in their chemical structure. This ring is composed of a seven-membered ring with two nitrogen atoms, one of which is part of a piperidine ring. Tropane alkaloids are found in various plants, particularly those in the Solanaceae family, which includes nightshade, belladonna, and datura. Some well-known tropane alkaloids include atropine, scopolamine, and cocaine. These compounds have diverse pharmacological activities, such as anticholinergic, local anesthetic, and central nervous system stimulant effects.

Haloperidol is an antipsychotic medication, which is primarily used to treat schizophrenia and symptoms of psychosis, such as delusions, hallucinations, paranoia, or disordered thought. It may also be used to manage Tourette's disorder, tics, agitation, aggression, and hyperactivity in children with developmental disorders.

Haloperidol works by blocking the action of dopamine, a neurotransmitter in the brain, which helps to regulate mood and behavior. It is available in various forms, including tablets, liquid, and injectable solutions. The medication can cause side effects such as drowsiness, restlessness, muscle stiffness, and uncontrolled movements. In rare cases, it may also lead to more serious neurological side effects.

As with any medication, haloperidol should be taken under the supervision of a healthcare provider, who will consider the individual's medical history, current medications, and other factors before prescribing it.

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter that is found primarily in the gastrointestinal (GI) tract, blood platelets, and the central nervous system (CNS) of humans and other animals. It is produced by the conversion of the amino acid tryptophan to 5-hydroxytryptophan (5-HTP), and then to serotonin.

In the CNS, serotonin plays a role in regulating mood, appetite, sleep, memory, learning, and behavior, among other functions. It also acts as a vasoconstrictor, helping to regulate blood flow and blood pressure. In the GI tract, it is involved in peristalsis, the contraction and relaxation of muscles that moves food through the digestive system.

Serotonin is synthesized and stored in serotonergic neurons, which are nerve cells that use serotonin as their primary neurotransmitter. These neurons are found throughout the brain and spinal cord, and they communicate with other neurons by releasing serotonin into the synapse, the small gap between two neurons.

Abnormal levels of serotonin have been linked to a variety of disorders, including depression, anxiety, schizophrenia, and migraines. Medications that affect serotonin levels, such as selective serotonin reuptake inhibitors (SSRIs), are commonly used to treat these conditions.

The corpus striatum is a part of the brain that plays a crucial role in movement, learning, and cognition. It consists of two structures called the caudate nucleus and the putamen, which are surrounded by the external and internal segments of the globus pallidus. Together, these structures form the basal ganglia, a group of interconnected neurons that help regulate voluntary movement.

The corpus striatum receives input from various parts of the brain, including the cerebral cortex, thalamus, and other brainstem nuclei. It processes this information and sends output to the globus pallidus and substantia nigra, which then project to the thalamus and back to the cerebral cortex. This feedback loop helps coordinate and fine-tune movements, allowing for smooth and coordinated actions.

Damage to the corpus striatum can result in movement disorders such as Parkinson's disease, Huntington's disease, and dystonia. These conditions are characterized by abnormal involuntary movements, muscle stiffness, and difficulty initiating or controlling voluntary movements.

Piribedil is an agonist of dopamine receptors, specifically D2, D3, and D4 receptors. It is primarily used in the treatment of Parkinson's disease to help manage symptoms such as rigidity, tremors, and bradykinesia (slowness of movement). Piribedil can also stimulate dopamine receptors in the brain, which can improve cognitive function and mood. Additionally, it has been studied for its potential benefits in treating other neurological disorders, including Alzheimer's disease and stroke.

It is important to note that the use of piribedil should be under the supervision of a healthcare professional, as it can have side effects and interactions with other medications. It is not commonly used in many countries due to the availability of other more established treatments for Parkinson's disease.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

The neostriatum is a component of the basal ganglia, a group of subcortical nuclei in the brain that are involved in motor control, procedural learning, and other cognitive functions. It is composed primarily of two types of neurons: medium spiny neurons and aspiny interneurons. The neostriatum receives input from various regions of the cerebral cortex and projects to other parts of the basal ganglia, forming an important part of the cortico-basal ganglia-thalamo-cortical loop.

In medical terminology, the neostriatum is often used interchangeably with the term "striatum," although some sources reserve the term "neostriatum" for the caudate nucleus and putamen specifically, while using "striatum" to refer to the entire structure including the ventral striatum (also known as the nucleus accumbens).

Damage to the neostriatum has been implicated in various neurological conditions, such as Huntington's disease and Parkinson's disease.

Ergotamine is a type of ergopeptine alkaloid, derived from the ergot fungus (Claviceps purpurea) that parasitizes certain grains, particularly rye. It is a potent vasoconstrictor and has been used medically to prevent migraines and treat cluster headaches, as well as for other uses such as controlling postpartum hemorrhage and reducing symptoms of orthostatic hypotension.

Ergotamine works by binding to serotonin receptors in the brain and causing vasoconstriction of cranial blood vessels, which can help to relieve migraine headaches. However, it can also cause serious side effects such as nausea, vomiting, muscle pain, numbness or tingling in the extremities, and in rare cases, more severe reactions such as ergotism, a condition characterized by vasoconstriction of peripheral blood vessels leading to gangrene.

Ergotamine is usually taken orally, but can also be administered rectally or by inhalation. It is important to follow the dosage instructions carefully and avoid taking excessive amounts, as this can increase the risk of serious side effects. Ergotamine should not be taken during pregnancy or while breastfeeding, and it may interact with other medications, so it is important to inform your healthcare provider of all medications you are taking before starting ergotamine therapy.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

'Animal behavior' refers to the actions or responses of animals to various stimuli, including their interactions with the environment and other individuals. It is the study of the actions of animals, whether they are instinctual, learned, or a combination of both. Animal behavior includes communication, mating, foraging, predator avoidance, and social organization, among other things. The scientific study of animal behavior is called ethology. This field seeks to understand the evolutionary basis for behaviors as well as their physiological and psychological mechanisms.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

The nucleus accumbens is a part of the brain that is located in the ventral striatum, which is a key region of the reward circuitry. It is made up of two subregions: the shell and the core. The nucleus accumbens receives inputs from various sources, including the prefrontal cortex, amygdala, and hippocampus, and sends outputs to the ventral pallidum and other areas.

The nucleus accumbens is involved in reward processing, motivation, reinforcement learning, and addiction. It plays a crucial role in the release of the neurotransmitter dopamine, which is associated with pleasure and reinforcement. Dysfunction in the nucleus accumbens has been implicated in various neurological and psychiatric conditions, including substance use disorders, depression, and obsessive-compulsive disorder.

I'm sorry for any confusion, but "Insect Proteins" is not a recognized medical term. However, I can provide some information about insect protein from a nutritional and food science perspective.

Insect proteins refer to the proteins that are obtained from insects. Insects are a rich source of protein, and their protein content varies by species. For example, mealworms and crickets have been found to contain approximately 47-63% and 60-72% protein by dry weight, respectively.

In recent years, insect proteins have gained attention as a potential sustainable source of nutrition due to their high protein content, low environmental impact, and the ability to convert feed into protein more efficiently compared to traditional livestock. Insect proteins can be used in various applications such as food and feed additives, nutritional supplements, and even cosmetics.

However, it's important to note that the use of insect proteins in human food is not widely accepted in many Western countries due to cultural and regulatory barriers. Nonetheless, research and development efforts continue to explore the potential benefits and applications of insect proteins in the global food system.

Methysergide is a medication that belongs to a class of drugs called ergot alkaloids. It is primarily used for the prophylaxis (prevention) of migraine headaches. Methysergide works by narrowing blood vessels around the brain, which is thought to help prevent migraines.

The medical definition of Methysergide is:
A semisynthetic ergot alkaloid derivative used in the prophylaxis of migraine and cluster headaches. It has both agonist and antagonist properties at serotonin receptors, and its therapeutic effects are thought to be related to its ability to block the binding of serotonin to its receptors. However, methysergide can have serious side effects, including fibrotic reactions in various organs, such as the heart, lungs, and kidneys, so it is usually used only for short periods of time and under close medical supervision.

Cocaine is a highly addictive stimulant drug derived from the leaves of the coca plant (Erythroxylon coca). It is a powerful central nervous system stimulant that affects the brain and body in many ways. When used recreationally, cocaine can produce feelings of euphoria, increased energy, and mental alertness; however, it can also cause serious negative consequences, including addiction, cardiovascular problems, seizures, and death.

Cocaine works by increasing the levels of dopamine in the brain, a neurotransmitter associated with pleasure and reward. This leads to the pleasurable effects that users seek when they take the drug. However, cocaine also interferes with the normal functioning of the brain's reward system, making it difficult for users to experience pleasure from natural rewards like food or social interactions.

Cocaine can be taken in several forms, including powdered form (which is usually snorted), freebase (a purer form that is often smoked), and crack cocaine (a solid form that is typically heated and smoked). Each form of cocaine has different risks and potential harms associated with its use.

Long-term use of cocaine can lead to a number of negative health consequences, including addiction, heart problems, malnutrition, respiratory issues, and mental health disorders like depression or anxiety. It is important to seek help if you or someone you know is struggling with cocaine use or addiction.

Renal plasma flow (RPF) is a medical term that refers to the volume of plasma delivered to and filtered through the kidneys per unit time. It is typically expressed in milliliters per minute (ml/min). The RPF is an important measure of renal function, as it reflects the ability of the kidneys to filter blood and remove waste products from the body.

RPF can be measured directly using various techniques, such as injecting a substance into the renal artery and measuring its concentration in the venous effluent from the kidney. However, RPF is often estimated indirectly based on the clearance of a substance that is freely filtered by the glomeruli but not reabsorbed or secreted by the tubules, such as para-aminohippuric acid (PAH). The clearance of PAH is proportional to the RPF, and can be used to calculate an estimate of RPF.

Renal plasma flow is affected by various factors, including blood pressure, renal vasodilation or vasoconstriction, and the presence of kidney disease or injury. Decreased RPF may indicate impaired renal function and may contribute to the development of kidney disease.

Pattern recognition receptors (PRRs) are a type of receptor found on the surface of various immune cells, including dendritic cells, macrophages, and neutrophils. These receptors recognize specific patterns or motifs that are typically associated with pathogens such as bacteria, viruses, fungi, and parasites.

PRRs can be divided into several different classes based on their structure and function, including toll-like receptors (TLRs), nucleotide-binding oligomerization domain-like receptors (NLRs), retinoic acid-inducible gene I-like receptors (RLRs), and C-type lectin receptors (CLRs).

When a PRR recognizes a pathogen-associated molecular pattern (PAMP), it triggers a series of intracellular signaling events that ultimately lead to the activation of immune responses, such as the production of proinflammatory cytokines and the activation of adaptive immunity.

Overall, PRRs play a critical role in the early detection and response to pathogens, helping to prevent or limit infection and disease.

The proximal kidney tubule is the initial portion of the renal tubule in the nephron of the kidney. It is located in the renal cortex and is called "proximal" because it is closer to the glomerulus, compared to the distal tubule. The proximal tubule plays a crucial role in the reabsorption of water, electrolytes, and nutrients from the filtrate that has been formed by the glomerulus. It also helps in the secretion of waste products and other substances into the urine.

The proximal tubule is divided into two segments: the pars convoluta and the pars recta. The pars convoluta is the curved portion that receives filtrate from the Bowman's capsule, while the pars recta is the straight portion that extends deeper into the renal cortex.

The proximal tubule is lined with a simple cuboidal epithelium, and its cells are characterized by numerous mitochondria, which provide energy for active transport processes. The apical surface of the proximal tubular cells has numerous microvilli, forming a brush border that increases the surface area for reabsorption.

In summary, the proximal kidney tubule is a critical site for the reabsorption of water, electrolytes, and nutrients from the glomerular filtrate, contributing to the maintenance of fluid and electrolyte balance in the body.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Serotonin 5-HT2 receptor agonists are a class of compounds that bind to and activate the serotonin 5-HT2 receptors, which are a type of G protein-coupled receptor found in the central and peripheral nervous systems. These receptors play important roles in various physiological processes, including neurotransmission, vasoconstriction, and smooth muscle contraction.

Serotonin 5-HT2 receptor agonists can produce a range of effects depending on the specific subtype of receptor they activate. For example, activation of 5-HT2A receptors has been associated with hallucinogenic effects, while activation of 5-HT2B receptors has been linked to cardiac valvulopathy.

These drugs are used in a variety of clinical settings, including the treatment of psychiatric disorders such as depression and schizophrenia, migraine headaches, and cluster headaches. Examples of serotonin 5-HT2 receptor agonists include LSD, psilocybin, ergotamine, and sumatriptan.

Tetrahydronaphthalenes are organic compounds that consist of a naphthalene ring with two hydrogens replaced by saturated carbon chains. It is a polycyclic aromatic hydrocarbon (PAH) with a chemical formula C10H12. Tetrahydronaphthalenes can be found in various natural sources, including coal tar and some essential oils. They also have potential applications in the synthesis of pharmaceuticals and other organic compounds.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Sulfonamides are a group of synthetic antibacterial drugs that contain the sulfonamide group (SO2NH2) in their chemical structure. They are bacteriostatic agents, meaning they inhibit bacterial growth rather than killing them outright. Sulfonamides work by preventing the bacteria from synthesizing folic acid, which is essential for their survival.

The first sulfonamide drug was introduced in the 1930s and since then, many different sulfonamides have been developed with varying chemical structures and pharmacological properties. They are used to treat a wide range of bacterial infections, including urinary tract infections, respiratory tract infections, skin and soft tissue infections, and ear infections.

Some common sulfonamide drugs include sulfisoxazole, sulfamethoxazole, and trimethoprim-sulfamethoxazole (a combination of a sulfonamide and another antibiotic called trimethoprim). While sulfonamides are generally safe and effective when used as directed, they can cause side effects such as rash, nausea, and allergic reactions. It is important to follow the prescribing physician's instructions carefully and to report any unusual symptoms or side effects promptly.

Indole is not strictly a medical term, but it is a chemical compound that can be found in the human body and has relevance to medical and biological research. Indoles are organic compounds that contain a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring.

In the context of medicine, indoles are particularly relevant due to their presence in certain hormones and other biologically active molecules. For example, the neurotransmitter serotonin contains an indole ring, as does the hormone melatonin. Indoles can also be found in various plant-based foods, such as cruciferous vegetables (e.g., broccoli, kale), and have been studied for their potential health benefits.

Some indoles, like indole-3-carbinol and diindolylmethane, are found in these vegetables and can have anti-cancer properties by modulating estrogen metabolism, reducing inflammation, and promoting cell death (apoptosis) in cancer cells. However, it is essential to note that further research is needed to fully understand the potential health benefits and risks associated with indoles.

'Beauveria' is a genus of fungi that belongs to the family Cordycipitaceae. These fungi are known for their ability to parasitize various insects and arthropods, and they have been studied for their potential as biocontrol agents. The most well-known species in this genus is Beauveria bassiana, which has been used to control a variety of pest insects in agriculture and forestry.

Beauveria fungi produce a range of bioactive compounds that can have toxic effects on insects and other organisms. When an infected insect comes into contact with the spores of Beauveria, the spores germinate and penetrate the insect's cuticle, eventually killing the host. The fungus then grows inside the insect's body, producing more spores that can infect other hosts.

In addition to their use as biocontrol agents, Beauveria fungi have also been studied for their potential medicinal properties. Some research has suggested that certain species of Beauveria may have antimicrobial, antitumor, and immunomodulatory effects, although more research is needed to confirm these findings and to understand the mechanisms behind them.

Clozapine is an atypical antipsychotic medication that is primarily used to treat schizophrenia in patients who have not responded to other antipsychotic treatments. It is also used off-label for the treatment of severe aggression, suicidal ideation, and self-injurious behavior in individuals with developmental disorders.

Clozapine works by blocking dopamine receptors in the brain, particularly the D4 receptor, which is thought to be involved in the development of schizophrenia. It also has a strong affinity for serotonin receptors, which contributes to its unique therapeutic profile.

Clozapine is considered a medication of last resort due to its potential side effects, which can include agranulocytosis (a severe decrease in white blood cell count), myocarditis (inflammation of the heart muscle), seizures, orthostatic hypotension (low blood pressure upon standing), and weight gain. Because of these risks, patients taking clozapine must undergo regular monitoring of their blood counts and other vital signs.

Despite its potential side effects, clozapine is often effective in treating treatment-resistant schizophrenia and has been shown to reduce the risk of suicide in some patients. It is available in tablet and orally disintegrating tablet formulations.

A radioligand assay is a type of in vitro binding assay used in molecular biology and pharmacology to measure the affinity and quantity of a ligand (such as a drug or hormone) to its specific receptor. In this technique, a small amount of a radioactively labeled ligand, also known as a radioligand, is introduced to a sample containing the receptor of interest. The radioligand binds competitively with other unlabeled ligands present in the sample for the same binding site on the receptor. After allowing sufficient time for binding, the reaction is stopped, and the amount of bound radioligand is measured using a technique such as scintillation counting. The data obtained from this assay can be used to determine the dissociation constant (Kd) and maximum binding capacity (Bmax) of the receptor-ligand interaction, which are important parameters in understanding the pharmacological properties of drugs and other ligands.

Insect hormones are chemical messengers that regulate various physiological and behavioral processes in insects. They are produced and released by endocrine glands and organs, such as the corpora allata, prothoracic glands, and neurosecretory cells located in the brain. Insect hormones play crucial roles in the regulation of growth and development, reproduction, diapause (a state of dormancy), metamorphosis, molting, and other vital functions. Some well-known insect hormones include juvenile hormone (JH), ecdysteroids (such as 20-hydroxyecdysone), and neuropeptides like the brain hormone and adipokinetic hormone. These hormones act through specific receptors, often transmembrane proteins, to elicit intracellular signaling cascades that ultimately lead to changes in gene expression, cell behavior, or organ function. Understanding insect hormones is essential for developing novel strategies for pest management and control, as well as for advancing our knowledge of insect biology and evolution.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

"Motor activity" is a general term used in the field of medicine and neuroscience to refer to any kind of physical movement or action that is generated by the body's motor system. The motor system includes the brain, spinal cord, nerves, and muscles that work together to produce movements such as walking, talking, reaching for an object, or even subtle actions like moving your eyes.

Motor activity can be voluntary, meaning it is initiated intentionally by the individual, or involuntary, meaning it is triggered automatically by the nervous system without conscious control. Examples of voluntary motor activity include deliberately lifting your arm or kicking a ball, while examples of involuntary motor activity include heartbeat, digestion, and reflex actions like jerking your hand away from a hot stove.

Abnormalities in motor activity can be a sign of neurological or muscular disorders, such as Parkinson's disease, cerebral palsy, or multiple sclerosis. Assessment of motor activity is often used in the diagnosis and treatment of these conditions.

Dopamine uptake inhibitors are a class of medications that work by blocking the reuptake of dopamine, a neurotransmitter, into the presynaptic neuron. This results in an increased concentration of dopamine in the synapse, leading to enhanced dopaminergic transmission and activity.

These drugs are used in various medical conditions where dopamine is implicated, such as depression, attention deficit hyperactivity disorder (ADHD), and neurological disorders like Parkinson's disease. They can also be used to treat substance abuse disorders, such as cocaine addiction, by blocking the reuptake of dopamine and reducing the rewarding effects of the drug.

Examples of dopamine uptake inhibitors include:

* Bupropion (Wellbutrin), which is used to treat depression and ADHD
* Methylphenidate (Ritalin, Concerta), which is used to treat ADHD
* Amantadine (Symmetrel), which is used to treat Parkinson's disease and also has antiviral properties.

It's important to note that dopamine uptake inhibitors can have side effects, including increased heart rate, blood pressure, and anxiety. They may also have the potential for abuse and dependence, particularly in individuals with a history of substance abuse. Therefore, these medications should be used under the close supervision of a healthcare provider.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

The tegmentum mesencephali, also known as the mesencephalic tegmentum, is a region in the midbrain (mesencephalon) of the brainstem. It contains several important structures including the periaqueductal gray matter, the nucleus raphe, the reticular formation, and various cranial nerve nuclei. The tegmentum mesencephali plays a crucial role in various functions such as pain modulation, sleep-wake regulation, eye movement control, and cardiovascular regulation.

"Tenebrio" is the genus name for mealworm beetles, which are insects commonly found in stored grains and animal feed. The most common species is Tenebrio molitor. Mealworms and their larvae are often used as a food source for pets, such as reptiles and birds, but they can also cause damage to crops and structures if they infest them. They have been studied in various medical and scientific research fields including nutrition, toxicology, and allergies. Some people may have allergic reactions to mealworms or their byproducts.

I'm sorry for any confusion, but "opossums" are not a medical term or a medical condition. Opossums are actually marsupials (pouched mammals) that are native to the Americas. They are often known for their "playing dead" behavior as a defense mechanism when threatened. If you have any questions about medical terminology or health-related topics, I'd be happy to help with those!

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Synaptic transmission is the process by which a neuron communicates with another cell, such as another neuron or a muscle cell, across a junction called a synapse. It involves the release of neurotransmitters from the presynaptic terminal of the neuron, which then cross the synaptic cleft and bind to receptors on the postsynaptic cell, leading to changes in the electrical or chemical properties of the target cell. This process is critical for the transmission of signals within the nervous system and for controlling various physiological functions in the body.

Immunologic receptors are specialized proteins found on the surface of immune cells that recognize and bind to specific molecules, known as antigens, on the surface of pathogens or infected cells. This binding triggers a series of intracellular signaling events that activate the immune cell and initiate an immune response.

There are several types of immunologic receptors, including:

1. T-cell receptors (TCRs): These receptors are found on the surface of T cells and recognize antigens presented in the context of major histocompatibility complex (MHC) molecules.
2. B-cell receptors (BCRs): These receptors are found on the surface of B cells and recognize free antigens in solution.
3. Pattern recognition receptors (PRRs): These receptors are found inside immune cells and recognize conserved molecular patterns associated with pathogens, such as lipopolysaccharides and flagellin.
4. Fc receptors: These receptors are found on the surface of various immune cells and bind to the constant region of antibodies, mediating effector functions such as phagocytosis and antibody-dependent cellular cytotoxicity (ADCC).

Immunologic receptors play a critical role in the recognition and elimination of pathogens and infected cells, and dysregulation of these receptors can lead to immune disorders and diseases.

Sensory gating is a term used in neuroscience and psychology to describe the brain's ability to filter out redundant or unnecessary sensory information. It is a fundamental process that allows the nervous system to focus attention on relevant stimuli while suppressing irrelevant ones, thereby preventing overwhelming of the brain with too much information.

In medical terms, sensory gating is often assessed through the use of electrophysiological measures such as event-related potentials (ERPs) or auditory evoked potentials (AEPs). One commonly used measure of sensory gating is the P50 suppression ratio, which compares the amplitude of the P50 waveform in response to the first and second stimuli in a paired-stimulus paradigm. A reduced P50 suppression ratio indicates impaired sensory gating, which has been associated with various neurological and psychiatric conditions such as schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder (ADHD).

Overall, sensory gating is a crucial mechanism for maintaining appropriate sensory processing and cognitive functioning in everyday life.

Purinergic P2 receptors are a type of cell surface receptor that bind to purine nucleotides and nucleosides, such as ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and mediate various physiological responses. These receptors are divided into two main families: P2X and P2Y.

P2X receptors are ionotropic receptors, meaning they form ion channels that allow the flow of ions across the cell membrane upon activation. There are seven subtypes of P2X receptors (P2X1-7), each with distinct functional and pharmacological properties.

P2Y receptors, on the other hand, are metabotropic receptors, meaning they activate intracellular signaling pathways through G proteins. There are eight subtypes of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), each with different G protein coupling specificities and downstream signaling pathways.

Purinergic P2 receptors are widely expressed in various tissues, including the nervous system, cardiovascular system, respiratory system, gastrointestinal tract, and immune system. They play important roles in regulating physiological functions such as neurotransmission, vasodilation, platelet aggregation, smooth muscle contraction, and inflammation. Dysregulation of purinergic P2 receptors has been implicated in various pathological conditions, including pain, ischemia, hypertension, atherosclerosis, and cancer.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Adaptor proteins play a crucial role in vesicular transport, which is the process by which materials are transported within cells in membrane-bound sacs called vesicles. These adaptor proteins serve as a bridge between vesicle membranes and cytoskeletal elements or other cellular structures, facilitating the movement of vesicles throughout the cell.

There are several different types of adaptor proteins involved in vesicular transport, each with specific functions and localizations within the cell. Some examples include:

1. Clathrin Adaptor Protein Complex (AP-1, AP-2, AP-3, AP-4): These complexes are responsible for recruiting clathrin to membranes during vesicle formation, which helps to shape and stabilize the vesicle. They also play a role in sorting cargo into specific vesicles.

2. Coat Protein Complex I (COPI): This complex is involved in the transport of proteins between the endoplasmic reticulum (ER) and the Golgi apparatus, as well as within the Golgi itself. COPI-coated vesicles are formed by the assembly of coatomer proteins around the membrane, which helps to deform the membrane into a vesicle shape.

3. Coat Protein Complex II (COPII): This complex is involved in the transport of proteins from the ER to the Golgi apparatus. COPII-coated vesicles are formed by the assembly of Sar1, Sec23/24, and Sec13/31 proteins around the membrane, which helps to select cargo and form a vesicle.

4. BAR (Bin/Amphiphysin/Rvs) Domain Proteins: These proteins are involved in shaping and stabilizing membranes during vesicle formation. They can sense and curve membranes, recruiting other proteins to help form the vesicle.

5. SNARE Proteins: While not strictly adaptor proteins, SNAREs play a critical role in vesicle fusion by forming complexes that bring the vesicle and target membrane together. These complexes provide the energy required for membrane fusion, allowing for the release of cargo into the target compartment.

Overall, adaptor proteins are essential components of the cellular machinery that regulates intracellular trafficking. They help to select cargo, deform membranes, and facilitate vesicle formation, ensuring that proteins and lipids reach their correct destinations within the cell.

DEAD-box RNA helicases are a family of proteins that are involved in unwinding RNA secondary structures and displacing proteins bound to RNA molecules. They get their name from the conserved amino acid sequence motif "DEAD" (Asp-Glu-Ala-Asp) found within their catalytic core, which is responsible for ATP-dependent helicase activity. These enzymes play crucial roles in various aspects of RNA metabolism, including pre-mRNA splicing, ribosome biogenesis, translation initiation, and RNA decay. DEAD-box helicases are also implicated in a number of human diseases, such as cancer and neurological disorders.

'Drosophila melanogaster' is the scientific name for a species of fruit fly that is commonly used as a model organism in various fields of biological research, including genetics, developmental biology, and evolutionary biology. Its small size, short generation time, large number of offspring, and ease of cultivation make it an ideal subject for laboratory studies. The fruit fly's genome has been fully sequenced, and many of its genes have counterparts in the human genome, which facilitates the understanding of genetic mechanisms and their role in human health and disease.

Here is a brief medical definition:

Drosophila melanogaster (droh-suh-fih-luh meh-lon-guh-ster): A species of fruit fly used extensively as a model organism in genetic, developmental, and evolutionary research. Its genome has been sequenced, revealing many genes with human counterparts, making it valuable for understanding genetic mechanisms and their role in human health and disease.

Cyclic adenosine monophosphate (cAMP) is a key secondary messenger in many biological processes, including the regulation of metabolism, gene expression, and cellular excitability. It is synthesized from adenosine triphosphate (ATP) by the enzyme adenylyl cyclase and is degraded by the enzyme phosphodiesterase.

In the body, cAMP plays a crucial role in mediating the effects of hormones and neurotransmitters on target cells. For example, when a hormone binds to its receptor on the surface of a cell, it can activate a G protein, which in turn activates adenylyl cyclase to produce cAMP. The increased levels of cAMP then activate various effector proteins, such as protein kinases, which go on to regulate various cellular processes.

Overall, the regulation of cAMP levels is critical for maintaining proper cellular function and homeostasis, and abnormalities in cAMP signaling have been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Benzamides are a class of organic compounds that consist of a benzene ring (a aromatic hydrocarbon) attached to an amide functional group. The amide group can be bound to various substituents, leading to a variety of benzamide derivatives with different biological activities.

In a medical context, some benzamides have been developed as drugs for the treatment of various conditions. For example, danzol (a benzamide derivative) is used as a hormonal therapy for endometriosis and breast cancer. Additionally, other benzamides such as sulpiride and amisulpride are used as antipsychotic medications for the treatment of schizophrenia and related disorders.

It's important to note that while some benzamides have therapeutic uses, others may be toxic or have adverse effects, so they should only be used under the supervision of a medical professional.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

NOD1 (Nucleotide-binding Oligomerization Domain-containing protein 1) signaling adaptor protein, also known as CARD4 (Caspase Recruitment Domain-containing protein 4), is an intracellular protein that plays a crucial role in the innate immune response. It belongs to the family of NOD-like receptors (NLRs) and functions as a pattern recognition receptor (PRR) that recognizes specific molecular patterns, known as pathogen-associated molecular patterns (PAMPs), derived from various microbial pathogens.

NOD1 signaling adaptor protein contains two functional domains: a C-terminal leucine-rich repeat (LRR) domain, which is responsible for recognizing PAMPs, and an N-terminal caspase recruitment domain (CARD). Upon recognition of PAMPs, NOD1 undergoes conformational changes leading to self-oligomerization and the formation of a signaling platform. This platform recruits downstream effector proteins, such as RIPK2 (Receptor-Interacting Protein Kinase 2), via homotypic CARD-CARD interactions, ultimately activating NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-Activated Protein Kinases) signaling pathways. These signaling cascades result in the production of proinflammatory cytokines, chemokines, and antimicrobial peptides to combat invading microorganisms.

In summary, NOD1 signaling adaptor protein is an essential component of the innate immune system that detects specific PAMPs from microbial pathogens and triggers downstream signaling events leading to inflammatory responses and host defense mechanisms.

Phenanthridines are a class of heterocyclic aromatic organic compounds that consist of a phenanthrene core (a polycyclic aromatic hydrocarbon made up of three benzene rings) fused with a pyridine ring (a six-membered ring containing five carbon atoms and one nitrogen atom). They have the chemical formula C12H9N.

Phenanthridines are important in medicinal chemistry because some of their derivatives exhibit various biological activities, such as antitumor, antibacterial, antifungal, anti-inflammatory, and antiviral properties. Some well-known phenanthridine derivatives include the chemotherapeutic agents amsacrine and doxorubicin, which are used to treat various types of cancer.

It's worth noting that while phenanthridines have important medical applications, they can also be toxic or harmful if not handled properly. Therefore, it's essential to follow proper safety protocols when working with these compounds in a laboratory setting.

A drug interaction is the effect of combining two or more drugs, or a drug and another substance (such as food or alcohol), which can alter the effectiveness or side effects of one or both of the substances. These interactions can be categorized as follows:

1. Pharmacodynamic interactions: These occur when two or more drugs act on the same target organ or receptor, leading to an additive, synergistic, or antagonistic effect. For example, taking a sedative and an antihistamine together can result in increased drowsiness due to their combined depressant effects on the central nervous system.
2. Pharmacokinetic interactions: These occur when one drug affects the absorption, distribution, metabolism, or excretion of another drug. For example, taking certain antibiotics with grapefruit juice can increase the concentration of the antibiotic in the bloodstream, leading to potential toxicity.
3. Food-drug interactions: Some drugs may interact with specific foods, affecting their absorption, metabolism, or excretion. An example is the interaction between warfarin (a blood thinner) and green leafy vegetables, which can increase the risk of bleeding due to enhanced vitamin K absorption from the vegetables.
4. Drug-herb interactions: Some herbal supplements may interact with medications, leading to altered drug levels or increased side effects. For instance, St. John's Wort can decrease the effectiveness of certain antidepressants and oral contraceptives by inducing their metabolism.
5. Drug-alcohol interactions: Alcohol can interact with various medications, causing additive sedative effects, impaired judgment, or increased risk of liver damage. For example, combining alcohol with benzodiazepines or opioids can lead to dangerous levels of sedation and respiratory depression.

It is essential for healthcare providers and patients to be aware of potential drug interactions to minimize adverse effects and optimize treatment outcomes.

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Autoradiography is a medical imaging technique used to visualize and localize the distribution of radioactively labeled compounds within tissues or organisms. In this process, the subject is first exposed to a radioactive tracer that binds to specific molecules or structures of interest. The tissue is then placed in close contact with a radiation-sensitive film or detector, such as X-ray film or an imaging plate.

As the radioactive atoms decay, they emit particles (such as beta particles) that interact with the film or detector, causing chemical changes and leaving behind a visible image of the distribution of the labeled compound. The resulting autoradiogram provides information about the location, quantity, and sometimes even the identity of the molecules or structures that have taken up the radioactive tracer.

Autoradiography has been widely used in various fields of biology and medical research, including pharmacology, neuroscience, genetics, and cell biology, to study processes such as protein-DNA interactions, gene expression, drug metabolism, and neuronal connectivity. However, due to the use of radioactive materials and potential hazards associated with them, this technique has been gradually replaced by non-radioactive alternatives like fluorescence in situ hybridization (FISH) or immunofluorescence techniques.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Self-administration, in the context of medicine and healthcare, refers to the act of an individual administering medication or treatment to themselves. This can include various forms of delivery such as oral medications, injections, or topical treatments. It is important that individuals who self-administer are properly trained and understand the correct dosage, timing, and technique to ensure safety and effectiveness. Self-administration promotes independence, allows for timely treatment, and can improve overall health outcomes.

Natriuresis is the process or condition of excreting an excessive amount of sodium (salt) through urine. It is a physiological response to high sodium levels in the body, which can be caused by various factors such as certain medical conditions (e.g., kidney disease, heart failure), medications, or dietary habits. The increased excretion of sodium helps regulate the body's water balance and maintain normal blood pressure. However, persistent natriuresis may indicate underlying health issues that require medical attention.

Sodium-Potassium-Exchanging ATPase (also known as Na+/K+ ATPase) is a type of active transporter found in the cell membrane of many types of cells. It plays a crucial role in maintaining the electrochemical gradient and membrane potential of animal cells by pumping sodium ions (Na+) out of the cell and potassium ions (K+) into the cell, using energy derived from ATP hydrolysis.

This transporter is composed of two main subunits: a catalytic α-subunit that contains the binding sites for Na+, K+, and ATP, and a regulatory β-subunit that helps in the proper targeting and functioning of the pump. The Na+/K+ ATPase plays a critical role in various physiological processes, including nerve impulse transmission, muscle contraction, and kidney function.

In summary, Sodium-Potassium-Exchanging ATPase is an essential membrane protein that uses energy from ATP to transport sodium and potassium ions across the cell membrane, thereby maintaining ionic gradients and membrane potentials necessary for normal cellular function.

Heroin is a highly addictive drug that is processed from morphine, a naturally occurring substance extracted from the seed pod of the Asian opium poppy plant. It is a "downer" or depressant that affects the brain's pleasure systems and interferes with the brain's ability to perceive pain.

Heroin can be injected, smoked, or snorted. It is sold as a white or brownish powder or as a black, sticky substance known as "black tar heroin." Regardless of how it is taken, heroin enters the brain rapidly and is highly addictive.

The use of heroin can lead to serious health problems, including fatal overdose, spontaneous abortion, and infectious diseases like HIV and hepatitis. Long-term use of heroin can lead to physical dependence and addiction, a chronic disease that can be difficult to treat.

Ergolines are a group of ergot alkaloids that have been widely used in the development of various pharmaceutical drugs. These compounds are known for their ability to bind to and stimulate specific receptors in the brain, particularly dopamine receptors. As a result, they have been explored for their potential therapeutic benefits in the treatment of various neurological and psychiatric conditions, such as Parkinson's disease, migraine, and depression.

However, ergolines can also have significant side effects, including hallucinations, nausea, and changes in blood pressure. In addition, some ergot alkaloids have been associated with a rare but serious condition called ergotism, which is characterized by symptoms such as muscle spasms, vomiting, and gangrene. Therefore, the use of ergolines must be carefully monitored and managed to ensure their safety and effectiveness.

Some specific examples of drugs that contain ergolines include:

* Dihydroergotamine (DHE): used for the treatment of migraine headaches
* Pergolide: used for the treatment of Parkinson's disease
* Cabergoline: used for the treatment of Parkinson's disease and certain types of hormonal disorders

It is important to note that while ergolines have shown promise in some therapeutic areas, they are not without their risks. As with any medication, it is essential to consult with a healthcare provider before using any drug containing ergolines to ensure that it is safe and appropriate for an individual's specific needs.

Interleukin-1 Receptor-Associated Kinases (IRAKs) are a group of serine/threonine protein kinases that play a crucial role in the signaling pathways of Toll-like receptors (TLRs) and Interleukin-1 receptors (IL-1Rs). These receptors are involved in the recognition and response to various pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), which are essential for the activation of innate immune responses.

There are four known members of the IRAK family, namely IRAK1, IRAK2, IRAK3 (also known as IRAK-M), and IRAK4. Among these, IRAK4 is an upstream kinase that gets recruited to the receptor complex upon IL-1R or TLR activation. Once recruited, IRAK4 phosphorylates and activates IRAK1 and IRAK2, which in turn recruit additional signaling proteins leading to the activation of various transcription factors such as NF-κB and AP-1. These transcription factors regulate the expression of genes involved in inflammation, immune response, and cell survival.

IRAK3, on the other hand, is a negative regulator of TLR and IL-1R signaling. It lacks kinase activity and inhibits IRAK1 and IRAK4 activation, thereby dampening the immune response and preventing excessive inflammation. Dysregulation of IRAKs has been implicated in various inflammatory diseases, making them attractive targets for drug development.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

The putamen is a round, egg-shaped structure that is a part of the basal ganglia, located in the forebrain. It is situated laterally to the globus pallidus and medially to the internal capsule. The putamen plays a crucial role in regulating movement and is involved in various functions such as learning, motivation, and habit formation.

It receives input from the cerebral cortex via the corticostriatal pathway and sends output to the globus pallidus and substantia nigra pars reticulata, which are also part of the basal ganglia circuitry. The putamen is heavily innervated by dopaminergic neurons from the substantia nigra pars compacta, and degeneration of these neurons in Parkinson's disease leads to a significant reduction in dopamine levels in the putamen, resulting in motor dysfunction.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Hemolymph is not a term typically used in human medicine, but it is commonly used in the study of invertebrates, particularly arthropods such as insects and crustaceans. Hemolymph is the fluid that circulates within the open circulatory system of these animals, serving multiple functions similar to both blood and lymphatic systems in vertebrates.

In simpler terms, hemolymph is a combined fluid that performs the functions of both blood and lymph in invertebrates. It serves as a transport medium for nutrients, waste products, hormones, and immune cells (hemocytes) throughout the body. Hemolymph does not contain red and white blood cells like human blood; instead, hemocytes are the primary cellular components responsible for immune responses and wound healing in these animals.

Purinergic P2X receptors are a type of ligand-gated ion channel that are activated by the binding of extracellular ATP (adenosine triphosphate) and other purinergic agonists. These receptors play important roles in various physiological processes, including neurotransmission, pain perception, and immune response.

P2X receptors are composed of three subunits that form a functional ion channel. There are seven different subunits (P2X1-7) that can assemble to form homo- or heterotrimeric receptor complexes with distinct functional properties.

Upon activation by ATP, P2X receptors undergo conformational changes that allow for the flow of cations, such as calcium (Ca^2+^), sodium (Na^+^), and potassium (K^+^) ions, across the cell membrane. This ion flux can lead to a variety of downstream signaling events, including the activation of second messenger systems and changes in gene expression.

Purinergic P2X receptors have been implicated in a number of pathological conditions, including chronic pain, inflammation, and neurodegenerative diseases. As such, they are an active area of research for the development of novel therapeutic strategies.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

Vasoconstriction is a medical term that refers to the narrowing of blood vessels due to the contraction of the smooth muscle in their walls. This process decreases the diameter of the lumen (the inner space of the blood vessel) and reduces blood flow through the affected vessels. Vasoconstriction can occur throughout the body, but it is most noticeable in the arterioles and precapillary sphincters, which control the amount of blood that flows into the capillary network.

The autonomic nervous system, specifically the sympathetic division, plays a significant role in regulating vasoconstriction through the release of neurotransmitters like norepinephrine (noradrenaline). Various hormones and chemical mediators, such as angiotensin II, endothelin-1, and serotonin, can also induce vasoconstriction.

Vasoconstriction is a vital physiological response that helps maintain blood pressure and regulate blood flow distribution in the body. However, excessive or prolonged vasoconstriction may contribute to several pathological conditions, including hypertension, stroke, and peripheral vascular diseases.

Drug-seeking behavior is a term used in the medical field to describe a pattern of actions taken by a person who is trying to obtain drugs, typically prescription medications, for non-medical reasons or in a manner that is considered inappropriate or abusive. This can include behaviors such as:

* Exaggerating symptoms or faking illness to obtain drugs
* Visiting multiple doctors or pharmacies to obtain multiple prescriptions (a practice known as "doctor shopping")
* Using false names or identities to obtain drugs
* Stealing, forging, or altering prescriptions
* Offering to sell or trade prescription medications

Drug-seeking behavior can be a sign of a substance use disorder, such as addiction, and may require medical intervention and treatment. It is important for healthcare providers to be aware of the signs of drug-seeking behavior and to take appropriate measures to ensure that patients are receiving the care and treatment they need while also protecting the integrity of the healthcare system.

A serotonin receptor, specifically the 5-HT1B receptor, is a type of G protein-coupled receptor found in the cell membrane. It binds to the neurotransmitter serotonin (also known as 5-hydroxytryptamine or 5-HT) and plays a role in regulating various physiological functions, including neurotransmission, vasoconstriction, and smooth muscle contraction.

The 5-HT1B receptor is widely distributed throughout the body, but it is particularly abundant in the brain, where it is involved in modulating mood, cognition, and motor control. When serotonin binds to the 5-HT1B receptor, it activates a signaling pathway that ultimately leads to the inhibition of adenylyl cyclase, which reduces the production of cAMP (cyclic adenosine monophosphate) in the cell. This reduction in cAMP levels can have various effects on cellular function, depending on the specific tissue and context in which the 5-HT1B receptor is expressed.

In addition to its role as a serotonin receptor, the 5-HT1B receptor has also been identified as a target for certain drugs used in the treatment of migraine headaches, such as triptans. These medications bind to and activate the 5-HT1B receptor, which leads to vasoconstriction of cranial blood vessels and inhibition of neuropeptide release, helping to alleviate the symptoms of migraines.

NOD2 (Nucleotide-binding Oligomerization Domain-containing protein 2) signaling adaptor protein, also known as CARD15 (Caspase Recruitment Domain-containing protein 15), is a crucial intracellular pattern recognition receptor (PRR) that plays an essential role in the innate immune response. NOD2 is primarily expressed in monocytes, macrophages, dendritic cells, and intestinal epithelial cells.

NOD2 signaling adaptor protein contains two caspase recruitment domains (CARD), a nucleotide-binding oligomerization domain (NOD), and multiple leucine-rich repeats (LRR). The LRR region is responsible for recognizing and binding to pathogen-associated molecular patterns (PAMPs) derived from bacterial cell walls, such as muramyl dipeptide (MDP). Upon recognition of MDP, NOD2 undergoes oligomerization through its NOD domain, which leads to the recruitment of receptor-interacting protein kinase 2 (RIPK2) via CARD-CARD interactions. This interaction results in the activation of downstream signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), which ultimately induce the expression of proinflammatory cytokines, chemokines, and antimicrobial peptides.

Dysregulation or mutations in NOD2 signaling adaptor protein have been implicated in several inflammatory diseases, such as Crohn's disease, Blau syndrome, and susceptibility to certain mycobacterial infections.

Neural inhibition is a process in the nervous system that decreases or prevents the activity of neurons (nerve cells) in order to regulate and control communication within the nervous system. It is a fundamental mechanism that allows for the balance of excitation and inhibition necessary for normal neural function. Inhibitory neurotransmitters, such as GABA (gamma-aminobutyric acid) and glycine, are released from the presynaptic neuron and bind to receptors on the postsynaptic neuron, reducing its likelihood of firing an action potential. This results in a decrease in neural activity and can have various effects depending on the specific neurons and brain regions involved. Neural inhibition is crucial for many functions including motor control, sensory processing, attention, memory, and emotional regulation.

Cyclic AMP (cAMP)-dependent protein kinases, also known as protein kinase A (PKA), are a family of enzymes that play a crucial role in intracellular signaling pathways. These enzymes are responsible for the regulation of various cellular processes, including metabolism, gene expression, and cell growth and differentiation.

PKA is composed of two regulatory subunits and two catalytic subunits. When cAMP binds to the regulatory subunits, it causes a conformational change that leads to the dissociation of the catalytic subunits. The freed catalytic subunits then phosphorylate specific serine and threonine residues on target proteins, thereby modulating their activity.

The cAMP-dependent protein kinases are activated in response to a variety of extracellular signals, such as hormones and neurotransmitters, that bind to G protein-coupled receptors (GPCRs) or receptor tyrosine kinases (RTKs). These signals lead to the activation of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP. The resulting increase in intracellular cAMP levels triggers the activation of PKA and the downstream phosphorylation of target proteins.

Overall, cAMP-dependent protein kinases are essential regulators of many fundamental cellular processes and play a critical role in maintaining normal physiology and homeostasis. Dysregulation of these enzymes has been implicated in various diseases, including cancer, diabetes, and neurological disorders.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Pentazocine is a synthetic opioid analgesic, chemically unrelated to other opiates or opioids. It acts as an agonist at the kappa-opioid receptor and as an antagonist at the mu-opioid receptor, which means it can produce pain relief but block the effects of full agonists such as heroin or morphine. Pentazocine is used for the management of moderate to severe pain and is available in oral, intramuscular, and intravenous formulations. Common side effects include dizziness, lightheadedness, sedation, nausea, and vomiting.

Dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) is a protein that plays a crucial role in the regulation of signal transduction pathways in the brain. It is primarily expressed in neurons of the striatum, a region involved in movement control, motivation, and reward processing.

DARPP-32 acts as a molecular switch in response to various neurotransmitters, including dopamine and glutamate. When phosphorylated by protein kinase A (PKA), DARPP-32 inhibits protein phosphatase-1 (PP-1), thereby enhancing the effects of PKA and promoting long-term changes in synaptic plasticity. Conversely, when phosphorylated by other kinases such as cyclin-dependent kinase 5 (Cdk5) or protein kinase C (PKC), DARPP-32 inhibits PKA, counteracting its effects.

Dysregulation of DARPP-32 has been implicated in several neurological and psychiatric disorders, including drug addiction, Parkinson's disease, and schizophrenia. Therefore, understanding the molecular mechanisms underlying DARPP-32 function is essential for developing novel therapeutic strategies to treat these conditions.

Colforsin is a drug that belongs to a class of medications called phosphodiesterase inhibitors. It works by increasing the levels of a chemical called cyclic AMP (cyclic adenosine monophosphate) in the body, which helps to relax and widen blood vessels.

Colforsin is not approved for use in humans in many countries, including the United States. However, it has been used in research settings to study its potential effects on heart function and other physiological processes. In animals, colforsin has been shown to have positive inotropic (contractility-enhancing) and lusitropic (relaxation-enhancing) effects on the heart, making it a potential therapeutic option for heart failure and other cardiovascular conditions.

It is important to note that while colforsin has shown promise in preclinical studies, more research is needed to establish its safety and efficacy in humans. Therefore, it should only be used under the supervision of a qualified healthcare professional and in the context of a clinical trial or research study.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

The renal artery is a pair of blood vessels that originate from the abdominal aorta and supply oxygenated blood to each kidney. These arteries branch into several smaller vessels that provide blood to the various parts of the kidneys, including the renal cortex and medulla. The renal arteries also carry nutrients and other essential components needed for the normal functioning of the kidneys. Any damage or blockage to the renal artery can lead to serious consequences, such as reduced kidney function or even kidney failure.

"Micrococcus luteus" is a type of gram-positive, catalase-positive cocci that is commonly found in pairs or tetrads. It is a facultative anaerobe and can be found in various environments, including soil, water, and the skin and mucous membranes of humans and animals. "Micrococcus luteus" is known to be opportunistic pathogens, causing infections in individuals with weakened immune systems. It is also used as a reference strain in microbiological research and industry.

Poly(I):C is a synthetic double-stranded RNA (dsRNA) molecule made up of polycytidylic acid (poly C) and polyinosinic acid (poly I), joined by a 1:1 ratio of their phosphodiester linkages. It is used in research as an immunostimulant, particularly to induce the production of interferons and other cytokines, and to activate immune cells such as natural killer (NK) cells, dendritic cells, and macrophages. Poly(I):C has been studied for its potential use in cancer immunotherapy and as a vaccine adjuvant. It can also induce innate antiviral responses and has been explored as an antiviral agent itself.

Pyrrolidines are not a medical term per se, but they are a chemical compound that can be encountered in the field of medicine and pharmacology. Pyrrolidine is an organic compound with the molecular formula (CH2)4NH. It is a cyclic secondary amine, which means it contains a nitrogen atom surrounded by four carbon atoms in a ring structure.

Pyrrolidines can be found in certain natural substances and are also synthesized for use in pharmaceuticals and research. They have been used as building blocks in the synthesis of various drugs, including some muscle relaxants, antipsychotics, and antihistamines. Additionally, pyrrolidine derivatives can be found in certain plants and fungi, where they may contribute to biological activity or toxicity.

It is important to note that while pyrrolidines themselves are not a medical condition or diagnosis, understanding their chemical properties and uses can be relevant to the study and development of medications.

Cholinergic fibers are nerve cell extensions (neurons) that release the neurotransmitter acetylcholine at their synapses, which are the junctions where they transmit signals to other neurons or effector cells such as muscles and glands. These fibers are a part of the cholinergic system, which plays crucial roles in various physiological processes including learning and memory, attention, arousal, sleep, and muscle contraction.

Cholinergic fibers can be found in both the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS, cholinergic neurons are primarily located in the basal forebrain and brainstem, and their projections innervate various regions of the cerebral cortex, hippocampus, thalamus, and other brain areas. In the PNS, cholinergic fibers are responsible for activating skeletal muscles through neuromuscular junctions, as well as regulating functions in smooth muscles, cardiac muscles, and glands via the autonomic nervous system.

Dysfunction of the cholinergic system has been implicated in several neurological disorders, such as Alzheimer's disease, Parkinson's disease, and myasthenia gravis.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Toll-like receptor 3 (TLR3) is a type of protein belonging to the family of Toll-like receptors, which are involved in the innate immune system's response to pathogens. TLR3 is primarily expressed on the surface of various cells including immune cells such as dendritic cells, macrophages, and epithelial cells.

TLR3 recognizes double-stranded RNA (dsRNA), a molecule found in certain viruses during their replication process. When TLR3 binds to dsRNA, it triggers a signaling cascade that leads to the activation of several transcription factors, including NF-κB and IRF3, which ultimately result in the production of proinflammatory cytokines and type I interferons (IFNs). These molecules play crucial roles in activating the immune response against viral infections.

In summary, TLR3 is a pattern recognition receptor that plays an essential role in the early detection and defense against viral pathogens by initiating innate immune responses upon recognizing double-stranded RNA.

Patch-clamp techniques are a group of electrophysiological methods used to study ion channels and other electrical properties of cells. These techniques were developed by Erwin Neher and Bert Sakmann, who were awarded the Nobel Prize in Physiology or Medicine in 1991 for their work. The basic principle of patch-clamp techniques involves creating a high resistance seal between a glass micropipette and the cell membrane, allowing for the measurement of current flowing through individual ion channels or groups of channels.

There are several different configurations of patch-clamp techniques, including:

1. Cell-attached configuration: In this configuration, the micropipette is attached to the outer surface of the cell membrane, and the current flowing across a single ion channel can be measured. This configuration allows for the study of the properties of individual channels in their native environment.
2. Whole-cell configuration: Here, the micropipette breaks through the cell membrane, creating a low resistance electrical connection between the pipette and the inside of the cell. This configuration allows for the measurement of the total current flowing across all ion channels in the cell membrane.
3. Inside-out configuration: In this configuration, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the inner surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in isolation from other cellular components.
4. Outside-out configuration: Here, the micropipette is pulled away from the cell after establishing a seal, resulting in the exposure of the outer surface of the cell membrane to the solution in the pipette. This configuration allows for the study of the properties of ion channels in their native environment, but with the ability to control the composition of the extracellular solution.

Patch-clamp techniques have been instrumental in advancing our understanding of ion channel function and have contributed to numerous breakthroughs in neuroscience, pharmacology, and physiology.

Adenylate cyclase is an enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP). It plays a crucial role in various cellular processes, including signal transduction and metabolism. Adenylate cyclase is activated by hormones and neurotransmitters that bind to G-protein-coupled receptors on the cell membrane, leading to the production of cAMP, which then acts as a second messenger to regulate various intracellular responses. There are several isoforms of adenylate cyclase, each with distinct regulatory properties and subcellular localization.

A "fat body" is not a medical term that is typically used to describe human anatomy. It is more commonly used in the context of insects and other invertebrates, where it refers to a specialized tissue that functions to store energy in the form of fat.

However, in humans, we do have adipose tissue, which is the medical term for body fat. Adipose tissue is found throughout the body, but is particularly concentrated in certain areas such as the abdomen, hips, and thighs. It serves a variety of functions, including storing energy, insulating the body, and producing hormones that regulate metabolism and appetite.

If you are looking for information on obesity or excess body fat in humans, there are many medical resources available to help you understand these topics better.

Piperazines are a class of heterocyclic organic compounds that contain a seven-membered ring with two nitrogen atoms at positions 1 and 4. They have the molecular formula N-NRR' where R and R' can be alkyl or aryl groups. Piperazines have a wide range of uses in pharmaceuticals, agrochemicals, and as building blocks in organic synthesis.

In a medical context, piperazines are used in the manufacture of various drugs, including some antipsychotics, antidepressants, antihistamines, and anti-worm medications. For example, the antipsychotic drug trifluoperazine and the antidepressant drug nefazodone both contain a piperazine ring in their chemical structure.

However, it's important to note that some piperazines are also used as recreational drugs due to their stimulant and euphoric effects. These include compounds such as BZP (benzylpiperazine) and TFMPP (trifluoromethylphenylpiperazine), which have been linked to serious health risks, including addiction, seizures, and death. Therefore, the use of these substances should be avoided.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

A smooth muscle within the vascular system refers to the involuntary, innervated muscle that is found in the walls of blood vessels. These muscles are responsible for controlling the diameter of the blood vessels, which in turn regulates blood flow and blood pressure. They are called "smooth" muscles because their individual muscle cells do not have the striations, or cross-striped patterns, that are observed in skeletal and cardiac muscle cells. Smooth muscle in the vascular system is controlled by the autonomic nervous system and by hormones, and can contract or relax slowly over a period of time.

The Globus Pallidus is a structure in the brain that is part of the basal ganglia, a group of nuclei associated with movement control and other functions. It has two main subdivisions: the external (GPe) and internal (GPi) segments. The GPe receives input from the striatum and sends inhibitory projections to the subthalamic nucleus, while the GPi sends inhibitory projections to the thalamus, which in turn projects to the cerebral cortex. These connections allow for the regulation of motor activity, with abnormal functioning of the Globus Pallidus being implicated in various movement disorders such as Parkinson's disease and Huntington's disease.

The prefrontal cortex is the anterior (frontal) part of the frontal lobe in the brain, involved in higher-order cognitive processes such as planning complex cognitive behavior, personality expression, decision making, and moderating social behavior. It also plays a significant role in working memory and executive functions. The prefrontal cortex is divided into several subregions, each associated with specific cognitive and emotional functions. Damage to the prefrontal cortex can result in various impairments, including difficulties with planning, decision making, and social behavior regulation.

Ejaculation is the discharge of semen, typically accompanied by orgasm, during sexual activity. It occurs when the male reproductive system releases semen from the penis. This process is usually brought on by sexual arousal and stimulation, which cause the sperm-carrying vas deferens to contract and push the semen into the urethra, from where it is expelled through the tip of the penis.

There are two types of ejaculation:

1. **Reflex ejaculation**: This occurs when there is a high level of sexual excitement or stimulation, leading to an involuntary and automatic response.
2. **Premature ejaculation**: This refers to the condition where ejaculation happens too quickly, often before or shortly after penetration, causing distress and affecting sexual satisfaction for both partners.

It is essential to understand that a healthy male can experience variations in the timing of ejaculation throughout their life, influenced by factors such as age, stress levels, and overall health. If you have concerns about your ejaculation patterns or any related issues, it is recommended to consult a healthcare professional for advice and treatment options.

GTP-binding protein alpha subunits, Gi-Go, are a type of heterotrimeric G proteins that play a crucial role in signal transduction pathways associated with many hormones and neurotransmitters. These G proteins are composed of three subunits: alpha, beta, and gamma. The "Gi-Go" specifically refers to the alpha subunit of these G proteins, which can exist in two isoforms, Gi and Go.

When a G protein-coupled receptor (GPCR) is activated by an agonist, it undergoes a conformational change that allows it to act as a guanine nucleotide exchange factor (GEF). The GEF activity of the GPCR promotes the exchange of GDP for GTP on the alpha subunit of the heterotrimeric G protein. Once GTP is bound, the alpha subunit dissociates from the beta-gamma dimer and can then interact with downstream effectors to modulate various cellular responses.

The Gi-Go alpha subunits are inhibitory in nature, meaning that they typically inhibit the activity of adenylyl cyclase, an enzyme responsible for converting ATP to cAMP. This reduction in cAMP levels can have downstream effects on various cellular processes, such as gene transcription, ion channel regulation, and metabolic pathways.

In summary, GTP-binding protein alpha subunits, Gi-Go, are heterotrimeric G proteins that play an essential role in signal transduction pathways by modulating adenylyl cyclase activity upon GPCR activation, ultimately influencing various cellular responses through cAMP regulation.

Purinergic P2 receptor agonists are substances that bind and activate purinergic P2 receptors, which are a type of cell surface receptor found in many tissues throughout the body. These receptors are activated by extracellular nucleotides, such as ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and play important roles in various physiological processes, including neurotransmission, muscle contraction, and inflammation.

P2 receptors are divided into two main subfamilies: P2X and P2Y. P2X receptors are ligand-gated ion channels that allow the flow of ions across the cell membrane when activated, while P2Y receptors are G protein-coupled receptors that activate intracellular signaling pathways.

Purinergic P2 receptor agonists can be synthetic or naturally occurring compounds that selectively bind to and activate specific subtypes of P2 receptors. They have potential therapeutic applications in various medical conditions, such as pain management, cardiovascular diseases, and neurological disorders. However, their use must be carefully monitored due to the potential for adverse effects, including desensitization of receptors and activation of unwanted signaling pathways.

The Ventral Tegmental Area (VTA) is a collection of neurons located in the midbrain that is part of the dopamine system. It is specifically known as the A10 group and is the largest source of dopaminergic neurons in the brain. These neurons project to various regions, including the prefrontal cortex, amygdala, hippocampus, and nucleus accumbens, and are involved in reward, motivation, addiction, and various cognitive functions. The VTA also contains GABAergic and glutamatergic neurons that modulate dopamine release and have various other functions.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

HEK293 cells, also known as human embryonic kidney 293 cells, are a line of cells used in scientific research. They were originally derived from human embryonic kidney cells and have been adapted to grow in a lab setting. HEK293 cells are widely used in molecular biology and biochemistry because they can be easily transfected (a process by which DNA is introduced into cells) and highly express foreign genes. As a result, they are often used to produce proteins for structural and functional studies. It's important to note that while HEK293 cells are derived from human tissue, they have been grown in the lab for many generations and do not retain the characteristics of the original embryonic kidney cells.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Host-pathogen interactions refer to the complex and dynamic relationship between a living organism (the host) and a disease-causing agent (the pathogen). This interaction can involve various molecular, cellular, and physiological processes that occur between the two entities. The outcome of this interaction can determine whether the host will develop an infection or not, as well as the severity and duration of the illness.

During host-pathogen interactions, the pathogen may release virulence factors that allow it to evade the host's immune system, colonize tissues, and obtain nutrients for its survival and replication. The host, in turn, may mount an immune response to recognize and eliminate the pathogen, which can involve various mechanisms such as inflammation, phagocytosis, and the production of antimicrobial agents.

Understanding the intricacies of host-pathogen interactions is crucial for developing effective strategies to prevent and treat infectious diseases. This knowledge can help identify new targets for therapeutic interventions, inform vaccine design, and guide public health policies to control the spread of infectious agents.

An inflammasome is a large cytosolic protein complex that plays a crucial role in the innate immune system's response to infection and stress. It is responsible for the activation of caspase-1, which subsequently leads to the processing and secretion of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and the induction of a form of cell death known as pyroptosis.

The inflammasome is formed when certain pattern recognition receptors (PRRs), such as NOD-like receptors (NLRs) or AIM2-like receptors (ALRs), recognize specific pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). This interaction results in the recruitment and assembly of the inflammasome complex, which includes the adaptor protein ASC and pro-caspase-1.

Once activated, caspase-1 cleaves pro-IL-1β and pro-IL-18 into their active forms, which are then released from the cell to recruit immune cells and initiate an inflammatory response. Dysregulation of inflammasome activation has been implicated in various diseases, including autoinflammatory disorders, autoimmune diseases, and neurodegenerative conditions.

Excitatory postsynaptic potentials (EPSPs) are electrical signals that occur in the dendrites and cell body of a neuron, or nerve cell. They are caused by the activation of excitatory synapses, which are connections between neurons that allow for the transmission of information.

When an action potential, or electrical impulse, reaches the end of an axon, it triggers the release of neurotransmitters into the synaptic cleft, the small gap between the presynaptic and postsynaptic membranes. The excitatory neurotransmitters then bind to receptors on the postsynaptic membrane, causing a local depolarization of the membrane potential. This depolarization is known as an EPSP.

EPSPs are responsible for increasing the likelihood that an action potential will be generated in the postsynaptic neuron. When multiple EPSPs occur simultaneously or in close succession, they can summate and cause a large enough depolarization to trigger an action potential. This allows for the transmission of information from one neuron to another.

It's important to note that there are also inhibitory postsynaptic potentials (IPSPs) which decrease the likelihood that an action potential will be generated in the postsynaptic neuron, by causing a local hyperpolarization of the membrane potential.

Muscle contraction is the physiological process in which muscle fibers shorten and generate force, leading to movement or stability of a body part. This process involves the sliding filament theory where thick and thin filaments within the sarcomeres (the functional units of muscles) slide past each other, facilitated by the interaction between myosin heads and actin filaments. The energy required for this action is provided by the hydrolysis of adenosine triphosphate (ATP). Muscle contractions can be voluntary or involuntary, and they play a crucial role in various bodily functions such as locomotion, circulation, respiration, and posture maintenance.

Vasoconstrictor agents are substances that cause the narrowing of blood vessels by constricting the smooth muscle in their walls. This leads to an increase in blood pressure and a decrease in blood flow. They work by activating the sympathetic nervous system, which triggers the release of neurotransmitters such as norepinephrine and epinephrine that bind to alpha-adrenergic receptors on the smooth muscle cells of the blood vessel walls, causing them to contract.

Vasoconstrictor agents are used medically for a variety of purposes, including:

* Treating hypotension (low blood pressure)
* Controlling bleeding during surgery or childbirth
* Relieving symptoms of nasal congestion in conditions such as the common cold or allergies

Examples of vasoconstrictor agents include phenylephrine, oxymetazoline, and epinephrine. It's important to note that prolonged use or excessive doses of vasoconstrictor agents can lead to rebound congestion and other adverse effects, so they should be used with caution and under the guidance of a healthcare professional.

Stereotyped behavior, in the context of medicine and psychology, refers to repetitive, rigid, and invariant patterns of behavior or movements that are purposeless and often non-functional. These behaviors are not goal-directed or spontaneous and typically do not change in response to environmental changes or social interactions.

Stereotypies can include a wide range of motor behaviors such as hand flapping, rocking, head banging, body spinning, self-biting, or complex sequences of movements. They are often seen in individuals with developmental disabilities, intellectual disabilities, autism spectrum disorder, and some mental health conditions.

Stereotyped behaviors can also be a result of substance abuse, neurological disorders, or brain injuries. In some cases, these behaviors may serve as a self-soothing mechanism or a way to cope with stress, anxiety, or boredom. However, they can also interfere with daily functioning and social interactions, and in severe cases, may cause physical harm to the individual.

Presynaptic terminals, also known as presynaptic boutons or nerve terminals, refer to the specialized structures located at the end of axons in neurons. These terminals contain numerous small vesicles filled with neurotransmitters, which are chemical messengers that transmit signals between neurons.

When an action potential reaches the presynaptic terminal, it triggers the influx of calcium ions into the terminal, leading to the fusion of the vesicles with the presynaptic membrane and the release of neurotransmitters into the synaptic cleft, a small gap between the presynaptic and postsynaptic terminals.

The released neurotransmitters then bind to receptors on the postsynaptic terminal, leading to the generation of an electrical or chemical signal that can either excite or inhibit the postsynaptic neuron. Presynaptic terminals play a crucial role in regulating synaptic transmission and are targets for various drugs and toxins that modulate neuronal communication.

"Saimiri" is the genus name for the group of primates known as squirrel monkeys. These small, agile New World monkeys are native to Central and South America and are characterized by their slim bodies, long limbs, and distinctive hairless faces with large eyes. They are omnivorous and known for their active, quick-moving behavior in the trees. There are several species of squirrel monkey, including the Central American squirrel monkey (Saimiri oerstedii) and the much more widespread common squirrel monkey (Saimiri sciureus).

Toll-like receptor 5 (TLR5) is a protein that plays a crucial role in the innate immune system. It is a type of transmembrane receptor located on the surface of various cells, including immune cells such as macrophages and dendritic cells. TLR5 recognizes and binds to a specific molecular pattern called flagellin, which is a structural protein found in the bacterial flagellum, a whip-like structure that some bacteria use for motility.

Once TLR5 binds to flagellin, it triggers a signaling cascade that leads to the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), which in turn activate genes involved in inflammation, immune response, and cell survival. This activation results in the production of proinflammatory cytokines and chemokines that help to recruit other immune cells to the site of infection and initiate an effective immune response against the invading pathogen.

TLR5 has been implicated in various inflammatory and infectious diseases, including Crohn's disease, sepsis, and Legionnaires' disease. Understanding the role of TLR5 in the immune system can provide insights into the development of new therapies for these conditions.

Electric stimulation, also known as electrical nerve stimulation or neuromuscular electrical stimulation, is a therapeutic treatment that uses low-voltage electrical currents to stimulate nerves and muscles. It is often used to help manage pain, promote healing, and improve muscle strength and mobility. The electrical impulses can be delivered through electrodes placed on the skin or directly implanted into the body.

In a medical context, electric stimulation may be used for various purposes such as:

1. Pain management: Electric stimulation can help to block pain signals from reaching the brain and promote the release of endorphins, which are natural painkillers produced by the body.
2. Muscle rehabilitation: Electric stimulation can help to strengthen muscles that have become weak due to injury, illness, or surgery. It can also help to prevent muscle atrophy and improve range of motion.
3. Wound healing: Electric stimulation can promote tissue growth and help to speed up the healing process in wounds, ulcers, and other types of injuries.
4. Urinary incontinence: Electric stimulation can be used to strengthen the muscles that control urination and reduce symptoms of urinary incontinence.
5. Migraine prevention: Electric stimulation can be used as a preventive treatment for migraines by applying electrical impulses to specific nerves in the head and neck.

It is important to note that electric stimulation should only be administered under the guidance of a qualified healthcare professional, as improper use can cause harm or discomfort.

Operant conditioning is a type of learning in which behavior is modified by its consequences, either reinforcing or punishing the behavior. It was first described by B.F. Skinner and involves an association between a response (behavior) and a consequence (either reward or punishment). There are two types of operant conditioning: positive reinforcement, in which a desirable consequence follows a desired behavior, increasing the likelihood that the behavior will occur again; and negative reinforcement, in which a undesirable consequence is removed following a desired behavior, also increasing the likelihood that the behavior will occur again.

For example, if a child cleans their room (response) and their parent gives them praise or a treat (positive reinforcement), the child is more likely to clean their room again in the future. If a child is buckling their seatbelt in the car (response) and the annoying buzzer stops (negative reinforcement), the child is more likely to buckle their seatbelt in the future.

It's important to note that operant conditioning is a form of learning, not motivation. The behavior is modified by its consequences, regardless of the individual's internal state or intentions.

Piperidines are not a medical term per se, but they are a class of organic compounds that have important applications in the pharmaceutical industry. Medically relevant piperidines include various drugs such as some antihistamines, antidepressants, and muscle relaxants.

A piperidine is a heterocyclic amine with a six-membered ring containing five carbon atoms and one nitrogen atom. The structure can be described as a cyclic secondary amine. Piperidines are found in some natural alkaloids, such as those derived from the pepper plant (Piper nigrum), which gives piperidines their name.

In a medical context, it is more common to encounter specific drugs that belong to the class of piperidines rather than the term itself.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Antipsychotic agents are a class of medications used to manage and treat psychosis, which includes symptoms such as delusions, hallucinations, paranoia, disordered thought processes, and agitated behavior. These drugs work by blocking the action of dopamine, a neurotransmitter in the brain that is believed to play a role in the development of psychotic symptoms. Antipsychotics can be broadly divided into two categories: first-generation antipsychotics (also known as typical antipsychotics) and second-generation antipsychotics (also known as atypical antipsychotics).

First-generation antipsychotics, such as chlorpromazine, haloperidol, and fluphenazine, were developed in the 1950s and have been widely used for several decades. They are generally effective in reducing positive symptoms of psychosis (such as hallucinations and delusions) but can cause significant side effects, including extrapyramidal symptoms (EPS), such as rigidity, tremors, and involuntary movements, as well as weight gain, sedation, and orthostatic hypotension.

Second-generation antipsychotics, such as clozapine, risperidone, olanzapine, quetiapine, and aripiprazole, were developed more recently and are considered to have a more favorable side effect profile than first-generation antipsychotics. They are generally effective in reducing both positive and negative symptoms of psychosis (such as apathy, anhedonia, and social withdrawal) and cause fewer EPS. However, they can still cause significant weight gain, metabolic disturbances, and sedation.

Antipsychotic agents are used to treat various psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder with psychotic features, delusional disorder, and other conditions that involve psychosis or agitation. They can be administered orally, intramuscularly, or via long-acting injectable formulations. The choice of antipsychotic agent depends on the individual patient's needs, preferences, and response to treatment, as well as the potential for side effects. Regular monitoring of patients taking antipsychotics is essential to ensure their safety and effectiveness.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

"Cocaine-Related Disorders" is a term used in the medical and psychiatric fields to refer to a group of conditions related to the use of cocaine, a powerful stimulant drug. These disorders are classified and diagnosed based on the criteria outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), published by the American Psychiatric Association.

The two main categories of Cocaine-Related Disorders are:

1. Cocaine Use Disorder: This disorder is characterized by a problematic pattern of cocaine use leading to clinically significant impairment or distress, as manifested by at least two symptoms within a 12-month period. These symptoms may include using larger amounts of cocaine over a longer period than intended, persistent desire or unsuccessful efforts to cut down or control cocaine use, spending a great deal of time obtaining, using, or recovering from the effects of cocaine, and continued use despite physical or psychological problems caused or exacerbated by cocaine.
2. Cocaine-Induced Disorders: These disorders are directly caused by the acute effects of cocaine intoxication or withdrawal. They include:
* Cocaine Intoxication: Presents with a reversible syndrome due to recent use of cocaine, characterized by euphoria, increased energy, and psychomotor agitation. It may also cause elevated heart rate, blood pressure, and body temperature, as well as pupillary dilation.
* Cocaine Withdrawal: Occurs when an individual who has been using cocaine heavily for a prolonged period abruptly stops or significantly reduces their use. Symptoms include depressed mood, fatigue, increased appetite, vivid and unpleasant dreams, and insomnia.

Cocaine-Related Disorders can have severe negative consequences on an individual's physical health, mental wellbeing, and social functioning. They often require professional treatment to manage and overcome.

The brain is the central organ of the nervous system, responsible for receiving and processing sensory information, regulating vital functions, and controlling behavior, movement, and cognition. It is divided into several distinct regions, each with specific functions:

1. Cerebrum: The largest part of the brain, responsible for higher cognitive functions such as thinking, learning, memory, language, and perception. It is divided into two hemispheres, each controlling the opposite side of the body.
2. Cerebellum: Located at the back of the brain, it is responsible for coordinating muscle movements, maintaining balance, and fine-tuning motor skills.
3. Brainstem: Connects the cerebrum and cerebellum to the spinal cord, controlling vital functions such as breathing, heart rate, and blood pressure. It also serves as a relay center for sensory information and motor commands between the brain and the rest of the body.
4. Diencephalon: A region that includes the thalamus (a major sensory relay station) and hypothalamus (regulates hormones, temperature, hunger, thirst, and sleep).
5. Limbic system: A group of structures involved in emotional processing, memory formation, and motivation, including the hippocampus, amygdala, and cingulate gyrus.

The brain is composed of billions of interconnected neurons that communicate through electrical and chemical signals. It is protected by the skull and surrounded by three layers of membranes called meninges, as well as cerebrospinal fluid that provides cushioning and nutrients.

Inhibitory postsynaptic potentials (IPSPs) are electrical signals that occur in the postsynaptic neuron when an inhibitory neurotransmitter is released from the presynaptic neuron and binds to receptors on the postsynaptic membrane. This binding causes a decrease in the excitability of the postsynaptic neuron, making it less likely to fire an action potential.

IPSPs are typically caused by neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine, which open chloride channels in the postsynaptic membrane. The influx of negatively charged chloride ions into the neuron causes a hyperpolarization of the membrane potential, making it more difficult for the neuron to reach the threshold needed to generate an action potential.

IPSPs play an important role in regulating the activity of neural circuits and controlling the flow of information through the nervous system. By inhibiting the activity of certain neurons, IPSPs can help to sharpen the signals that are transmitted between neurons and prevent unwanted noise or interference from disrupting communication within the circuit.

TNF Receptor-Associated Factor 6 (TRAF6) is a protein that plays a crucial role in the signaling pathways of various cytokine receptors and pattern recognition receptors, including TNF receptors, IL-1 receptors, and TLRs. It functions as an E3 ubiquitin ligase, which adds ubiquitin molecules to other proteins, thereby modulating their activity, stability, or localization.

TRAF6 is involved in the activation of several downstream signaling pathways, such as NF-κB and MAPK pathways, leading to the induction of immune responses, inflammation, cell survival, differentiation, and proliferation. Mutations or dysregulation of TRAF6 have been implicated in various diseases, including immunodeficiencies, autoimmune disorders, and cancers.

"Body patterning" is a general term that refers to the process of forming and organizing various tissues and structures into specific patterns during embryonic development. This complex process involves a variety of molecular mechanisms, including gene expression, cell signaling, and cell-cell interactions. It results in the creation of distinct body regions, such as the head, trunk, and limbs, as well as the organization of internal organs and systems.

In medical terminology, "body patterning" may refer to specific developmental processes or abnormalities related to embryonic development. For example, in genetic disorders such as Poland syndrome or Holt-Oram syndrome, mutations in certain genes can lead to abnormal body patterning, resulting in the absence or underdevelopment of certain muscles, bones, or other structures.

It's important to note that "body patterning" is not a formal medical term with a specific definition, but rather a general concept used in developmental biology and genetics.

Antigens are substances (usually proteins) on the surface of cells, viruses, fungi, or bacteria that can be recognized by the immune system and provoke an immune response. In the context of differentiation, antigens refer to specific markers that identify the developmental stage or lineage of a cell.

Differentiation antigens are proteins or carbohydrates expressed on the surface of cells during various stages of differentiation, which can be used to distinguish between cells at different maturation stages or of different cell types. These antigens play an essential role in the immune system's ability to recognize and respond to abnormal or infected cells while sparing healthy cells.

Examples of differentiation antigens include:

1. CD (cluster of differentiation) molecules: A group of membrane proteins used to identify and define various cell types, such as T cells, B cells, natural killer cells, monocytes, and granulocytes.
2. Lineage-specific antigens: Antigens that are specific to certain cell lineages, such as CD3 for T cells or CD19 for B cells.
3. Maturation markers: Antigens that indicate the maturation stage of a cell, like CD34 and CD38 on hematopoietic stem cells.

Understanding differentiation antigens is crucial in immunology, cancer research, transplantation medicine, and vaccine development.

Genes in insects refer to the hereditary units of DNA that are passed down from parents to offspring and contain the instructions for the development, function, and reproduction of an organism. These genetic materials are located within the chromosomes in the nucleus of insect cells. They play a crucial role in determining various traits such as physical characteristics, behavior, and susceptibility to diseases.

Insect genes, like those of other organisms, consist of exons (coding regions) that contain information for protein synthesis and introns (non-coding regions) that are removed during the process of gene expression. The expression of insect genes is regulated by various factors such as transcription factors, enhancers, and silencers, which bind to specific DNA sequences to activate or repress gene transcription.

Understanding the genetic makeup of insects has important implications for various fields, including agriculture, public health, and evolutionary biology. For example, genes associated with insect pests' resistance to pesticides can be identified and targeted to develop more effective control strategies. Similarly, genes involved in disease transmission by insect vectors such as mosquitoes can be studied to develop novel interventions for preventing the spread of infectious diseases.

Locomotion, in a medical context, refers to the ability to move independently and change location. It involves the coordinated movement of the muscles, bones, and nervous system that enables an individual to move from one place to another. This can include walking, running, jumping, or using assistive devices such as wheelchairs or crutches. Locomotion is a fundamental aspect of human mobility and is often assessed in medical evaluations to determine overall health and functioning.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Purinergic P2X7 receptors are a type of ligand-gated ion channel that are activated by the binding of extracellular adenosine triphosphate (ATP) to the P2X7 receptor subunit. These receptors play important roles in various physiological and pathophysiological processes, including inflammation, immune response, pain perception, and cell death.

Upon activation of P2X7 receptors, there is an increase in membrane permeability to small cations such as Na+, K+, and Ca2+, which can lead to the depolarization of the cell membrane. Prolonged activation of these receptors can result in the formation of large pores that allow for the passage of larger molecules, including inflammatory mediators and even small proteins. This can ultimately lead to the induction of apoptosis or necrosis in certain cells.

P2X7 receptors are widely expressed in various tissues, including the brain, spinal cord, immune cells, and epithelial cells. In recent years, there has been growing interest in targeting P2X7 receptors for therapeutic purposes, particularly in the context of inflammatory diseases and chronic pain.

Brain waves, also known as electroencephalography (EEG) waves, are the rhythmic electrical activity produced by the brain's neurons. These waves are detected by placing electrodes on the scalp and can be visualized using an EEG machine. Brain waves are typically categorized into different frequency bands, including:

1. Delta waves (0.5-4 Hz): Slow waves that are typically seen during deep sleep or in pathological states such as coma.
2. Theta waves (4-8 Hz): Slower waves that are associated with drowsiness, meditation, and creative thinking.
3. Alpha waves (8-13 Hz): These waves are present during relaxed wakefulness and can be seen during eyes-closed rest.
4. Beta waves (13-30 Hz): Faster waves that are associated with active thinking, focus, and alertness.
5. Gamma waves (30-100 Hz): The fastest waves, which are associated with higher cognitive functions such as attention, perception, and problem-solving.

Abnormalities in brain wave patterns can be indicative of various neurological conditions, including epilepsy, sleep disorders, brain injuries, and neurodegenerative diseases.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

WKY (Wistar Kyoto) is not a term that refers to "rats, inbred" in a medical definition. Instead, it is a strain of laboratory rat that is widely used in biomedical research. WKY rats are an inbred strain, which means they are the result of many generations of brother-sister matings, resulting in a genetically uniform population.

WKY rats originated from the Wistar Institute in Philadelphia and were established as a normotensive control strain to contrast with other rat strains that exhibit hypertension. They have since been used in various research areas, including cardiovascular, neurological, and behavioral studies. Compared to other commonly used rat strains like the spontaneously hypertensive rat (SHR), WKY rats are known for their lower blood pressure, reduced stress response, and greater emotionality.

In summary, "WKY" is a designation for an inbred strain of laboratory rat that is often used as a control group in biomedical research due to its normotensive characteristics.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

The basal ganglia are a group of interconnected nuclei, or clusters of neurons, located in the base of the brain. They play a crucial role in regulating motor function, cognition, and emotion. The main components of the basal ganglia include the striatum (made up of the caudate nucleus, putamen, and ventral striatum), globus pallidus (divided into external and internal segments), subthalamic nucleus, and substantia nigra (with its pars compacta and pars reticulata).

The basal ganglia receive input from various regions of the cerebral cortex and other brain areas. They process this information and send output back to the thalamus and cortex, helping to modulate and coordinate movement. The basal ganglia also contribute to higher cognitive functions such as learning, decision-making, and habit formation. Dysfunction in the basal ganglia can lead to neurological disorders like Parkinson's disease, Huntington's disease, and dystonia.

Suramin is a medication that has been used for the treatment of African sleeping sickness, which is caused by trypanosomes. It works as a reverse-specific protein kinase CK inhibitor and also blocks the attachment of the parasite to the host cells. Suramin is not absorbed well from the gastrointestinal tract and is administered intravenously.

It should be noted that Suramin is an experimental treatment for other conditions such as cancer, neurodegenerative diseases, viral infections and autoimmune diseases, but it's still under investigation and has not been approved by FDA for those uses.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Membrane potential is the electrical potential difference across a cell membrane, typically for excitable cells such as nerve and muscle cells. It is the difference in electric charge between the inside and outside of a cell, created by the selective permeability of the cell membrane to different ions. The resting membrane potential of a typical animal cell is around -70 mV, with the interior being negative relative to the exterior. This potential is generated and maintained by the active transport of ions across the membrane, primarily through the action of the sodium-potassium pump. Membrane potentials play a crucial role in many physiological processes, including the transmission of nerve impulses and the contraction of muscle cells.

Toll-like receptor 10 (TLR10) is a member of the toll-like receptor (TLR) family, which plays a crucial role in the innate immune system's response to pathogens. TLRs are transmembrane proteins that recognize specific patterns on microbes, triggering signaling cascades leading to the production of inflammatory cytokines and chemokines.

TLR10 is located on human chromosome 4 and is encoded by the TLR10 gene. It is primarily expressed on immune cells such as B cells, monocytes, and dendritic cells. The exact ligands that TLR10 recognizes are not well-defined; however, it has been suggested to form heterodimers with other TLRs (TLR1 and TLR2) and modulate their activity.

The function of TLR10 remains somewhat controversial, as some studies suggest it has an inhibitory role in the immune response, while others indicate a potential pro-inflammatory role. Further research is needed to fully understand the physiological significance of TLR10 in human immunity and disease.

Anesthesia is a medical term that refers to the loss of sensation or awareness, usually induced by the administration of various drugs. It is commonly used during surgical procedures to prevent pain and discomfort. There are several types of anesthesia, including:

1. General anesthesia: This type of anesthesia causes a complete loss of consciousness and is typically used for major surgeries.
2. Regional anesthesia: This type of anesthesia numbs a specific area of the body, such as an arm or leg, while the patient remains conscious.
3. Local anesthesia: This type of anesthesia numbs a small area of the body, such as a cut or wound, and is typically used for minor procedures.

Anesthesia can be administered through various routes, including injection, inhalation, or topical application. The choice of anesthesia depends on several factors, including the type and duration of the procedure, the patient's medical history, and their overall health. Anesthesiologists are medical professionals who specialize in administering anesthesia and monitoring patients during surgical procedures to ensure their safety and comfort.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

GTP-binding proteins, also known as G proteins, are a family of molecular switches present in many organisms, including humans. They play a crucial role in signal transduction pathways, particularly those involved in cellular responses to external stimuli such as hormones, neurotransmitters, and sensory signals like light and odorants.

G proteins are composed of three subunits: α, β, and γ. The α-subunit binds GTP (guanosine triphosphate) and acts as the active component of the complex. When a G protein-coupled receptor (GPCR) is activated by an external signal, it triggers a conformational change in the associated G protein, allowing the α-subunit to exchange GDP (guanosine diphosphate) for GTP. This activation leads to dissociation of the G protein complex into the GTP-bound α-subunit and the βγ-subunit pair. Both the α-GTP and βγ subunits can then interact with downstream effectors, such as enzymes or ion channels, to propagate and amplify the signal within the cell.

The intrinsic GTPase activity of the α-subunit eventually hydrolyzes the bound GTP to GDP, which leads to re-association of the α and βγ subunits and termination of the signal. This cycle of activation and inactivation makes G proteins versatile signaling elements that can respond quickly and precisely to changing environmental conditions.

Defects in G protein-mediated signaling pathways have been implicated in various diseases, including cancer, neurological disorders, and cardiovascular diseases. Therefore, understanding the function and regulation of GTP-binding proteins is essential for developing targeted therapeutic strategies.

Thionucleotides are chemical compounds that are analogs of nucleotides, which are the building blocks of DNA and RNA. In thionucleotides, one or more of the oxygen atoms in the nucleotide's chemical structure is replaced by a sulfur atom. This modification can affect the way the thionucleotide interacts with other molecules, including enzymes that work with nucleotides and nucleic acids.

Thionucleotides are sometimes used in research to study the biochemistry of nucleic acids and their interactions with other molecules. They can also be used as inhibitors of certain enzymes, such as reverse transcriptase, which is an important target for HIV/AIDS therapy. However, thionucleotides are not normally found in natural biological systems and are not themselves components of DNA or RNA.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Tetrahydroisoquinolines (TIQs) are not a medical condition, but rather a class of organic compounds that have been studied in the field of medicine and neuroscience. TIQs are naturally occurring substances found in various foods, beverages, and plants, as well as produced endogenously in the human body. They have been shown to have various pharmacological activities, including acting as weak psychoactive agents, antioxidants, and inhibitors of certain enzymes. Some TIQs have also been implicated in the pathophysiology of certain neurological disorders such as Parkinson's disease. However, more research is needed to fully understand their roles and potential therapeutic applications.

Microdialysis is a minimally invasive technique used in clinical and research settings to continuously monitor the concentration of various chemicals, such as neurotransmitters, drugs, or metabolites, in biological fluids (e.g., extracellular fluid of tissues, blood, or cerebrospinal fluid). This method involves inserting a small, flexible catheter with a semipermeable membrane into the region of interest. A physiological solution is continuously perfused through the catheter, allowing molecules to diffuse across the membrane based on their concentration gradient. The dialysate that exits the catheter is then collected and analyzed for target compounds using various analytical techniques (e.g., high-performance liquid chromatography, mass spectrometry).

In summary, microdialysis is a valuable tool for monitoring real-time changes in chemical concentrations within biological systems, enabling better understanding of physiological processes or pharmacokinetic properties of drugs.

Interneurons are a type of neuron that is located entirely within the central nervous system (CNS), including the brain and spinal cord. They are called "inter" neurons because they connect and communicate with other nearby neurons, forming complex networks within the CNS. Interneurons receive input from sensory neurons and/or other interneurons and then send output signals to motor neurons or other interneurons.

Interneurons are responsible for processing information and modulating neural circuits in the CNS. They can have either excitatory or inhibitory effects on their target neurons, depending on the type of neurotransmitters they release. Excitatory interneurons release neurotransmitters such as glutamate that increase the likelihood of an action potential in the postsynaptic neuron, while inhibitory interneurons release neurotransmitters such as GABA (gamma-aminobutyric acid) or glycine that decrease the likelihood of an action potential.

Interneurons are diverse and can be classified based on various criteria, including their morphology, electrophysiological properties, neurochemical characteristics, and connectivity patterns. They play crucial roles in many aspects of CNS function, such as sensory processing, motor control, cognition, and emotion regulation. Dysfunction or damage to interneurons has been implicated in various neurological and psychiatric disorders, including epilepsy, Parkinson's disease, schizophrenia, and autism spectrum disorder.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Quinolines are a class of organic compounds that consist of a bicyclic structure made up of a benzene ring fused to a piperidine ring. They have a wide range of applications, but they are perhaps best known for their use in the synthesis of various medications, including antibiotics and antimalarial drugs.

Quinolone antibiotics, such as ciprofloxacin and levofloxacin, work by inhibiting the bacterial enzymes involved in DNA replication and repair. They are commonly used to treat a variety of bacterial infections, including urinary tract infections, pneumonia, and skin infections.

Quinoline-based antimalarial drugs, such as chloroquine and hydroxychloroquine, work by inhibiting the parasite's ability to digest hemoglobin in the red blood cells. They are commonly used to prevent and treat malaria.

It is important to note that quinolines have been associated with serious side effects, including tendinitis and tendon rupture, nerve damage, and abnormal heart rhythms. As with any medication, it is important to use quinolines only under the supervision of a healthcare provider, and to follow their instructions carefully.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Gamma-Aminobutyric Acid (GABA) is a major inhibitory neurotransmitter in the mammalian central nervous system. It plays a crucial role in regulating neuronal excitability and preventing excessive neuronal firing, which helps to maintain neural homeostasis and reduce the risk of seizures. GABA functions by binding to specific receptors (GABA-A, GABA-B, and GABA-C) on the postsynaptic membrane, leading to hyperpolarization of the neuronal membrane and reduced neurotransmitter release from presynaptic terminals.

In addition to its role in the central nervous system, GABA has also been identified as a neurotransmitter in the peripheral nervous system, where it is involved in regulating various physiological processes such as muscle relaxation, hormone secretion, and immune function.

GABA can be synthesized in neurons from glutamate, an excitatory neurotransmitter, through the action of the enzyme glutamic acid decarboxylase (GAD). Once synthesized, GABA is stored in synaptic vesicles and released into the synapse upon neuronal activation. After release, GABA can be taken up by surrounding glial cells or degraded by the enzyme GABA transaminase (GABA-T) into succinic semialdehyde, which is further metabolized to form succinate and enter the Krebs cycle for energy production.

Dysregulation of GABAergic neurotransmission has been implicated in various neurological and psychiatric disorders, including epilepsy, anxiety, depression, and sleep disturbances. Therefore, modulating GABAergic signaling through pharmacological interventions or other therapeutic approaches may offer potential benefits for the treatment of these conditions.

"Long-Evans" is a strain of laboratory rats commonly used in scientific research. They are named after their developers, the scientists Long and Evans. This strain is albino, with a brownish-black hood over their eyes and ears, and they have an agouti (salt-and-pepper) color on their backs. They are often used as a model organism due to their size, ease of handling, and genetic similarity to humans. However, I couldn't find any specific medical definition related to "Long-Evans rats" as they are not a medical condition or disease.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Microinjection is a medical technique that involves the use of a fine, precise needle to inject small amounts of liquid or chemicals into microscopic structures, cells, or tissues. This procedure is often used in research settings to introduce specific substances into individual cells for study purposes, such as introducing DNA or RNA into cell nuclei to manipulate gene expression.

In clinical settings, microinjections may be used in various medical and cosmetic procedures, including:

1. Intracytoplasmic Sperm Injection (ICSI): A type of assisted reproductive technology where a single sperm is injected directly into an egg to increase the chances of fertilization during in vitro fertilization (IVF) treatments.
2. Botulinum Toxin Injections: Microinjections of botulinum toxin (Botox, Dysport, or Xeomin) are used for cosmetic purposes to reduce wrinkles and fine lines by temporarily paralyzing the muscles responsible for their formation. They can also be used medically to treat various neuromuscular disorders, such as migraines, muscle spasticity, and excessive sweating (hyperhidrosis).
3. Drug Delivery: Microinjections may be used to deliver drugs directly into specific tissues or organs, bypassing the systemic circulation and potentially reducing side effects. This technique can be particularly useful in treating localized pain, delivering growth factors for tissue regeneration, or administering chemotherapy agents directly into tumors.
4. Gene Therapy: Microinjections of genetic material (DNA or RNA) can be used to introduce therapeutic genes into cells to treat various genetic disorders or diseases, such as cystic fibrosis, hemophilia, or cancer.

Overall, microinjection is a highly specialized and precise technique that allows for the targeted delivery of substances into small structures, cells, or tissues, with potential applications in research, medical diagnostics, and therapeutic interventions.

SERPINs are an acronym for "serine protease inhibitors." They are a group of proteins that inhibit serine proteases, which are enzymes that cut other proteins. SERPINs are found in various tissues and body fluids, including blood, and play important roles in regulating biological processes such as inflammation, blood clotting, and cell death. They do this by forming covalent complexes with their target proteases, thereby preventing them from carrying out their proteolytic activities. Mutations in SERPIN genes have been associated with several genetic disorders, including emphysema, cirrhosis, and dementia.

Interferon type I is a class of signaling proteins, also known as cytokines, that are produced and released by cells in response to the presence of pathogens such as viruses, bacteria, and parasites. These interferons play a crucial role in the body's innate immune system and help to establish an antiviral state in surrounding cells to prevent the spread of infection.

Interferon type I includes several subtypes, such as interferon-alpha (IFN-α), interferon-beta (IFN-β), and interferon-omega (IFN-ω). When produced, these interferons bind to specific receptors on the surface of nearby cells, triggering a cascade of intracellular signaling events that lead to the activation of genes involved in the antiviral response.

The activation of these genes results in the production of enzymes that inhibit viral replication and promote the destruction of infected cells. Interferon type I also enhances the adaptive immune response by promoting the activation and proliferation of immune cells such as T-cells and natural killer (NK) cells, which can directly target and eliminate infected cells.

Overall, interferon type I plays a critical role in the body's defense against viral infections and is an important component of the immune response to many different types of pathogens.

Caspase-1 is a type of protease enzyme that plays a crucial role in the inflammatory response and programmed cell death, also known as apoptosis. It is produced as an inactive precursor protein, which is then cleaved into its active form by other proteases or through self-cleavage.

Once activated, caspase-1 helps to process and activate several pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18, which are involved in the recruitment of immune cells to sites of infection or tissue damage. Caspase-1 also contributes to programmed cell death by cleaving and activating other caspases, leading to the controlled destruction of the cell.

Dysregulation of caspase-1 has been implicated in various inflammatory diseases, such as autoimmune disorders and neurodegenerative conditions. Therefore, understanding the mechanisms that regulate caspase-1 activity is an important area of research for developing new therapeutic strategies to treat these diseases.

... the toll/IL-1R homologous region (TIR). The similarity between toll-like receptors (TLRs) and IL-1R is not restricted to ... interleukin-1 receptors, toll receptors and many plant R proteins. It contains three highly conserved regions, and mediates ... The toll-interleukin-1 receptor (TIR) homology domain is an intracellular signaling domain found in MyD88, SARM1, ... Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (March 2017). "The SARM1 Toll/Interleukin-1 Receptor Domain ...
Toll-like receptors and ligands database at University of Munich The Toll-Like Receptor Family of Innate Immune Receptors (pdf ... NOD-like receptor Immunologic adjuvant RIG-I-like receptor Toll-Like+Receptors at the U.S. National Library of Medicine Medical ... TLRs together with the Interleukin-1 receptors form a receptor superfamily, known as the "interleukin-1 receptor / toll-like ... Kawai T, Akira S (May 2010). "The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors". ...
December 2009). "Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer". Immunity. 31 (6 ... Toll-like receptor 6 is a protein that in humans is encoded by the TLR6 gene. TLR6 is a transmembrane protein, member of toll- ... This receptor functionally interacts with toll-like receptor 2 (TLR2) to mediate cellular response to gram-positive bacteria, ... like receptor family, which belongs to the pattern recognition receptor (PRR) family. TLR6 acts in a heterodimer form with toll ...
TLR3 is a member of the toll-like receptor family of pattern recognition receptors of the innate immune system. TLR3 recognizes ... Toll-like receptor 3 (TLR3) also known as CD283 (cluster of differentiation 283) is a protein that in humans is encoded by the ... "Entrez Gene: toll-like receptor 3". Norval M (2012). "Virus-Cell Interactions". In Greenwood D, Slack RC, Barer MR, et al. (eds ... Pan LN, Zhu W, Li Y, Xu XL, Guo LJ, Lu Q, Wang J (2014). "Astrocytic Toll-like receptor 3 is associated with ischemic ...
... (TLR1) is a member of Toll-like receptors (TLRs), which is a family of pattern recognition receptors (PRRs ... Toll-like receptors, All stub articles, Transmembrane receptor stubs). ... Toll-Like+Receptor+1 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) PDBe-KB provides an overview of ... Toll-like receptors, including TLR-1, found on the epithelial cell layer that lines the small and large intestine are important ...
TLR2 is one of the toll-like receptors and plays a role in the immune system. TLR2 is a membrane protein, a receptor, which is ... Toll-like receptor 2 also known as TLR2 is a protein that in humans is encoded by the TLR2 gene. TLR2 has also been designated ... The following ligands have been reported to be agonists of the toll-like receptor 2: TLR 2 has been shown to interact with TLR ... The protein encoded by this gene is a member of the Toll-like receptor (TLR) family, which plays a fundamental role in pathogen ...
TLR11 belongs to the toll-like receptor (TLR) family and the interleukin-1 receptor/toll-like receptor superfamily. In mice, ... Toll-like receptor 11 (TLR11) is a protein that in mice and rats is encoded by the gene TLR11, whereas in humans it is ... Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S (March 2004). "A toll-like receptor that prevents ... Hatai H, Lepelley A, Zeng W, Hayden MS, Ghosh S (2016). "Toll-Like Receptor 11 (TLR11) Interacts with Flagellin and Profilin ...
... , also known as TLR5, is a protein which in humans is encoded by the TLR5 gene. It is a member of the toll- ... "Toll-like receptors". Critical Care Medicine. 30 (1 Suppl): S1-11. doi:10.1097/00003246-200201001-00001. PMID 11782555. Toll- ... "Entrez Gene: TLR5 toll-like receptor 5". Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. (April 2001). "The ... August 2003). "Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-kappa B ...
"Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4". Journal of Immunology. 170 (7): 3565 ... TLR4 is a transmembrane protein, member of the toll-like receptor family, which belongs to the pattern recognition receptor ( ... Pålsson-McDermott EM, O'Neill LA (October 2004). "Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4 ... Toll-like receptor 4 has been shown to be important for the long-term side-effects of opioid analgesic drugs. Various μ-opioid ...
"Entrez Gene: TLR8 toll-like receptor 8". Seizer L, Rahimi S, Santos-Sierra S, Drexel M (2022) Expression of toll like receptor ... Kaisho T, Akira S (February 2002). "Toll-like receptors as adjuvant receptors". Biochimica et Biophysica Acta (BBA) - Molecular ... Toll-like receptor 8 is a protein that in humans is encoded by the TLR8 gene. TLR8 has also been designated as CD288 (cluster ... Toll-Like+Receptor+8 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) PDBe-KB provides an overview of ...
Kaisho T, Akira S (February 2002). "Toll-like receptors as adjuvant receptors". Biochimica et Biophysica Acta (BBA) - Molecular ... Toll-like receptor 7, also known as TLR7, is a protein that in humans is encoded by the TLR7 gene. Orthologs are found in ... "Entrez Gene: TLR7 toll-like receptor 7". Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. (March 2004 ... Toll-Like+Receptor+7 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) (Articles with short description ...
It is a member of the toll-like receptor (TLR) family. TLR9 is an important receptor expressed in immune system cells including ... Toll-like receptor 9 is a protein that in humans is encoded by the TLR9 gene. TLR9 has also been designated as CD289 (cluster ... "Entrez Gene: TLR9 toll-like receptor 9". Dias AA, Silva CO, Santos JP, Batista-Silva LR, Acosta CC, Fontes AN, Pinheiro RO, ... Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, Shah AM, Nishida K, Otsu K (December 2016). "Toll-like receptor 9 ...
"Entrez Gene: TLR10 toll-like receptor 10". Lien E, Ingalls RR (2002). "Toll-like receptors". Crit. Care Med. 30 (1 Suppl): S1- ... Toll-like receptor 10 is a protein that in humans is encoded by the TLR10 gene. TLR10 has also been designated as CD290 ( ... Toll-Like+Receptor+10 at the U.S. National Library of Medicine Medical Subject Headings (MeSH) Overview of all the structural ... The protein encoded by this gene is a member of the toll-like receptor (TLR) family which play a fundamental role in pathogen ...
November 1999). "Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products". The Journal ... Membrane-bound PRRs include Toll like receptors (TLRs) and C-type lectin receptors (CLRs). Cytoplasmic PRRs include NOD-like ... "Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling". Cell Host ... Toll-like receptors were first discovered in Drosophila and trigger the synthesis and secretion of cytokines and activation of ...
Alexander SP, Mathie A, Peters JA (February 2007). "Catalytic receptors: Toll-like receptor family". Br. J. Pharmacol. 150 ... An enzyme-linked receptor, also known as a catalytic receptor, is a transmembrane receptor, where the binding of an ... Hence a catalytic receptor is an integral membrane protein possessing both catalytic, and receptor functions. They have two ... Examples of the enzymatic activity include: Receptor tyrosine kinase, as in fibroblast growth factor receptor. Most enzyme- ...
Takeda K, Kaisho T, Akira S (April 2003). "Toll-like receptors". Annual Review of Immunology. 21 (1): 335-76. doi:10.1146/ ... In 2003, a novel mechanism was described wherein hydroxychloroquine inhibits stimulation of the toll-like receptor (TLR) 9 ... TLRs are cellular receptors for microbial products that induce inflammatory responses through activation of the innate immune ...
Dendritic cells contain Toll-like receptors (TLR) that will recognize a broad variety of microorganisms in the case of invasion ... Takeda, Kiyoshi; Kaisho, Tsuneyasu; Akira, Shizuo (April 2003). "Toll-Like Receptors". Annual Review of Immunology. 21: 335-376 ... Toll-like receptors are present on each of these cells and recognize a variety of microbial products resulting in the induction ... "Toll-like Receptors". Society of Critical Care Medicine. 30 (1). Lodish, Harvey; Berk, Arnold; Kaiser, Chris; Krieger, Monty; ...
Takeda K, Kaisho T, Akira S (2003). "Toll-like receptors". Annu. Rev. Immunol. 21: 335-76. doi:10.1146/annurev.immunol. ... could prompt epithelial cells to activate the HLA-independent innate immune system through toll-like receptors. Although a ... Perrier, S; Coussediere, C; Dubost, JJ; Albuisson, E; Sauvezie, B (1998). "IL-1 receptor antagonist (IL-1RA) gene polymorphism ... Tolls DB, Toda I (1999). "Androgens and dry eye in Sjögren's syndrome". Ann N Y Acad Sci. 876 (1): 312-24. Bibcode:1999NYASA. ...
There are four main groups of TIR domain-containing proteins in animals; Toll-like receptors, Interleukin-1 receptor (IL-1R), ... Bowie A, O'Neill LA (April 2000). "The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro- ... O'Neill LA (December 2008). "The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress". Immunological ... Each of these groups is involved mainly in host defence; Toll receptors are also involved in embryogenesis. The TIR domain is ...
Brownlie, Robert; Allan, Brenda (September 1, 2010). "Avian toll-like receptors". Cell and Tissue Research. Springer. 343 (1): ...
Viral components are recognized by different receptors: Toll-like receptors are located in the endosomal membrane and recognize ... Imler JL, Hoffmann JA (July 2001). "Toll receptors in innate immunity". Trends in Cell Biology. 11 (7): 304-311. doi:10.1016/ ... These cells present receptors contained on the surface or within the cell, named pattern recognition receptors (PRRs), which ... The various subsets may be considered part of the innate immune system where a restricted TCR or NK receptors may be used as a ...
Delgado, Mónica A; Elmaoued, Rasha A; Davis, Alexander S; Kyei, George; Deretic, Vojo (9 April 2008). "Toll-like receptors ... Kimura, Tomonori; Mandell, Michael; Deretic, Vojo (2016-03-01). "Precision autophagy directed by receptor regulators - emerging ... and the above cited work shows that they act as autophagic receptor-regulators in mammalian cells. A series of studies from ... one of which is to serve as adaptors for autophagic receptors thus sequestering cargo into the autophagosomal lumen. The latest ...
... due to the presence of immune receptors called toll-like receptors (TLRs) that are expressed on the membranes of leukocytes ... Toussi DN, Massari P (Apr 2014). "Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands". Vaccines. 2 (2): ... Takeda K, Akira S (January 2005). "Toll-like receptors in innate immunity". International Immunology. 17 (1): 1-14. doi:10.1093 ... Mouse studies question importance of toll-like receptors to vaccines". Science. 314 (5807): 1859-1860. doi:10.1126/science. ...
... by pattern recognition receptors such as Toll-like receptors ((TLRs)). MIR155HG (i.e. miR-155-5p) expression is greatly ... Takeda K, Akira S (Jan 2005). "Toll-like receptors in innate immunity". International Immunology. 17 (1): 1-14. doi:10.1093/ ... "IL-10 inhibits miR-155 induction by toll-like receptors". The Journal of Biological Chemistry. 285 (27): 20492-20498. doi: ... "IL-10 inhibits miR-155 induction by toll-like receptors". The Journal of Biological Chemistry. 285 (27): 20492-20498. doi: ...
"The evolution of vertebrate Toll-like receptors". Proceedings of the National Academy of Sciences of the United States of ... Marla J. F. O'Neill (June 1, 2015). "TRANSIENT RECEPTOR POTENTIAL CATION CHANNEL, SUBFAMILY V, MEMBER 3; TRPV3". Online ...
Another set comprises pattern recognition receptors such as toll-like receptors, which induce the production of interferons and ... Uematsu S, Akira S (May 2007). "Toll-like receptors and Type I interferons". The Journal of Biological Chemistry. 282 (21): ... which became a popular subject after the discovery of the Toll receptor system in Drosophila, a previously marginal organism ... and the receptors that recognize antigens must be produced in a huge variety of configurations, in essence one receptor (at ...
Rolls explored the role of Toll-like Receptors in neurogenesis and found that TLR2 and TLR4 play opposing roles in the ... Molecular Psychiatry Rolls A., Shechter R.*, London A., Ziv Y., Ronen A., Levy R. and Schwartz M. (2007) Toll-like receptors ... "Toll-like receptors modulate adult hippocampal neurogenesis". Nature Cell Biology. 9 (9): 1081-1088. doi:10.1038/ncb1629. ISSN ...
Toll-like receptors (TLRs) recognize microbial pathogens. Acute inflammation can be a defensive mechanism to protect tissues ... As well as endocytic PRRs, phagocytes also express opsonin receptors Fc receptor and complement receptor 1 (CR1), which bind to ... November 2005). "Regulation of lung injury and repair by Toll-like receptors and hyaluronan". Nature Medicine. 11 (11): 1173-9 ... These cells possess surface receptors known as pattern recognition receptors (PRRs), which recognize (i.e., bind) two ...
CpG motif DNA acts via the pattern recognition receptor, toll-like receptor 9, found highly expressed in PDCs and B cells. The ... Marshak-Rothstein A (November 2006). "Toll-like receptors in systemic autoimmune disease". Nature Reviews Immunology. 6 (11): ...
Ten toll-like receptors have been described in humans. Cells in the innate immune system have pattern recognition receptors, ... Three major classes of these "cytosolic" receptors are NOD-like receptors, RIG (retinoic acid-inducible gene)-like receptors, ... Toll-like receptors were first discovered in Drosophila and trigger the synthesis and secretion of cytokines and activation of ... Botos I, Segal DM, Davies DR (April 2011). "The structural biology of Toll-like receptors". Structure. 19 (4): 447-59. doi: ...
... the toll/IL-1R homologous region (TIR). The similarity between toll-like receptors (TLRs) and IL-1R is not restricted to ... interleukin-1 receptors, toll receptors and many plant R proteins. It contains three highly conserved regions, and mediates ... The toll-interleukin-1 receptor (TIR) homology domain is an intracellular signaling domain found in MyD88, SARM1, ... Essuman K, Summers DW, Sasaki Y, Mao X, DiAntonio A, Milbrandt J (March 2017). "The SARM1 Toll/Interleukin-1 Receptor Domain ...
Toll/IL-1 receptor domain containing adaptor protein (TIRAP), Toll/IL-1 receptor domain containing adapt … ... are pattern recognition receptors that recognize pathogen-associated molecular patterns and signal through adaptor molecules, ... Toll/IL-1 receptor domain containing adaptor protein (TIRAP), Toll/IL-1 receptor domain containing adaptor inducing interferon- ... Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns and signal ...
Toll-Like Receptor 3 Mediates Aortic Stenosis Through a Conserved Mechanism of Calcification. Title: Toll-Like Receptor 3 ... Tlr3 toll-like receptor 3 [Mus musculus] Tlr3 toll-like receptor 3 [Mus musculus]. Gene ID:142980 ... toll-like receptor 3provided by MGI. Primary source. MGI:MGI:2156367 See related. Ensembl:ENSMUSG00000031639 AllianceGenome:MGI ... Tlr3_TMD; Toll-like receptor 3 trans-membrane domain. cd21340. Location:503 → 649. PPP1R42; protein phosphatase 1 regulatory ...
... Immunity. 2012 Feb 24;36(2):251-61. doi ... We demonstrate the circadian molecular clock controls the expression and function of Toll-like receptor 9 (TLR9). In a ...
The current review highlights what is known in regard to these innate immune receptors. ... Inhibition of toll-like receptors is an intriguing concept in the prevention and treatment of cardiovascular disease. ... transmembrane PRR Toll were identified and termed the Toll-like receptors (TLRs).[4] To date, 11 human and 13 mouse TLRs ... Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. TLRs distinguish between different ...
Toll-like receptors (TLRs) are emerging and potential allergen immunotherapy targets. TLR agonists may decrease Th2 responses ... Toll-like receptors (TLRs) are emerging and potential allergen immunotherapy targets. TLR agonists may decrease Th2 responses ... Reference:https://journals.lww.com/co-allergy/Abstract/2015/12000/Toll_like_receptors_as_targets_for_allergen.9.aspx ...
Toll-like receptor 9 in alimentary tract cancers Thesis event information Date and time of the thesis defence Fri 30.05.2014 at ...
Among these receptors the Toll-like Receptor (TLR) family can recognize all classes of pathogens and induce different types of ... Toll-Like Receptors and their Role in Host Resistance to Toxoplasma gondii. Author(s): Felix Yarovinsky ... Toll-Like Receptors and their Role in Host Resistance to Toxoplasma gondii, Immune Response to Parasitic Infections Protozoa ( ... In the past several years, many of the receptors and signaling pathways that link pathogen detection to induction of IL-12 have ...
Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, ... demonstrating that TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-length TLR2 are released ... TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term ... TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term ...
Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human ... Nitsche JF, Jiang SW, Brost BC (2010) Toll-like receptor-2 and toll-like receptor-4 expression on maternal neutrophils during ... Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, Klotz M, Werfel T, Herz U, Heeg K, Neumaier M, Renz H (2004) The toll-like receptor 2 ... Ma Y, Krikun G, Abrahams VM, Mor G, Guller S (2007) Cell type-specific expression and function of toll-like receptors 2 and 4 ...
Toll-Like Receptor 4 Signaling in High Mobility Group Box-1 Protein 1 Mediated the Suppression of Regulatory T-Cells Chunyan ... High-Level Expression of Toll-Like Receptors on Dendritic Cells in Adult Patients with Burns on ≥90% of Total Body Surface Area ... Soluble cytokine receptors sTNFR I and sTNFR II, receptor antagonist IL-1ra, and anti-inflammatory cytokines IL-10 and IL-13 in ... Endotoxin Tolerant Dendritic Cells Suppress Inflammatory Responses in Splenocytes via Interleukin-1 Receptor Associated Kinase ...
Core tip: The study delves into the role of toll like receptor 4 (TLR4) in hepatitis B virus (HBV) infection. Inciting TLR4 ... Anti-viral role of toll like receptor 4 in hepatitis B virus infection: An in vitro study ... Anti-viral role of toll like receptor 4 in hepatitis B virus infection: An in vitro study. World J Gastroenterol 2016; 22(47): ...
Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci Rep, 8. LONDON: NATURE PUBLISHING GROUP. ISSN ... and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. Moreover, a ... PATTERN-RECOGNITION RECEPTORS; NF-KAPPA-B; GRAPHENE OXIDE; PROTEIN CORONA; IMMUNE-SYSTEM; INFLAMMATORY RESPONSES; DENDRITIC ...
Morphine-induced osteolysis and hypersensitivity is mediated through toll-like receptor-4 in a murine model of metastatic ... Morphine-induced osteolysis and hypersensitivity is mediated through toll-like receptor-4 in a murine model of metastatic ... increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4 ...
They have been selected for there ability to efficiently neutralize Toll-like receptor activation. ... Anti-TLR-IgA are chimeric monoclonal antibodies specific for Toll-like receptor. There were generated by combining the constant ... Anti-TLR-IgA are chimeric monoclonal antibodies specific for Toll-like receptor. There were generated by combining the constant ... They have been selected for there ability to efficiently neutralize Toll-like receptor activation. ...
Seminars and Events at the Research Institute of Molecular Pathology (IMP) and Vienna Biocenter (VBC).
Toll-like Receptors 3 and 7 Agonists Enhance Tumor Cell Lysis by Human γδ T Cells Hamed Shojaei; Hamed Shojaei ... The cytoplasmic Toll/interleukin-1 receptor (IL-1R) domain of the TLRs is required for intracellular signaling, leading to the ... Toll-like receptor (TLR) agonists are considered adjuvants in clinical trials of cancer immunotherapy. Here, we investigated ... Toll-like receptor 3 expressed by melanoma cells as a target for therapy? ...
MOESM1 of Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping ... Genomic information49 TLR exonsporcine TLR genotyping arrayRefSeq transcriptsprotein IDMOESM 1swine toll-like receptorsTLR gene ... MOESM1 of Identification of genetic variation in the swine toll-like receptors and development of a porcine TLR genotyping ...
Tag Archives: Toll Like Receptors Immune Design files IPO for immuno-oncology CTL and T-helper platforms Immune Design is the ... Toll Like Receptors on June 27, 2014. by Joseph Gulfo. ...
Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 ... Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 ... High Glucose Induces Toll-Like Receptor Expression in Human Monocytes: Mechanism of Activation Mohan R. Dasu; Mohan R. Dasu ... Kim HS, Han MS, Chung KW, Kim S, Kim E, Kim MJ, Jang E, Lee HA, Youn J, Akira S, Lee MS: Toll-like receptor 2 senses beta-cell ...
The Toll Like Receptor 8 (CD288 or TLR8) Development market report provides an in-depth analysis on Toll Like Receptor 8 (CD288 ... The report provides comprehensive information on the Toll Like Receptor 8 (CD288 or TLR8) targeted therapeutics, complete with ... Toll-like receptor 8 is a protein encoded by the TLR8 gene. It acts via MYD88 and TRAF6, leading to NF-kappa-B activation, ... The mechanisms of action of the Toll Like Receptor 8 pipeline market are Toll Like Receptor 8 Agonist and Toll Like Receptor 8 ...
Here, we investigated whether osteoblastic expression of Toll-like receptor 4 (TLR4), a key receptor in the NF-κB signaling ... neurotrophic tyrosine kinase receptor type 1 (TrkA), to support bone formation. ... by osteoblasts following mechanical loading and signals through resident sensory nerves expressing its high affinity receptor, ... Here, we investigated whether osteoblastic expression of Toll-like receptor 4 (TLR4), a key receptor in the NF-κB signaling ...
Toll-like receptor; TIRAP, Toll-interleukin 1 receptor domain-containing adaptor protein; IκB, inhibitor of nuclear factor-κB; ... LPS binds to the cell-surface receptor, Toll-like receptor 4 (TLR4), which initiates a signal transduction cascade, including ... Regulation of Hepatic Drug-Metabolizing Enzyme Genes by Toll-Like Receptor 4 Signaling Is Independent of Toll-Interleukin 1 ... Regulation of Hepatic Drug-Metabolizing Enzyme Genes by Toll-Like Receptor 4 Signaling Is Independent of Toll-Interleukin 1 ...
Toll-like Receptor 9 Promotes Initiation of Gastric Tumorigenesis by Augmenting Inflammation and Cellular Proliferation. ...
Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, ... demonstrating that TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-length TLR2 are released ... TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term ... Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, ...
Interferon-alpha (IFN-alpha) potentiates immune responses against viral pathogens that induce toll-like receptor-3 (TLR3) ... Compromised Hippocampal Neuroplasticity in the Interferon-alpha and Toll-like Receptor-3 Activation-Induced Mouse Depression ... Compromised Hippocampal Neuroplasticity in the Interferon-alpha and Toll-like Receptor-3 Activation-Induced Mouse Depression ... whereas the expression of both synaptic and extrasynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 1 ( ...
The Toll/interleukin-1 receptor (TIR) domain is conserved in the intracellular regions of Toll-like receptors (TLRs) and ... Khan JA, Brint EK, ONeill LAJ, Tong L `Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1RAPL? in ... Crystal structure of the Toll interleukin-1 receptor domain of human IL-1RAPL.pdf (published (publisher copy) peer-reviewed) ... Crystal structure of the Toll/interleukin-1 receptor domain of human IL-1RAPL. ...
This is a retraction to: Loss-of-Function Mutation in Toll-Like Receptor 4 Prevents Diet-Induced Obesity and Insulin Resistance ... Loss-of-Function Mutation in Toll-Like Receptor 4 Prevents Diet-Induced Obesity and Insulin Resistance. Diabetes 2007;56:1986- ... Loss-of-Function Mutation in Toll-Like Receptor 4 Prevents Diet-Induced Obesity and Insulin Resistance. Diabetes 2007;56:1986- ... Loss-of-Function Mutation in Toll-Like Receptor 4 Prevents Diet-Induced Obesity and Insulin Resistance ...
Toll-like receptor 3 in the development and treatment of human head and neck cancer: the role of endogenous ligands. ... Toll-like receptors (TLRs) are transmembrane proteins involved in innate immune response. They can also be expressed on cancer ...
Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy.. Innate immunity represents the primary ... Tag: Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy.. ... Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy. ... Toll-Like Receptors in Natural Killer Cells and Their Application for Immunotherapy. ...
  • It contains three highly conserved regions, and mediates protein-protein interactions between the toll-like receptors (TLRs) and signal-transduction components. (wikipedia.org)
  • The similarity between toll-like receptors (TLRs) and IL-1R is not restricted to sequence homology since these proteins also share a similar signaling pathway. (wikipedia.org)
  • Activation of Toll-like receptors (TLRs) and the inflammasome complex has recently been proposed to be central in cardiac inflammation and likely in the pathogenesis of DCM. (hindawi.com)
  • Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. (medscape.org)
  • transmembrane PRR 'Toll' were identified and termed the 'Toll-like receptors' (TLRs). (medscape.org)
  • Toll-like receptors (TLRs) are emerging and potential allergen immunotherapy targets. (physiciansweekly.com)
  • Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, thereby promoting inflammation. (frontiersin.org)
  • Toll-like receptors (TLRs) are the major pattern recognition receptors of the innate immune system that sense a wide range of "danger" signals or pathogen-associated molecular patterns (PAMPs) ( 6 - 8 ). (frontiersin.org)
  • Since the induction of IL-12 during type II infection was Myd88-dependent, the involvement of Toll-like receptors (TLRs) in the immunity against these strains was suggested. (springer.com)
  • Chemokine secretion was reduced upon inhibition of NF-kappa B, as predicted by upstream regulator analysis of the transcriptomics data, and Toll-like receptors (TLRs) and their adaptor molecule, MyD88 were shown to be important for CCL5 secretion. (uni-koeln.de)
  • Toll-like receptors (TLRs) play a key role in innate immune responses and inflammation. (diabetesjournals.org)
  • The Toll/interleukin-1 receptor (TIR) domain is conserved in the intracellular regions of Toll-like receptors (TLRs) and interleukin-1 receptors (IL-1Rs) as well as in several cytoplasmic adapter molecules. (tcd.ie)
  • Given the fundamental role of Toll-like receptors (TLRs) and complement in inflammation, we assessed the potential of peritoneal TLR2, TLR4 and C5a receptors, C5aR and C5L2, as therapeutic targets in PD-associated fibrosis. (uni-luebeck.de)
  • Although TLRs have evolved to induce protective immune responses, under some circumstances, activation of these receptors may lead to autoimmune diseases. (elsevierpure.com)
  • Using an immunocompetent murine model of metastatic breast cancer, we demonstrated that sustained morphine infusion induced a significant increase in osteolysis and hypersensitivity within the ipsilateral femur through the activation of toll-like receptor-4 (TLR4). (iasp-pain.org)
  • Together, these data indicate that morphine induces osteolysis and hypersensitivity that are mediated, in part, through a TLR4 receptor mechanism. (iasp-pain.org)
  • Here, we investigated whether osteoblastic expression of Toll-like receptor 4 (TLR4), a key receptor in the NF-κB signaling pathway, is required to initiate NGF-TrkA signaling required for load-induced bone formation. (jefferson.edu)
  • LPS binds to the cell-surface receptor, Toll-like receptor 4 (TLR4), which initiates a signal transduction cascade, including recruitment of the Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP). (aspetjournals.org)
  • 2009 TLR2 and TLR4 are most widely known as the receptor that immune system cells including microglia make use of to detect fungus cell wall structure (zymosan) and lipopolysaccharide (LPS) of gram-negative bacterias respectively. (sciencepop.org)
  • We detected TLR2-, TLR4-, and C5aR-mediated proinflammatory and fibrotic responses to bacteria that were consistent with the expression of these receptors in peritoneal macrophages (TLR2/4, C5aR) and mesothelial cells (TLR2, C5aR). (uni-luebeck.de)
  • Toll-like receptor 2 (TLR2) and TLR4 only partly account for the innate response to these complex dust exposures. (cdc.gov)
  • Wild-type, MyD88, TLR9, TLR4, IL-1 receptor I (RI), and IL-18R knockout (KO) mice were challenged intranasally with organic dust extract (ODE) or saline, according to an established protocol. (cdc.gov)
  • In human airways, this neutrophil accumulation can be re-capitulated via intrabronchial exposure to lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, that also causes a local increase in the neutrophil-mobilizing cytokine IL-26. (lu.se)
  • The toll-interleukin-1 receptor (TIR) homology domain is an intracellular signaling domain found in MyD88, SARM1, interleukin-1 receptors, toll receptors and many plant R proteins. (wikipedia.org)
  • When activated, TIR domains recruit cytoplasmic adaptor proteins MyD88 (UniProt Q99836) and TOLLIP (toll-interacting protein, UniProt Q9H0E2). (wikipedia.org)
  • Longdan Xiegan decoction ameliorates vulvovaginal candidiasis by inhibiting the NLRP3 inflammasome via the Toll-like receptor /MyD88 pathway. (bvsalud.org)
  • AIM OF THE STUDY To elucidate the mechanism by which LXD relieves VVC via the Toll-like receptor /MyD88 pathway and activation of the NLRP3 inflammasome . (bvsalud.org)
  • To determine the central pathway in mediating complex organic dust-induced airway inflammation, this study targeted the common adaptor protein, myeloid differentiation factor 88 (MyD88), and investigated the relative contributions of receptors upstream from this adaptor. (cdc.gov)
  • These proteins are type-I transmembrane receptors that share an intracellular 200 residue domain with the interleukin-1 receptor (IL-1R), the toll/IL-1R homologous region (TIR). (wikipedia.org)
  • It has been proposed that boxes 1 and 2 are involved in the binding of proteins involved in signaling, whereas box 3 is primarily involved in directing localization of receptor, perhaps through interactions with cytoskeletal elements. (wikipedia.org)
  • In contrast to adaptive immunity, in which specific antigen receptors are generated by somatic hypermutation and selection, in the innate immune system germline-encoded receptor proteins recognize specific patterns that are shared by groups of pathogens, but not the host. (medscape.org)
  • High glucose increased TLR expression, myeloid differentiation factor 88, interleukin-1 receptor-associated kinase-1, and nuclear factor-κB (NF-κB) p65-dependent activation in THP-1 cells. (diabetesjournals.org)
  • However, in 82As2 cells, LIF production was significantly increased by stimulation with TLR5, which was suppressed by an inhibitor of interleukin-1 receptor-associated kinase-1/4, which are important factors in the TLR5 signaling pathway. (oncotarget.com)
  • Do the placental barrier, parasite genotype and Toll-like receptor polymorphisms contribute to the course of primary infection with various Toxoplasma gondii genotypes in pregnant women? (springer.com)
  • Human polymorphisms of Toll-like receptor genes have been discovered and are associated with hyporesponsiveness to bacterial components. (ox.ac.uk)
  • Publications regarding the associations of toll-like receptor 2 (TLR2) G2258A and T597C polymorphisms with pulmonary tuberculosis (PTB) susceptibility are inconsistent. (cdc.gov)
  • Toll-like receptor polymorphisms are associated with increased neurosyphilis risk. (cdc.gov)
  • In contrast, TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. (frontiersin.org)
  • In addition, the presence of EVs reduced inflammatory responses in Pam 3 CSK 4 -treated endothelial cells and HEK Dual reporter cells, demonstrating that TLR2-EVs can act as decoy receptors. (frontiersin.org)
  • Spinal-cord microglia are usually regarded as the initial glial cell turned on in response to inflammatory or distressing injuries to physical tissue including peripheral nerve damage resulting in neuropathic discomfort (Milligan and Watkins 2009 A course of receptors portrayed by microglia that enable these to feeling that peripheral nerve damage has occurred is certainly via Toll-like receptors (TLR) such as for example TLR2 (Kim et al. (sciencepop.org)
  • These receptorsâ€''pattern recognition receptors' (PRRs)â€' detect pathogen-associated molecular patterns (PAMPs) that remain largely unvaried, such as lipopolysaccharide found on the cell surface of Gram-negative bacteria, or double-stranded RNA present in viruses. (medscape.org)
  • Cardiac Toll-like receptors and inflammasome complexes may be key inducers for inflammation probably through NF- B activation and ROS overproduction. (hindawi.com)
  • Portions of this work were in Regulation of Drug Metabolizing Enzymes in Inflammation: Role of the Toll-Like Receptor 4 Signaling Pathway (R. Ghose, D. White, J. Vallejo, and S. J. Karpen), which was presented at Experimental Biology 2007 in Washington, DC, April 28-May 2, 2007. (aspetjournals.org)
  • These receptors trigger inflammation through the NFkB-dependent and interferon regulatory factor-dependent signaling pathway. (medscape.com)
  • They work as pattern recognition receptors (PRRs) implicated in tailoring innate immune signaling [ 22 ]. (hindawi.com)
  • Toll-like receptors are a family of pattern recognition receptors (PRRs) that evolved to detect microbial infection. (elsevierpure.com)
  • Interferon-alpha (IFN-alpha) potentiates immune responses against viral pathogens that induce toll-like receptor-3 (TLR3) activation but evokes severe major depressive disorder in humans by mechanisms that remain insufficiently described. (uni-koeln.de)
  • Other syndromes that can cause disseminated mycobacterial disease include defects in the interferon gamma/IL-12 (interleukin 12 receptor)pathway, defects in GATA2, and advanced HIV infection. (cancertherapyadvisor.com)
  • The type I IFN signaling pathway includes toll-like receptor 3 ( TLR3 ) and interferon regulator factor 7 ( IRF7 ). (cdc.gov)
  • In addition, members of the toll family play a key role in innate antibacterial and antifungal immunity in insects as well as in mammals. (wikipedia.org)
  • The toll (TLR) receptors are essential components of innate immunity and provide defensive inflammatory responses to invasive pathogens. (toll-likereceptors.com)
  • innate immunity is driven by pattern recognition receptor (PRR) protect the host from the pathogen. (toll-likereceptors.com)
  • Toll-like receptor (TLR) agonists are considered adjuvants in clinical trials of cancer immunotherapy. (aacrjournals.org)
  • Structure-activity relationship studies on the immune stimulatory effects of base-modified CpG toll-like receptor 9 agonists. (umassmed.edu)
  • Jurk M, Kritzler A, Debelak H, Vollmer J, Krieg AM, Uhlmann E. Structure-activity relationship studies on the immune stimulatory effects of base-modified CpG toll-like receptor 9 agonists. (umassmed.edu)
  • Early activation of Toll-like receptor-3 reduces the pathological progression of Alzheimer's disease in APP/PS1 mouse. (nih.gov)
  • They have been selected for there ability to efficiently neutralize Toll-like receptor activation. (invivogen.com)
  • Deletion mutagenesis studies show that the activation of JNK by IL-1RAPL does not depend on the integrity of its TIR domain, suggesting a distinct mechanism of signaling through this receptor. (tcd.ie)
  • Our group has investigated the involvement of gut microbiota in hypertension in a murine model of systemic lupus erythematosus induced by Toll-like receptor (TLR)-7 activation. (ugr.es)
  • Although Toll-like receptors play a key role in protecting the host against infectious and inflammatory processes, and there must be a balance between the activation and inactivation of these receptors to avoid an excessive inflammatory or immune response, as it occurs in systemic autoimmune and chronic inflammatory diseases, such as systemic lupus erythematosus and rheumatoid arthritis. (bvsalud.org)
  • Among these receptors the Toll-like Receptor (TLR) family can recognize all classes of pathogens and induce different types of immune responses. (benthamscience.com)
  • They represent the first line of defense against pathogens in the lower airspace and recognize microbial ligands via pattern recognition receptors ( 4 , 5 ). (frontiersin.org)
  • Toll-like receptors are a family of receptors that recognize components of bacteria and induce a proinflammatory response by cells, including macrophages and endothelial cells. (ox.ac.uk)
  • These receptors recognize conserved molecular products derived from different classes of microorganisms, including Gram-positive and -negative bacteria, fungi, protozoa and viruses. (elsevierpure.com)
  • They recognize microorganisma through their Fc, complement and toll-like receptors (TLR), as well as non-TLR. (medscape.com)
  • In mature bone, NGF is produced by osteoblasts following mechanical loading and signals through resident sensory nerves expressing its high affinity receptor, neurotrophic tyrosine kinase receptor type 1 (TrkA), to support bone formation. (jefferson.edu)
  • In Drosophila melanogaster the toll protein is involved in establishment of dorso-ventral polarity in the embryo. (wikipedia.org)
  • Toll-like receptor 8 is a protein encoded by the TLR8 gene. (globaldata.com)
  • The molecule types in the Toll Like Receptor 8 pipeline market are small molecule, monoclonal antibody conjugated, fusion protein, monoclonal antibody, mRNA vaccine, subunit vaccine, and synthetic peptide. (globaldata.com)
  • The levels of presynaptic protein vesicular glutamate transporter (VGLUT)-1 and postsynaptic protein postsynaptic density-95 (PSD95) were specifically decreased, whereas the expression of both synaptic and extrasynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 1 (AMPAR1) was increased by IFN-alpha and poly(I:C) delivery. (uni-koeln.de)
  • We demonstrate here that ILT7 protein associates with the signal adapter protein Fc ε RIγ to form a receptor complex. (rupress.org)
  • Some Toll-like receptors require the cooperation of an adapter protein. (ox.ac.uk)
  • Toll-like receptor 4 function requires the presence of the protein MD2. (ox.ac.uk)
  • An intracellular signaling adaptor protein that plays a role in TOLL-LIKE RECEPTOR and INTERLEUKIN 1 RECEPTORS signal transduction. (bvsalud.org)
  • We demonstrate the circadian molecular clock controls the expression and function of Toll-like receptor 9 (TLR9). (nih.gov)
  • Decreased Toll-like Receptor (TLR) 2 and 4 Expression in Spermatozoa in Couples with Unexplained Recurrent Spontaneous Abortion (URSA). (toll-likereceptors.com)
  • Also our study indicated that WSC induced an increase in the transcriptional expression of matrix metalloproteinases, MMP-2 and MMP-9 and an immune response regulator, Toll Like Receptor-4. (who.int)
  • Ten human Toll receptors differing in their specificity for microbial components have been cloned. (ox.ac.uk)
  • In humans, ten Toll-like receptors have been identified and designated (TLR1-10) with different functions specific to particular microbial components. (bvsalud.org)
  • The main objective of this study is to review the literature on Toll-like receptors, emphasizing the generation of signals and the immune responses developed in recognition of microbial components for these receptors. (bvsalud.org)
  • Orthologous to human TLR3 (toll like receptor 3). (nih.gov)
  • We further discuss recent advances regarding cytosolic pattern recognition receptors, RNA helicases that represents a new concept in chronic hepatitis C virus infection. (nih.gov)
  • Das D, Sarkar N, Sengupta I, Pal A, Saha D, Bandopadhyay M, Das C, Narayan J, Singh SP, Chakravarty R. Anti-viral role of toll like receptor 4 in hepatitis B virus infection: An in vitro study. (wjgnet.com)
  • Thus, much research in this field has sought to achieve a better understanding of the mechanisms by which Toll-like receptor signalling may be regulated. (bvsalud.org)
  • Moreover, treatment with imiquimod downregulated MHC class I molecules on tumor cells possibly resulting in a reduced binding affinity for inhibitory receptor NKG2A expressed on γδ T cells. (aacrjournals.org)
  • and signaling receptor activity. (nih.gov)
  • However, metabolic dysregulated factors such as peroxisome proliferator-activated receptors and sirtuins may serve as therapeutic targets to control this response by mitigating both Toll-like receptors and inflammasome signaling. (hindawi.com)
  • In the past several years, many of the receptors and signaling pathways that link pathogen detection to induction of IL-12 have been identified and characterized. (benthamscience.com)
  • Toll-like Receptor 4 Signaling in Osteoblasts Is Required for Load-Ind" by Ibtesam Rajpar, Gaurav Kumar et al. (jefferson.edu)
  • Leukemia inhibitory factor via the Toll-like receptor 5 signaling pathway involves aggravation of cachexia induced by human gastric cancer-derived 85As2. (oncotarget.com)
  • 85As2 cells displayed more genetic changes compared to MKN45cl85 cells, which were related to Toll-like receptor (TLR) 4/5 signaling. (oncotarget.com)
  • Are you sure your patient has a toll-like receptor signaling defect? (cancertherapyadvisor.com)
  • It forms a signaling complex with the activated cell surface receptors and members of the IRAK KINASES. (bvsalud.org)
  • Morphine-induced osteolysis and hypersensitivity is mediated through toll-like receptor-4 in a murine model of metastatic breast cancer. (iasp-pain.org)
  • The generation of receptors specific for antigens is a unique and complex process that generates 10 12 specific receptors for each cell type of the adaptive immune system, including T and B cells. (medscape.com)
  • Various cell types can process and present these antigens to T cells, or antigens may be soluble and bound to B-cell receptors. (medscape.com)
  • Immunoglobulin-like transcripts are a family of inhibitory and stimulatory cell surface immune receptors. (rupress.org)
  • Mutations in toll-like receptor 7 ( TLR7 ), which are responsible for X-linked recessive toll-like receptor 7 deficiency (XR TLR7 deficiency), were also associated with severe COVID-19 . (cdc.gov)
  • It blocks a receptor, CD14, which plays a key role in detecting bacterial substances and initiating the immune response. (lu.se)
  • Toll-Like Receptors and their Role in Host Resistance to Toxoplasma gondii, Immune Response to Parasitic Infections Protozoa (2010) 1: 98. (benthamscience.com)