A transmembrane-protein belonging to the TNF family of intercellular signaling proteins. It is a widely expressed ligand that activates APOPTOSIS by binding to TNF-RELATED APOPTOSIS-INDUCING LIGAND RECEPTORS. The membrane-bound form of the protein can be cleaved by specific CYSTEINE ENDOPEPTIDASES to form a soluble ligand form.
A large group of proteins that control APOPTOSIS. This family of proteins includes many ONCOGENE PROTEINS as well as a wide variety of classes of INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS such as CASPASES.
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)
A family of intracellular CYSTEINE ENDOPEPTIDASES that play a role in regulating INFLAMMATION and APOPTOSIS. They specifically cleave peptides at a CYSTEINE amino acid that follows an ASPARTIC ACID residue. Caspases are activated by proteolytic cleavage of a precursor form to yield large and small subunits that form the enzyme. Since the cleavage site within precursors matches the specificity of caspases, sequential activation of precursors by activated caspases can occur.
A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 9. Isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA.
A transmembrane protein belonging to the tumor necrosis factor superfamily that was originally discovered on cells of the lymphoid-myeloid lineage, including activated T-LYMPHOCYTES and NATURAL KILLER CELLS. It plays an important role in immune homeostasis and cell-mediated toxicity by binding to the FAS RECEPTOR and triggering APOPTOSIS.
A conserved class of proteins that control APOPTOSIS in both VERTEBRATES and INVERTEBRATES. IAP proteins interact with and inhibit CASPASES, and they function as ANTI-APOPTOTIC PROTEINS. The protein class is defined by an approximately 80-amino acid motif called the baculoviral inhibitor of apoptosis repeat.
Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma.
Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Splitting the DNA into shorter pieces by endonucleolytic DNA CLEAVAGE at multiple sites. It includes the internucleosomal DNA fragmentation, which along with chromatin condensation, are considered to be the hallmarks of APOPTOSIS.
A cell line derived from cultured tumor cells.
An in situ method for detecting areas of DNA which are nicked during APOPTOSIS. Terminal deoxynucleotidyl transferase is used to add labeled dUTP, in a template-independent manner, to the 3 prime OH ends of either single- or double-stranded DNA. The terminal deoxynucleotidyl transferase nick end labeling, or TUNEL, assay labels apoptosis on a single-cell level, making it more sensitive than agarose gel electrophoresis for analysis of DNA FRAGMENTATION.
A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability.
An inhibitor of apoptosis protein that is translated by a rare cap-independent mechanism. It blocks caspase-mediated cellular destruction by inhibiting CASPASE 3; CASPASE 7; and CASPASE 9.
A membrane glycoprotein and differentiation antigen expressed on the surface of T-cells that binds to CD40 ANTIGENS on B-LYMPHOCYTES and induces their proliferation. Mutation of the gene for CD40 ligand is a cause of HYPER-IGM IMMUNODEFICIENCY SYNDROME, TYPE 1.
An APOPTOSIS-regulating protein that is structurally related to CASPASE 8 and competes with CASPASE 8 for binding to FAS ASSOCIATED DEATH DOMAIN PROTEIN. Two forms of CASP8 and FADD-like apoptosis regulating protein exist, a long form containing a caspase-like enzymatically inactive domain and a short form which lacks the caspase-like domain.
A flavoprotein that functions as a powerful antioxidant in the MITOCHONDRIA and promotes APOPTOSIS when released from the mitochondria. In mammalian cells AIF is released in response to pro-apoptotic protein members of the bcl-2 protein family. It translocates to the CELL NUCLEUS and binds DNA to stimulate CASPASE-independent CHROMATIN condensation.
Established cell cultures that have the potential to propagate indefinitely.
A long pro-domain caspase that contains a caspase recruitment domain in its pro-domain region. Caspase 9 is activated during cell stress by mitochondria-derived proapoptotic factors and by CARD SIGNALING ADAPTOR PROTEINS such as APOPTOTIC PROTEASE-ACTIVATING FACTOR 1. It activates APOPTOSIS by cleaving and activating EFFECTOR CASPASES.
Endogenous and exogenous compounds and that either inhibit CASPASES or prevent their activation.
A long pro-domain caspase that contains a death effector domain in its pro-domain region. Caspase 8 plays a role in APOPTOSIS by cleaving and activating EFFECTOR CASPASES. Activation of this enzyme can occur via the interaction of its N-terminal death effector domain with DEATH DOMAIN RECEPTOR SIGNALING ADAPTOR PROTEINS.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.
Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells.
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Glycoproteins found on the membrane or surface of cells.
Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER.
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Cytochromes of the c type that are found in eukaryotic MITOCHONDRIA. They serve as redox intermediates that accept electrons from MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX III and transfer them to MITOCHONDRIAL ELECTRON TRANSPORT COMPLEX IV.
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A member of the bcl-2 protein family that plays a role in the regulation of APOPTOSIS. Two major isoforms of the protein exist due to ALTERNATIVE SPLICING of the BCL2L1 mRNA and are referred to as Bcl-XS and Bcl-XL.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Inbred C57BL mice are a strain of laboratory mice that have been produced by many generations of brother-sister matings, resulting in a high degree of genetic uniformity and homozygosity, making them widely used for biomedical research, including studies on genetics, immunology, cancer, and neuroscience.
A protein of the annexin family isolated from human PLACENTA and other tissues. It inhibits cytosolic PHOSPHOLIPASE A2, and displays anticoagulant activity.
Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Inhibitors of SERINE ENDOPEPTIDASES and sulfhydryl group-containing enzymes. They act as alkylating agents and are known to interfere in the translation process.
Substances that inhibit or prevent the proliferation of NEOPLASMS.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Exogenous and endogenous compounds which inhibit CYSTEINE ENDOPEPTIDASES.
A CELL LINE derived from human T-CELL LEUKEMIA and used to determine the mechanism of differential susceptibility to anti-cancer drugs and radiation.
Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA.
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
A tumor necrosis factor receptor subtype that has specificity for TUMOR NECROSIS FACTOR ALPHA and LYMPHOTOXIN ALPHA. It is constitutively expressed in most tissues and is a key mediator of tumor necrosis factor signaling in the vast majority of cells. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Transport proteins that carry specific substances in the blood or across cell membranes.
The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability.
Elements of limited time intervals, contributing to particular results or situations.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Proteins prepared by recombinant DNA technology.
A promyelocytic cell line derived from a patient with ACUTE PROMYELOCYTIC LEUKEMIA. HL-60 cells lack specific markers for LYMPHOID CELLS but express surface receptors for FC FRAGMENTS and COMPLEMENT SYSTEM PROTEINS. They also exhibit phagocytic activity and responsiveness to chemotactic stimuli. (From Hay et al., American Type Culture Collection, 7th ed, pp127-8)
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
Tumor necrosis factor receptor family members that are widely expressed and play a role in regulation of peripheral immune responses and APOPTOSIS. The receptors are specific for TNF-RELATED APOPTOSIS-INDUCING LIGAND and signal via conserved death domains that associate with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM.
A short pro-domain caspase that plays an effector role in APOPTOSIS. It is activated by INITIATOR CASPASES such as CASPASE 3 and CASPASE 10. Several isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA.
The voltage difference, normally maintained at approximately -180mV, across the INNER MITOCHONDRIAL MEMBRANE, by a net movement of positive charge across the membrane. It is a major component of the PROTON MOTIVE FORCE in MITOCHONDRIA used to drive the synthesis of ATP.
A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539)
The pathological process occurring in cells that are dying from irreparable injuries. It is caused by the progressive, uncontrolled action of degradative ENZYMES, leading to MITOCHONDRIAL SWELLING, nuclear flocculation, and cell lysis. It is distinct it from APOPTOSIS, which is a normal, regulated cellular process.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
The B-cell leukemia/lymphoma-2 genes, responsible for blocking apoptosis in normal cells, and associated with follicular lymphoma when overexpressed. Overexpression results from the t(14;18) translocation. The human c-bcl-2 gene is located at 18q24 on the long arm of chromosome 18.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
A transmembrane protein belonging to the tumor necrosis factor superfamily that specifically binds RECEPTOR ACTIVATOR OF NUCLEAR FACTOR-KAPPA B and OSTEOPROTEGERIN. It plays an important role in regulating OSTEOCLAST differentiation and activation.
A protein-serine-threonine kinase that is activated by PHOSPHORYLATION in response to GROWTH FACTORS or INSULIN. It plays a major role in cell metabolism, growth, and survival as a core component of SIGNAL TRANSDUCTION. Three isoforms have been described in mammalian cells.
The action of a drug in promoting or enhancing the effectiveness of another drug.
A family of proteins that were originally identified by their ability to cause NECROSIS of NEOPLASMS. Their necrotic effect on cells is mediated through TUMOR NECROSIS FACTOR RECEPTORS which induce APOPTOSIS.
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A multi-domain mitochondrial membrane protein and member of the bcl-2 Protein family. Bak protein interacts with TUMOR SUPPRESSOR PROTEIN P53 and promotes APOPTOSIS.
A member of the Bcl-2 protein family that reversibly binds MEMBRANES. It is a pro-apoptotic protein that is activated by caspase cleavage.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.
Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen.
The rate dynamics in chemical or physical systems.
A member of the myeloid leukemia factor (MLF) protein family with multiple alternatively spliced transcript variants encoding different protein isoforms. In hematopoietic cells, it is located mainly in the nucleus, and in non-hematopoietic cells, primarily in the cytoplasm with a punctate nuclear localization. MLF1 plays a role in cell cycle differentiation.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A tumor necrosis factor receptor subtype that is expressed primarily in IMMUNE SYSTEM cells. It has specificity for membrane-bound form of TUMOR NECROSIS FACTORS and mediates intracellular-signaling through TNF RECEPTOR ASSOCIATED FACTORS.
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A superfamily of PROTEIN-SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES).
Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.
An indolocarbazole that is a potent PROTEIN KINASE C inhibitor which enhances cAMP-mediated responses in human neuroblastoma cells. (Biochem Biophys Res Commun 1995;214(3):1114-20)
A signal-transducing adaptor protein that associates with TNF RECEPTOR complexes. It contains a death effector domain that can interact with death effector domains found on INITIATOR CASPASES such as CASPASE 8 and CASPASE 10. Activation of CASPASES via interaction with this protein plays a role in the signaling cascade that leads to APOPTOSIS.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Members of the class of neutral glycosphingolipids. They are the basic units of SPHINGOLIPIDS. They are sphingoids attached via their amino groups to a long chain fatty acyl group. They abnormally accumulate in FABRY DISEASE.
Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Peptides composed of between two and twelve amino acids.
A pro-apoptotic protein and member of the Bcl-2 protein family that is regulated by PHOSPHORYLATION. Unphosphorylated Bad protein inhibits the activity of BCL-XL PROTEIN.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
A membrane-bound tumor necrosis family member found primarily on activated T-LYMPHOCYTES that binds specifically to CD30 ANTIGEN. It may play a role in INFLAMMATION and immune regulation.
Agents obtained from higher plants that have demonstrable cytostatic or antineoplastic activity.
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.)
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A human cell line established from a diffuse histiocytic lymphoma (HISTIOCYTIC LYMPHOMA, DIFFUSE) and displaying many monocytic characteristics. It serves as an in vitro model for MONOCYTE and MACROPHAGE differentiation.
ENDOPEPTIDASES which have a cysteine involved in the catalytic process. This group of enzymes is inactivated by CYSTEINE PROTEINASE INHIBITORS such as CYSTATINS and SULFHYDRYL REAGENTS.
Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses.
A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens.
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
A long pro-domain caspase that contains a caspase recruitment domain in its pro-domain region. Activation of this enzyme can occur via the interaction of its caspase recruitment domain with CARD SIGNALING ADAPTOR PROTEINS. Caspase 2 plays a role in APOPTOSIS by cleaving and activating effector pro-caspases. Several isoforms of this protein exist due to multiple alternative splicing of its MESSENGER RNA.
Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.
Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION.
Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures.
A CARD signaling adaptor protein that plays a role in the mitochondria-stimulated apoptosis (APOPTOSIS, INTRINSIC PATHWAY). It binds to CYTOCHROME C in the CYTOSOL to form an APOPTOSOMAL PROTEIN COMPLEX and activates INITIATOR CASPASES such as CASPASE 9.
Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed)
A signal transducing tumor necrosis factor receptor associated factor that is involved in TNF RECEPTOR feedback regulation. It is similar in structure and appears to work in conjunction with TNF RECEPTOR-ASSOCIATED FACTOR 2 to inhibit APOPTOSIS.
A long pro-domain caspase that has specificity for the precursor form of INTERLEUKIN-1BETA. It plays a role in INFLAMMATION by catalytically converting the inactive forms of CYTOKINES such as interleukin-1beta to their active, secreted form. Caspase 1 is referred as interleukin-1beta converting enzyme and is frequently abbreviated ICE.
Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.
Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Phosphotransferases that catalyzes the conversion of 1-phosphatidylinositol to 1-phosphatidylinositol 3-phosphate. Many members of this enzyme class are involved in RECEPTOR MEDIATED SIGNAL TRANSDUCTION and regulation of vesicular transport with the cell. Phosphatidylinositol 3-Kinases have been classified both according to their substrate specificity and their mode of action within the cell.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
In vivo methods of screening investigative anticancer drugs, biologic response modifiers or radiotherapies. Human tumor tissue or cells are transplanted into mice or rats followed by tumor treatment regimens. A variety of outcomes are monitored to assess antitumor effectiveness.
Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Adherence of cells to surfaces or to other cells.
A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials.
A family of cell surface receptors that signal via a conserved domain that extends into the cell CYTOPLASM. The conserved domain is referred to as a death domain due to the fact that many of these receptors are involved in signaling APOPTOSIS. Several DEATH DOMAIN RECEPTOR SIGNALING ADAPTOR PROTEINS can bind to the death domains of the activated receptors and through a complex series of interactions activate apoptotic mediators such as CASPASES.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
A 150-kDa MAP kinase kinase kinase that may play a role in the induction of APOPTOSIS. It has specificity for MAP KINASE KINASE 3; MAP KINASE KINASE 4; and MAP KINASE KINASE 6.
A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3.
A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes
An intracellular signaling system involving the MAP kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade.
Proteins that are normally involved in holding cellular growth in check. Deficiencies or abnormalities in these proteins may lead to unregulated cell growth and tumor development.
A membrane-bound tumor necrosis family member that is expressed on activated antigen-presenting cells such as B-LYMPHOCYTES and MACROPHAGES. It signals T-LYMPHOCYTES by binding the OX40 RECEPTOR.
CULTURE MEDIA free of serum proteins but including the minimal essential substances required for cell growth. This type of medium avoids the presence of extraneous substances that may affect cell proliferation or unwanted activation of cells.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle.
Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES.
Tumors or cancer of the COLON.
Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
A tumor necrosis factor family member that is released by activated LYMPHOCYTES. Soluble lymphotoxin is specific for TUMOR NECROSIS FACTOR RECEPTOR TYPE I; TUMOR NECROSIS FACTOR RECEPTOR TYPE II; and TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 14. Lymphotoxin-alpha can form a membrane-bound heterodimer with LYMPHOTOXIN-BETA that has specificity for the LYMPHOTOXIN BETA RECEPTOR.
The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds.
CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells.
Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins.
An ERYTHROLEUKEMIA cell line derived from a CHRONIC MYELOID LEUKEMIA patient in BLAST CRISIS.
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms.
The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.
A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation.
A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases.
The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.
Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles.
The process by which chemical compounds provide protection to cells against harmful agents.
Quaternary ammonium analog of ethidium; an intercalating dye with a specific affinity to certain forms of DNA and, used as diiodide, to separate them in density gradients; also forms fluorescent complexes with cholinesterase which it inhibits.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a serine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and serine and 2 moles of fatty acids.
Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components.
The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
A membrane bound member of the TNF superfamily that is expressed on activated B-LYMPHOCYTES; MACROPHAGES; and DENDRITIC CELLS. The ligand is specific for the 4-1BB RECEPTOR and may play a role in inducing the proliferation of activated peripheral blood T-LYMPHOCYTES.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS.
Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
Thiazoles are heterocyclic organic compounds containing a sulfur atom and a nitrogen atom, which are bound by two carbon atoms to form a five-membered ring, and are widely found in various natural and synthetic substances, including some pharmaceuticals and vitamins.
A mitogen-activated protein kinase kinase with specificity for JNK MITOGEN-ACTIVATED PROTEIN KINASES; P38 MITOGEN-ACTIVATED PROTEIN KINASES and the RETINOID X RECEPTORS. It takes part in a SIGNAL TRANSDUCTION pathway that is activated in response to cellular stress.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize.
The two lipoprotein layers in the MITOCHONDRION. The outer membrane encloses the entire mitochondrion and contains channels with TRANSPORT PROTEINS to move molecules and ions in and out of the organelle. The inner membrane folds into cristae and contains many ENZYMES important to cell METABOLISM and energy production (MITOCHONDRIAL ATP SYNTHASE).
The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
Tumors or cancer of the PROSTATE.
The segregation and degradation of damaged or unwanted cytoplasmic constituents by autophagic vacuoles (cytolysosomes) composed of LYSOSOMES containing cellular components in the process of digestion; it plays an important role in BIOLOGICAL METAMORPHOSIS of amphibians, in the removal of bone by osteoclasts, and in the degradation of normal cell components in nutritional deficiency states.

Functional analysis of TRAIL receptors using monoclonal antibodies. (1/1957)

mAbs were generated against the extracellular domain of the four known TNF-related apoptosis-inducing ligand (TRAIL) receptors and tested on a panel of human melanoma cell lines. The specificity of the mAb permitted a precise evaluation of the TRAIL receptors that induce apoptosis (TRAIL-R1 and -R2) compared with the TRAIL receptors that potentially regulate TRAIL-mediated apoptosis (TRAIL-R3 and -R4). Immobilized anti-TRAIL-R1 or -R2 mAbs were cytotoxic to TRAIL-sensitive tumor cells, whereas tumor cells resistant to recombinant TRAIL were also resistant to these mAbs and only became sensitive when cultured with actinomycin D. The anti-TRAIL-R1 and -R2 mAb-induced death was characterized by the activation of intracellular caspases, which could be blocked by carbobenzyloxy-Val-Ala-Asp (OMe) fluoromethyl ketone (zVAD-fmk) and carbobenzyloxy-Ile-Glu(OMe)-Thr-Asp (OMe) fluoromethyl ketone (zIETD-fmk). When used in solution, one of the anti-TRAIL-R2 mAbs was capable of blocking leucine zipper-human TRAIL binding to TRAIL-R2-expressing cells and prevented TRAIL-induced death of these cells, whereas two of the anti-TRAIL-R1 mAbs could inhibit leucine zipper-human TRAIL binding to TRAIL-R1:Fc. Furthermore, use of the blocking anti-TRAIL-R2 mAb allowed us to demonstrate that the signals transduced through either TRAIL-R1 or TRAIL-R2 were necessary and sufficient to mediate cell death. In contrast, the expression of TRAIL-R3 or TRAIL-R4 did not appear to be a significant factor in determining the resistance or sensitivity of these tumor target cells to the effects of TRAIL.  (+info)

Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. (2/1957)

TNF-related apoptosis-inducing ligand (TRAIL) has been identified as a member of the TNF family that induces apoptosis in a variety of tumor cells, but its physiological functions are largely unknown. In the present study, we examined the expression and function of TRAIL in human CD4+ T cell clones by utilizing newly established anti-human TRAIL mAbs. Human CD4+ T cell clones, HK12 and 4HM1, exhibited perforin-independent and Fas ligand (FasL)-independent cytotoxicity against certain target cells, including T lymphoma (Jurkat) and keratinocyte (HaCaT) cell lines, which are susceptible to TRAIL-mediated cytotoxicity. In contrast to FasL, the expression of which was inducible upon anti-CD3 stimulation, TRAIL was constitutively expressed on HK12 and 4HM1 cells, and no further increase was observed after anti-CD3 stimulation. Spontaneous cytotoxic activities of resting HK12 and 4HM1 cells against Jurkat and HaCaT cells were blocked by anti-TRAIL mAb but not by anti-FasL mAb, and bystander cytotoxic activities of anti-CD3-stimulated HK12 and 4HM1 cells were abolished by the combination of anti-TRAIL and anti-FasL mAbs. These results indicate a differential regulation of TRAIL and FasL expression on human CD4+ T cell clones and that TRAIL constitutes an additional pathway of T cell-mediated cytotoxicity.  (+info)

JNK/SAPK activity contributes to TRAIL-induced apoptosis. (3/1957)

We report here that JNK/SAPKs are activated by TRAIL in parallel to induction of apoptosis in human T and B cell lines. Death signaling as well as JNK/SAPK activation by TRAIL in these cells is FADD- and caspase-dependent since dominant-negative FADD or the caspase inhibitor zVAD prevented both, apoptosis and JNK/SAPK activity. JNK/SAPK activity in response to triggering of CD95 by an agonistic antibody (alphaAPO-1) was also diminished by dominant-negative FADD or zVAD. Correspondingly, a cell line resistant to alphaAPO-1-induced death exhibited crossresistance to TRAIL-induced apoptosis and did not upregulate JNK/SAPK activity in response to TRAIL or alphaAPO-1. Inhibition of JNK/SAPK activity, by stably transfecting cells with a dominant-negative JNKK-MKK4 construct, reduced apoptosis in response to TRAIL or alphaAPO-1. Therefore, activation of JNK/SAPKs by TRAIL or alphaAPO-1 occurs downstream of FADD and caspases and contributes to apoptosis in human lymphoid cell lines.  (+info)

Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. (4/1957)

TRAIL (tumor necrosis factor [TNF]-related apoptosis-inducing ligand) is a molecule that displays potent antitumor activity against selected targets. The results presented here demonstrate that human monocytes rapidly express TRAIL, but not Fas ligand or TNF, after activation with interferon (IFN)-gamma or -alpha and acquire the ability to kill tumor cells. Monocyte-mediated tumor cell apoptosis was TRAIL specific, as it could be inhibited with soluble TRAIL receptor. Moreover, IFN stimulation caused a concomitant loss of TRAIL receptor 2 expression, which coincides with monocyte acquisition of resistance to TRAIL-mediated apoptosis. These results define a novel mechanism of monocyte-induced cell cytotoxicity that requires TRAIL, and suggest that TRAIL is a key effector molecule in antitumor activity in vivo.  (+info)

Type I interferons (IFNs) regulate tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression on human T cells: A novel mechanism for the antitumor effects of type I IFNs. (5/1957)

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a proapoptotic member of the TNF family of type II membrane proteins, which constitutes one component of T cell cytotoxicity. In this study, we investigated the expression and function of TRAIL in human peripheral blood T (PBT) cells. Although freshly isolated PBT cells did not express a detectable level of TRAIL on their surface, a remarkable TRAIL expression was rapidly induced on the surface of both CD4(+) and CD8(+) PBT cells upon stimulation with anti-CD3 monoclonal antibody and type I interferons (IFNs). This enhancement of TRAIL expression was a unique feature of type I IFNs (IFN-alpha and IFN-beta), and neither type II IFN (IFN-gamma) nor various other cytokines enhanced TRAIL expression on anti-CD3-stimulated PBT cells. Type I IFNs have been used for clinical treatment of renal cell carcinomas (RCCs), and we found that most RCC cell lines were susceptible to TRAIL-induced apoptosis. Type I IFNs substantially augmented cytotoxic activity of anti-CD3-stimulated PBT cells against RCC cell lines in a TRAIL-dependent manner. These results indicate a unique feature of type I IFNs to regulate TRAIL-mediated T cell cytotoxicity, which may be involved in the antitumor effects of type I IFNs against various tumors.  (+info)

Sensitization of AIDS-Kaposi's sarcoma cells to Apo-2 ligand-induced apoptosis by actinomycin D. (6/1957)

Kaposi's sarcoma (KS) is the most frequent malignancy associated with HIV infection (AIDS-KS), a complication that leads to high mortality and morbidity. AIDS-KS cells are resistant to killing by chemotherapeutic drugs/NK cells and Fas-induced apoptosis, suggesting that the acquisition of antiapoptotic characteristics by AIDS-KS cells may contribute to their prolonged survival. Apo-2 ligand (Apo-2L)/TNF-related apoptosis-inducing ligand, a new member of the TNF family, has been identified as an apoptosis-inducing molecule. In this study we examined the sensitivity of 10 different AIDS-KS isolates to Apo-2L-mediated cytotoxicity. AIDS-KS cells were relatively resistant to Apo-2L; however, Apo-2L and actinomycin D (Act D) used in combination synergistically potentiated the induction of cell death in nine of the 10 isolates. Apo-2L induced apoptosis in >80% of AIDS-KS cells pretreated with Act D. The caspase inhibitors, zIETD-fmk and zDEVD-fmk, inhibited apoptosis in AIDS-KS by sApo-2L, suggesting that caspase 3-like and caspase 8 or 10 activities are essential for Apo-2L-mediated apoptosis. Act D treatment of AIDS-KS cells markedly and selectively down-regulated Bcl-xL expression, while the expressions of decoy receptors 1 and 2, Bax, cellular FLICE (Fas-associated death domain protein-like IL-1-converting enzyme) inhibitory protein, FADD (Fas-associated death domain protein), procaspase 8, and p53 were not affected. These findings suggest the possible involvement of Bcl-xL in Act D-induced sensitization of AIDS-KS cells to Apo-2L-mediated apoptosis. Furthermore, Act D did not sensitize PBMC or fibroblast cells to Apo-2L. Thus, Apo-2L and Act D used in combination may be of therapeutic value in the treatment of AIDS-KS.  (+info)

TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. (7/1957)

Mechanisms accounting for protection of the fetal semiallograft from maternal immune cells remain incompletely understood. In other contexts, interactions between TRAIL (TNF-related apoptosis-inducing ligand/Apo-2L) and its receptors kill activated lymphocytes. The purpose of this study was therefore to investigate the potential of the TRAIL/TRAIL-R system to protect the placenta against immune cell attack. Analysis by Northern blotting demonstrated mRNAs encoding TRAIL as well as the four TRAIL receptors (DR4, DR5, DcR1/TRID, DcR2/TRUNDD) in human placentas. Immunohistochemical experiments demonstrated that TRAIL protein is prominent in syncytiotrophoblast, an uninterrupted placental cell layer that is continuously exposed to maternal blood, as well as in macrophage-like placental mesenchymal cells (Hofbauer cells). Studies on cell lines representing trophoblasts (Jar, JEG-3 cells) and macrophages (U937, THP-1 cells) showed that both lineages contained TRAIL mRNA and that steady state levels of transcripts were increased 2- to 11-fold by IFN-gamma. By contrast, cell lineage-specific differences were observed in expression of the TRAIL-R genes. Although all four lines contained mRNA encoding the apoptosis-inducing DR5 receptor, only trophoblast cells contained mRNA encoding the DcR1 decoy receptor and only macrophages contained DcR2 decoy receptor transcripts. DR4 mRNA was present only in THP-1 cells and was the only TRAIL-R transcript increased by IFN-gamma. Cytotoxicity assays revealed that the two trophoblast cell lines were resistant, whereas the two macrophage lines were partially susceptible to killing by rTRAIL. Collectively, the results are consistent with a role for the TRAIL/TRAIL-R system in the establishment of placental immune privilege.  (+info)

CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. (8/1957)

Programmed cell death plays an important role in the neuronal degeneration after cerebral ischemia, but the underlying mechanisms are not fully understood. Here we examined, in vivo and in vitro, whether ischemia-induced neuronal death involves death-inducing ligand/receptor systems such as CD95 and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). After reversible middle cerebral artery occlusion in adult rats, both CD95 ligand and TRAIL were expressed in the apoptotic areas of the postischemic brain. Further recombinant CD95 ligand and TRAIL proteins induced apoptosis in primary neurons and neuron-like cells in vitro. The immunosuppressant FK506, which most effectively protects against ischemic neurodegeneration, prevented postischemic expression of these death-inducing ligands both in vivo and in vitro. FK506 also abolished phosphorylation, but not expression, of the c-Jun transcription factor involved in the transcriptional control of CD95 ligand. Most importantly, in lpr mice expressing dysfunctional CD95, reversible middle cerebral artery occlusion resulted in infarct volumes significantly smaller than those found in wild-type animals. These results suggest an involvement of CD95 ligand and TRAIL in the pathophysiology of postischemic neurodegeneration and offer alternative strategies for the treatment of cardiovascular brain disease.  (+info)

TNF-Related Apoptosis-Inducing Ligand (TRAIL) is a type II transmembrane protein and a member of the tumor necrosis factor (TNF) ligand family. It binds to death receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5), leading to the activation of extrinsic apoptosis pathway in sensitive cells. This protein is involved in immune surveillance against tumor cells, as it can selectively induce apoptosis in malignant or virus-infected cells while sparing normal cells. TRAIL also plays a role in inflammation and innate immunity.

Apoptosis regulatory proteins are a group of proteins that play an essential role in the regulation and execution of apoptosis, also known as programmed cell death. This process is a normal part of development and tissue homeostasis, allowing for the elimination of damaged or unnecessary cells. The balance between pro-apoptotic and anti-apoptotic proteins determines whether a cell will undergo apoptosis.

Pro-apoptotic proteins, such as BAX, BID, and PUMA, promote apoptosis by neutralizing or counteracting the effects of anti-apoptotic proteins or by directly activating the apoptotic pathway. These proteins can be activated in response to various stimuli, including DNA damage, oxidative stress, and activation of the death receptor pathway.

Anti-apoptotic proteins, such as BCL-2, BCL-XL, and MCL-1, inhibit apoptosis by binding and neutralizing pro-apoptotic proteins or by preventing the release of cytochrome c from the mitochondria, which is a key step in the intrinsic apoptotic pathway.

Dysregulation of apoptosis regulatory proteins has been implicated in various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases. Therefore, understanding the role of these proteins in apoptosis regulation is crucial for developing new therapeutic strategies to treat these conditions.

Apoptosis is a programmed and controlled cell death process that occurs in multicellular organisms. It is a natural process that helps maintain tissue homeostasis by eliminating damaged, infected, or unwanted cells. During apoptosis, the cell undergoes a series of morphological changes, including cell shrinkage, chromatin condensation, and fragmentation into membrane-bound vesicles called apoptotic bodies. These bodies are then recognized and engulfed by neighboring cells or phagocytic cells, preventing an inflammatory response. Apoptosis is regulated by a complex network of intracellular signaling pathways that involve proteins such as caspases, Bcl-2 family members, and inhibitors of apoptosis (IAPs).

A ligand, in the context of biochemistry and medicine, is a molecule that binds to a specific site on a protein or a larger biomolecule, such as an enzyme or a receptor. This binding interaction can modify the function or activity of the target protein, either activating it or inhibiting it. Ligands can be small molecules, like hormones or neurotransmitters, or larger structures, like antibodies. The study of ligand-protein interactions is crucial for understanding cellular processes and developing drugs, as many therapeutic compounds function by binding to specific targets within the body.

Caspases are a family of protease enzymes that play essential roles in programmed cell death, also known as apoptosis. These enzymes are produced as inactive precursors and are activated when cells receive signals to undergo apoptosis. Once activated, caspases cleave specific protein substrates, leading to the characteristic morphological changes and DNA fragmentation associated with apoptotic cell death. Caspases also play roles in other cellular processes, including inflammation and differentiation. There are two types of caspases: initiator caspases (caspase-2, -8, -9, and -10) and effector caspases (caspase-3, -6, and -7). Initiator caspases are activated in response to various apoptotic signals and then activate the effector caspases, which carry out the proteolytic cleavage of cellular proteins. Dysregulation of caspase activity has been implicated in a variety of diseases, including neurodegenerative disorders, ischemic injury, and cancer.

Caspase-3 is a type of protease enzyme that plays a central role in the execution-phase of cell apoptosis, or programmed cell death. It's also known as CPP32 (CPP for ced-3 protease precursor) or apopain. Caspase-3 is produced as an inactive protein that is activated when cleaved by other caspases during the early stages of apoptosis. Once activated, it cleaves a variety of cellular proteins, including structural proteins, enzymes, and signal transduction proteins, leading to the characteristic morphological and biochemical changes associated with apoptotic cell death. Caspase-3 is often referred to as the "death protease" because of its crucial role in executing the cell death program.

Fas Ligand Protein (FasL or CD95L) is a type II transmembrane protein belonging to the tumor necrosis factor (TNF) superfamily. It plays a crucial role in programmed cell death, also known as apoptosis. The FasL protein binds to its receptor, Fas (CD95 or APO-1), which is found on the surface of various cells including immune cells. This binding triggers a signaling cascade that leads to apoptosis, helping to regulate the immune response and maintain homeostasis in tissues.

FasL can also be produced as a soluble protein (sFasL) through alternative splicing or proteolytic cleavage of the membrane-bound form. Soluble FasL may have different functions compared to its membrane-bound counterpart, and its role in physiology and disease is still under investigation.

Dysregulation of the Fas/FasL system has been implicated in various pathological conditions, including autoimmune diseases, neurodegenerative disorders, and cancer.

Inhibitor of Apoptosis Proteins (IAPs) are a family of proteins that play a crucial role in regulating programmed cell death, also known as apoptosis. These proteins function by binding to and inhibiting the activity of caspases, which are enzymes that drive the execution phase of apoptosis.

There are eight known human IAPs, including X-linked IAP (XIAP), cellular IAP1 (cIAP1), cIAP2, survivin, melanoma IAP (ML-IAP), ILP-2, NAIP, and Bruce. Each IAP contains at least one baculoviral IAP repeat (BIR) domain, which is responsible for binding to caspases and other regulatory proteins.

In addition to inhibiting caspases, some IAPs have been shown to regulate other cellular processes, such as inflammation, innate immunity, and cell cycle progression. Dysregulation of IAP function has been implicated in various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases. Therefore, IAPs are considered important targets for the development of new therapeutic strategies aimed at modulating apoptosis and other cellular processes.

Proto-oncogene proteins c-bcl-2 are a group of proteins that play a role in regulating cell death (apoptosis). The c-bcl-2 gene produces one of these proteins, which helps to prevent cells from undergoing apoptosis. This protein is located on the membrane of mitochondria and endoplasmic reticulum and it can inhibit the release of cytochrome c, a key player in the activation of caspases, which are enzymes that trigger apoptosis.

In normal cells, the regulation of c-bcl-2 protein helps to maintain a balance between cell proliferation and cell death, ensuring proper tissue homeostasis. However, when the c-bcl-2 gene is mutated or its expression is dysregulated, it can contribute to cancer development by allowing cancer cells to survive and proliferate. High levels of c-bcl-2 protein have been found in many types of cancer, including leukemia, lymphoma, and carcinomas, and are often associated with a poor prognosis.

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine, a type of small signaling protein involved in immune response and inflammation. It is primarily produced by activated macrophages, although other cell types such as T-cells, natural killer cells, and mast cells can also produce it.

TNF-α plays a crucial role in the body's defense against infection and tissue injury by mediating inflammatory responses, activating immune cells, and inducing apoptosis (programmed cell death) in certain types of cells. It does this by binding to its receptors, TNFR1 and TNFR2, which are found on the surface of many cell types.

In addition to its role in the immune response, TNF-α has been implicated in the pathogenesis of several diseases, including autoimmune disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, as well as cancer, where it can promote tumor growth and metastasis.

Therapeutic agents that target TNF-α, such as infliximab, adalimumab, and etanercept, have been developed to treat these conditions. However, these drugs can also increase the risk of infections and other side effects, so their use must be carefully monitored.

Signal transduction is the process by which a cell converts an extracellular signal, such as a hormone or neurotransmitter, into an intracellular response. This involves a series of molecular events that transmit the signal from the cell surface to the interior of the cell, ultimately resulting in changes in gene expression, protein activity, or metabolism.

The process typically begins with the binding of the extracellular signal to a receptor located on the cell membrane. This binding event activates the receptor, which then triggers a cascade of intracellular signaling molecules, such as second messengers, protein kinases, and ion channels. These molecules amplify and propagate the signal, ultimately leading to the activation or inhibition of specific cellular responses.

Signal transduction pathways are highly regulated and can be modulated by various factors, including other signaling molecules, post-translational modifications, and feedback mechanisms. Dysregulation of these pathways has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

DNA fragmentation is the breaking of DNA strands into smaller pieces. This process can occur naturally during apoptosis, or programmed cell death, where the DNA is broken down and packaged into apoptotic bodies to be safely eliminated from the body. However, excessive or abnormal DNA fragmentation can also occur due to various factors such as oxidative stress, exposure to genotoxic agents, or certain medical conditions. This can lead to genetic instability, cellular dysfunction, and increased risk of diseases such as cancer. In the context of reproductive medicine, high levels of DNA fragmentation in sperm cells have been linked to male infertility and poor assisted reproductive technology outcomes.

A cell line that is derived from tumor cells and has been adapted to grow in culture. These cell lines are often used in research to study the characteristics of cancer cells, including their growth patterns, genetic changes, and responses to various treatments. They can be established from many different types of tumors, such as carcinomas, sarcomas, and leukemias. Once established, these cell lines can be grown and maintained indefinitely in the laboratory, allowing researchers to conduct experiments and studies that would not be feasible using primary tumor cells. It is important to note that tumor cell lines may not always accurately represent the behavior of the original tumor, as they can undergo genetic changes during their time in culture.

In situ nick-end labeling (ISEL, also known as TUNEL) is a technique used in pathology and molecular biology to detect DNA fragmentation, which is a characteristic of apoptotic cells (cells undergoing programmed cell death). The method involves labeling the 3'-hydroxyl termini of double or single stranded DNA breaks in situ (within tissue sections or individual cells) using modified nucleotides that are coupled to a detectable marker, such as a fluorophore or an enzyme. This technique allows for the direct visualization and quantification of apoptotic cells within complex tissues or cell populations.

BCL-2-associated X protein, often abbreviated as BAX, is a type of protein belonging to the BCL-2 family. The BCL-2 family of proteins plays a crucial role in regulating programmed cell death, also known as apoptosis. Specifically, BAX is a pro-apoptotic protein, which means that it promotes cell death.

BAX is encoded by the BAX gene, and it functions by forming pores in the outer membrane of the mitochondria, leading to the release of cytochrome c and other pro-apoptotic factors into the cytosol. This triggers a cascade of events that ultimately leads to cell death.

Dysregulation of BAX and other BCL-2 family proteins has been implicated in various diseases, including cancer and neurodegenerative disorders. For example, reduced levels of BAX have been observed in some types of cancer, which may contribute to tumor growth and resistance to chemotherapy. On the other hand, excessive activation of BAX has been linked to neuronal death in conditions such as Alzheimer's disease and Parkinson's disease.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Cell survival refers to the ability of a cell to continue living and functioning normally, despite being exposed to potentially harmful conditions or treatments. This can include exposure to toxins, radiation, chemotherapeutic drugs, or other stressors that can damage cells or interfere with their normal processes.

In scientific research, measures of cell survival are often used to evaluate the effectiveness of various therapies or treatments. For example, researchers may expose cells to a particular drug or treatment and then measure the percentage of cells that survive to assess its potential therapeutic value. Similarly, in toxicology studies, measures of cell survival can help to determine the safety of various chemicals or substances.

It's important to note that cell survival is not the same as cell proliferation, which refers to the ability of cells to divide and multiply. While some treatments may promote cell survival, they may also inhibit cell proliferation, making them useful for treating diseases such as cancer. Conversely, other treatments may be designed to specifically target and kill cancer cells, even if it means sacrificing some healthy cells in the process.

The X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis (IAP) family, which are proteins that play a crucial role in regulating programmed cell death, also known as apoptosis. XIAP is located on the X chromosome and functions by binding to and inhibiting certain caspases, which are enzymes that play an essential role in initiating and executing the apoptotic process. By inhibiting these caspases, XIAP promotes cell survival and prevents excessive cell death, which can contribute to cancer development and resistance to therapy. Additionally, XIAP has been implicated in the regulation of inflammation and immune responses, making it a target for therapeutic intervention in various diseases.

CD40 ligand (CD40L or CD154) is a type II transmembrane protein and a member of the tumor necrosis factor (TNF) superfamily. It is primarily expressed on activated CD4+ T cells, but can also be found on other immune cells such as activated B cells, macrophages, and dendritic cells.

CD40 ligand binds to its receptor, CD40, which is mainly expressed on the surface of antigen-presenting cells (APCs) such as B cells, dendritic cells, and macrophages. The interaction between CD40L and CD40 plays a crucial role in the activation and regulation of the immune response.

CD40L-CD40 signaling is essential for T cell-dependent B cell activation, antibody production, and class switching. It also contributes to the activation and maturation of dendritic cells, promoting their ability to stimulate T cell responses. Dysregulation of CD40L-CD40 signaling has been implicated in various autoimmune diseases, transplant rejection, and cancer.

CASP8 and FADD-Like Apoptosis Regulating Protein, also known as CFLAR or FLIP, is a protein that plays a role in regulating cell death (apoptosis). It is a member of the inhibitor of apoptosis protein (IAP) family. The protein contains a death effector domain (DED), which allows it to interact with other proteins that contain DEDs, such as FADD and caspase-8.

CFLAR can function as an inhibitor or a promoter of apoptosis, depending on the context. When CFLAR is present in high levels, it can bind to and inhibit the activity of caspase-8, preventing the initiation of the apoptotic signaling pathway. However, when CFLAR is present in low levels or is cleaved by proteases, it can promote apoptosis by facilitating the activation of caspase-8.

Mutations in the gene that encodes CFLAR have been associated with an increased risk of developing certain types of cancer, such as Hodgkin lymphoma and diffuse large B-cell lymphoma.

Apoptosis Inducing Factor (AIF) is a protein that triggers programmed cell death, also known as apoptosis. It is primarily located in the mitochondria, but upon activation, it translocates to the nucleus where it contributes to DNA fragmentation and chromatin condensation, which are key features of apoptosis. AIF can be released from the mitochondria in response to various cellular stressors or signals, such as during development, tissue homeostasis, or in response to certain types of cellular damage or injury.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Caspase-9 is a type of protease enzyme that plays a crucial role in the execution phase of programmed cell death, also known as apoptosis. It is a member of the cysteine-aspartic acid protease (caspase) family, which are characterized by their ability to cleave proteins after an aspartic acid residue. Caspase-9 is activated through a process called cytochrome c-mediated caspase activation, which occurs in the mitochondria during apoptosis. Once activated, caspase-9 cleaves and activates other downstream effector caspases, such as caspase-3 and caspase-7, leading to the proteolytic degradation of cellular structures and ultimately resulting in cell death. Dysregulation of caspase-9 activity has been implicated in various diseases, including neurodegenerative disorders and cancer.

Caspase inhibitors are substances or molecules that block the activity of caspases, which are a family of enzymes involved in programmed cell death, also known as apoptosis. Caspases play a crucial role in the execution phase of apoptosis by cleaving various proteins and thereby bringing about characteristic changes in the cell, such as cell shrinkage, membrane blebbing, and DNA fragmentation.

Caspase inhibitors can be synthetic or natural compounds that bind to caspases and prevent them from carrying out their function. These inhibitors have been used in research to study the role of caspases in various biological processes and have also been explored as potential therapeutic agents for conditions associated with excessive apoptosis, such as neurodegenerative diseases and ischemia-reperfusion injury.

It's important to note that while caspase inhibitors can prevent apoptotic cell death, they may also have unintended consequences, such as promoting the survival of damaged or cancerous cells. Therefore, their use as therapeutic agents must be carefully evaluated and balanced against potential risks.

Caspase 8 is a type of protease enzyme that plays a crucial role in programmed cell death, also known as apoptosis. It is a key component of the extrinsic pathway of apoptosis, which can be initiated by the binding of death ligands to their respective death receptors on the cell surface.

Once activated, Caspase 8 cleaves and activates other downstream effector caspases, which then go on to degrade various cellular proteins, leading to the characteristic morphological changes associated with apoptosis, such as cell shrinkage, membrane blebbing, and DNA fragmentation.

In addition to its role in apoptosis, Caspase 8 has also been implicated in other cellular processes, including inflammation, differentiation, and proliferation. Dysregulation of Caspase 8 activity has been linked to various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Enzyme activation refers to the process by which an enzyme becomes biologically active and capable of carrying out its specific chemical or biological reaction. This is often achieved through various post-translational modifications, such as proteolytic cleavage, phosphorylation, or addition of cofactors or prosthetic groups to the enzyme molecule. These modifications can change the conformation or structure of the enzyme, exposing or creating a binding site for the substrate and allowing the enzymatic reaction to occur.

For example, in the case of proteolytic cleavage, an inactive precursor enzyme, known as a zymogen, is cleaved into its active form by a specific protease. This is seen in enzymes such as trypsin and chymotrypsin, which are initially produced in the pancreas as inactive precursors called trypsinogen and chymotrypsinogen, respectively. Once they reach the small intestine, they are activated by enteropeptidase, a protease that cleaves a specific peptide bond, releasing the active enzyme.

Phosphorylation is another common mechanism of enzyme activation, where a phosphate group is added to a specific serine, threonine, or tyrosine residue on the enzyme by a protein kinase. This modification can alter the conformation of the enzyme and create a binding site for the substrate, allowing the enzymatic reaction to occur.

Enzyme activation is a crucial process in many biological pathways, as it allows for precise control over when and where specific reactions take place. It also provides a mechanism for regulating enzyme activity in response to various signals and stimuli, such as hormones, neurotransmitters, or changes in the intracellular environment.

Tumor Necrosis Factor (TNF) Receptors are cell surface receptors that bind to tumor necrosis factor cytokines. They play crucial roles in the regulation of a variety of immune cell functions, including inflammation, immunity, and cell survival or death (apoptosis).

There are two major types of TNF receptors: TNFR1 (also known as p55 or CD120a) and TNFR2 (also known as p75 or CD120b). TNFR1 is widely expressed in most tissues, while TNFR2 has a more restricted expression pattern and is mainly found on immune cells.

TNF receptors have an intracellular domain called the death domain, which can trigger signaling pathways leading to apoptosis when activated by TNF ligands. However, they can also activate other signaling pathways that promote cell survival, differentiation, and inflammation. Dysregulation of TNF receptor signaling has been implicated in various diseases, including cancer, autoimmune disorders, and neurodegenerative conditions.

Mitochondria are specialized structures located inside cells that convert the energy from food into ATP (adenosine triphosphate), which is the primary form of energy used by cells. They are often referred to as the "powerhouses" of the cell because they generate most of the cell's supply of chemical energy. Mitochondria are also involved in various other cellular processes, such as signaling, differentiation, and apoptosis (programmed cell death).

Mitochondria have their own DNA, known as mitochondrial DNA (mtDNA), which is inherited maternally. This means that mtDNA is passed down from the mother to her offspring through the egg cells. Mitochondrial dysfunction has been linked to a variety of diseases and conditions, including neurodegenerative disorders, diabetes, and aging.

Membrane glycoproteins are proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. They are integral components of biological membranes, spanning the lipid bilayer and playing crucial roles in various cellular processes.

The glycosylation of these proteins occurs in the endoplasmic reticulum (ER) and Golgi apparatus during protein folding and trafficking. The attached glycans can vary in structure, length, and composition, which contributes to the diversity of membrane glycoproteins.

Membrane glycoproteins can be classified into two main types based on their orientation within the lipid bilayer:

1. Type I (N-linked): These glycoproteins have a single transmembrane domain and an extracellular N-terminus, where the oligosaccharides are predominantly attached via asparagine residues (Asn-X-Ser/Thr sequon).
2. Type II (C-linked): These glycoproteins possess two transmembrane domains and an intracellular C-terminus, with the oligosaccharides linked to tryptophan residues via a mannose moiety.

Membrane glycoproteins are involved in various cellular functions, such as:

* Cell adhesion and recognition
* Receptor-mediated signal transduction
* Enzymatic catalysis
* Transport of molecules across membranes
* Cell-cell communication
* Immunological responses

Some examples of membrane glycoproteins include cell surface receptors (e.g., growth factor receptors, cytokine receptors), adhesion molecules (e.g., integrins, cadherins), and transporters (e.g., ion channels, ABC transporters).

Tumor suppressor protein p53, also known as p53 or tumor protein p53, is a nuclear phosphoprotein that plays a crucial role in preventing cancer development and maintaining genomic stability. It does so by regulating the cell cycle and acting as a transcription factor for various genes involved in apoptosis (programmed cell death), DNA repair, and cell senescence (permanent cell growth arrest).

In response to cellular stress, such as DNA damage or oncogene activation, p53 becomes activated and accumulates in the nucleus. Activated p53 can then bind to specific DNA sequences and promote the transcription of target genes that help prevent the proliferation of potentially cancerous cells. These targets include genes involved in cell cycle arrest (e.g., CDKN1A/p21), apoptosis (e.g., BAX, PUMA), and DNA repair (e.g., GADD45).

Mutations in the TP53 gene, which encodes p53, are among the most common genetic alterations found in human cancers. These mutations often lead to a loss or reduction of p53's tumor suppressive functions, allowing cancer cells to proliferate uncontrollably and evade apoptosis. As a result, p53 has been referred to as "the guardian of the genome" due to its essential role in preventing tumorigenesis.

Flow cytometry is a medical and research technique used to measure physical and chemical characteristics of cells or particles, one cell at a time, as they flow in a fluid stream through a beam of light. The properties measured include:

* Cell size (light scatter)
* Cell internal complexity (granularity, also light scatter)
* Presence or absence of specific proteins or other molecules on the cell surface or inside the cell (using fluorescent antibodies or other fluorescent probes)

The technique is widely used in cell counting, cell sorting, protein engineering, biomarker discovery and monitoring disease progression, particularly in hematology, immunology, and cancer research.

Cytochromes c are a group of small heme proteins found in the mitochondria of cells, involved in the electron transport chain and play a crucial role in cellular respiration. They accept and donate electrons during the process of oxidative phosphorylation, which generates ATP, the main energy currency of the cell. Cytochromes c contain a heme group, an organic compound that includes iron, which facilitates the transfer of electrons. The "c" in cytochromes c refers to the type of heme group they contain (cyt c has heme c). They are highly conserved across species and have been widely used as a molecular marker for evolutionary studies.

Cell proliferation is the process by which cells increase in number, typically through the process of cell division. In the context of biology and medicine, it refers to the reproduction of cells that makes up living tissue, allowing growth, maintenance, and repair. It involves several stages including the transition from a phase of quiescence (G0 phase) to an active phase (G1 phase), DNA replication in the S phase, and mitosis or M phase, where the cell divides into two daughter cells.

Abnormal or uncontrolled cell proliferation is a characteristic feature of many diseases, including cancer, where deregulated cell cycle control leads to excessive and unregulated growth of cells, forming tumors that can invade surrounding tissues and metastasize to distant sites in the body.

Western blotting is a laboratory technique used in molecular biology to detect and quantify specific proteins in a mixture of many different proteins. This technique is commonly used to confirm the expression of a protein of interest, determine its size, and investigate its post-translational modifications. The name "Western" blotting distinguishes this technique from Southern blotting (for DNA) and Northern blotting (for RNA).

The Western blotting procedure involves several steps:

1. Protein extraction: The sample containing the proteins of interest is first extracted, often by breaking open cells or tissues and using a buffer to extract the proteins.
2. Separation of proteins by electrophoresis: The extracted proteins are then separated based on their size by loading them onto a polyacrylamide gel and running an electric current through the gel (a process called sodium dodecyl sulfate-polyacrylamide gel electrophoresis or SDS-PAGE). This separates the proteins according to their molecular weight, with smaller proteins migrating faster than larger ones.
3. Transfer of proteins to a membrane: After separation, the proteins are transferred from the gel onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric current in a process called blotting. This creates a replica of the protein pattern on the gel but now immobilized on the membrane for further analysis.
4. Blocking: The membrane is then blocked with a blocking agent, such as non-fat dry milk or bovine serum albumin (BSA), to prevent non-specific binding of antibodies in subsequent steps.
5. Primary antibody incubation: A primary antibody that specifically recognizes the protein of interest is added and allowed to bind to its target protein on the membrane. This step may be performed at room temperature or 4°C overnight, depending on the antibody's properties.
6. Washing: The membrane is washed with a buffer to remove unbound primary antibodies.
7. Secondary antibody incubation: A secondary antibody that recognizes the primary antibody (often coupled to an enzyme or fluorophore) is added and allowed to bind to the primary antibody. This step may involve using a horseradish peroxidase (HRP)-conjugated or alkaline phosphatase (AP)-conjugated secondary antibody, depending on the detection method used later.
8. Washing: The membrane is washed again to remove unbound secondary antibodies.
9. Detection: A detection reagent is added to visualize the protein of interest by detecting the signal generated from the enzyme-conjugated or fluorophore-conjugated secondary antibody. This can be done using chemiluminescent, colorimetric, or fluorescent methods.
10. Analysis: The resulting image is analyzed to determine the presence and quantity of the protein of interest in the sample.

Western blotting is a powerful technique for identifying and quantifying specific proteins within complex mixtures. It can be used to study protein expression, post-translational modifications, protein-protein interactions, and more. However, it requires careful optimization and validation to ensure accurate and reproducible results.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Bcl-x is a protein that belongs to the Bcl-2 family, which regulates programmed cell death (apoptosis). Specifically, Bcl-x has both pro-survival and pro-apoptotic functions, depending on its splice variants. The long form of Bcl-x (Bcl-xL) is a potent inhibitor of apoptosis, while the short form (Bcl-xS) promotes cell death. Bcl-x plays critical roles in various cellular processes, including development, homeostasis, and stress responses, by controlling the mitochondrial outer membrane permeabilization and the release of cytochrome c, which eventually leads to caspase activation and apoptosis. Dysregulation of Bcl-x has been implicated in several diseases, such as cancer and neurodegenerative disorders.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Annexin A5 is a protein that belongs to the annexin family, which are calcium-dependent phospholipid-binding proteins. Annexin A5 has high affinity for phosphatidylserine, a type of phospholipid that is usually located on the inner leaflet of the plasma membrane in healthy cells. However, when cells undergo apoptosis (programmed cell death), phosphatidylserine is exposed on the outer leaflet of the plasma membrane.

Annexin A5 can bind to exposed phosphatidylserine on the surface of apoptotic cells and is commonly used as a marker for detecting apoptosis in various experimental settings, including flow cytometry, immunohistochemistry, and imaging techniques. Annexin A5-based assays are widely used in research and clinical settings to study the mechanisms of apoptosis and to develop diagnostic tools for various diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

Proto-oncogene proteins are normal cellular proteins that play crucial roles in various cellular processes, such as signal transduction, cell cycle regulation, and apoptosis (programmed cell death). They are involved in the regulation of cell growth, differentiation, and survival under physiological conditions.

When proto-oncogene proteins undergo mutations or aberrations in their expression levels, they can transform into oncogenic forms, leading to uncontrolled cell growth and division. These altered proteins are then referred to as oncogene products or oncoproteins. Oncogenic mutations can occur due to various factors, including genetic predisposition, environmental exposures, and aging.

Examples of proto-oncogene proteins include:

1. Ras proteins: Involved in signal transduction pathways that regulate cell growth and differentiation. Activating mutations in Ras genes are found in various human cancers.
2. Myc proteins: Regulate gene expression related to cell cycle progression, apoptosis, and metabolism. Overexpression of Myc proteins is associated with several types of cancer.
3. EGFR (Epidermal Growth Factor Receptor): A transmembrane receptor tyrosine kinase that regulates cell proliferation, survival, and differentiation. Mutations or overexpression of EGFR are linked to various malignancies, such as lung cancer and glioblastoma.
4. Src family kinases: Intracellular tyrosine kinases that regulate signal transduction pathways involved in cell proliferation, survival, and migration. Dysregulation of Src family kinases is implicated in several types of cancer.
5. Abl kinases: Cytoplasmic tyrosine kinases that regulate various cellular processes, including cell growth, differentiation, and stress responses. Aberrant activation of Abl kinases, as seen in chronic myelogenous leukemia (CML), leads to uncontrolled cell proliferation.

Understanding the roles of proto-oncogene proteins and their dysregulation in cancer development is essential for developing targeted cancer therapies that aim to inhibit or modulate these aberrant signaling pathways.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Amino acid chloromethyl ketones (AACMKs) are a class of chemical compounds that are widely used in research and industry. They are derivatives of amino acids, which are the building blocks of proteins, with a chloromethyl ketone group (-CO-CH2Cl) attached to the side chain of the amino acid.

In the context of medical research, AACMKs are often used as irreversible inhibitors of enzymes, particularly those that contain active site serine or cysteine residues. The chloromethyl ketone group reacts with these residues to form a covalent bond, which permanently inactivates the enzyme. This makes AACMKs useful tools for studying the mechanisms of enzymes and for developing drugs that target specific enzymes.

However, it is important to note that AACMKs can also be highly reactive and toxic, and they must be handled with care in the laboratory. They have been shown to inhibit a wide range of enzymes, including some that are essential for normal cellular function, and prolonged exposure can lead to cell damage or death. Therefore, their use is typically restricted to controlled experimental settings.

Antineoplastic agents are a class of drugs used to treat malignant neoplasms or cancer. These agents work by inhibiting the growth and proliferation of cancer cells, either by killing them or preventing their division and replication. Antineoplastic agents can be classified based on their mechanism of action, such as alkylating agents, antimetabolites, topoisomerase inhibitors, mitotic inhibitors, and targeted therapy agents.

Alkylating agents work by adding alkyl groups to DNA, which can cause cross-linking of DNA strands and ultimately lead to cell death. Antimetabolites interfere with the metabolic processes necessary for DNA synthesis and replication, while topoisomerase inhibitors prevent the relaxation of supercoiled DNA during replication. Mitotic inhibitors disrupt the normal functioning of the mitotic spindle, which is essential for cell division. Targeted therapy agents are designed to target specific molecular abnormalities in cancer cells, such as mutated oncogenes or dysregulated signaling pathways.

It's important to note that antineoplastic agents can also affect normal cells and tissues, leading to various side effects such as nausea, vomiting, hair loss, and myelosuppression (suppression of bone marrow function). Therefore, the use of these drugs requires careful monitoring and management of their potential adverse effects.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Cysteine proteinase inhibitors are a type of molecule that bind to and inhibit the activity of cysteine proteases, which are enzymes that cleave proteins at specific sites containing the amino acid cysteine. These inhibitors play important roles in regulating various biological processes, including inflammation, immune response, and programmed cell death (apoptosis). They can also have potential therapeutic applications in diseases where excessive protease activity contributes to pathology, such as cancer, arthritis, and neurodegenerative disorders. Examples of cysteine proteinase inhibitors include cystatins, kininogens, and serpins.

Jurkat cells are a type of human immortalized T lymphocyte (a type of white blood cell) cell line that is commonly used in scientific research. They were originally isolated from the peripheral blood of a patient with acute T-cell leukemia. Jurkat cells are widely used as a model system to study T-cell activation, signal transduction, and apoptosis (programmed cell death). They are also used in the study of HIV infection and replication, as they can be infected with the virus and used to investigate viral replication and host cell responses.

NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) is a protein complex that plays a crucial role in regulating the immune response to infection and inflammation, as well as in cell survival, differentiation, and proliferation. It is composed of several subunits, including p50, p52, p65 (RelA), c-Rel, and RelB, which can form homodimers or heterodimers that bind to specific DNA sequences called κB sites in the promoter regions of target genes.

Under normal conditions, NF-κB is sequestered in the cytoplasm by inhibitory proteins known as IκBs (inhibitors of κB). However, upon stimulation by various signals such as cytokines, bacterial or viral products, and stress, IκBs are phosphorylated, ubiquitinated, and degraded, leading to the release and activation of NF-κB. Activated NF-κB then translocates to the nucleus, where it binds to κB sites and regulates the expression of target genes involved in inflammation, immunity, cell survival, and proliferation.

Dysregulation of NF-κB signaling has been implicated in various pathological conditions such as cancer, chronic inflammation, autoimmune diseases, and neurodegenerative disorders. Therefore, targeting NF-κB signaling has emerged as a potential therapeutic strategy for the treatment of these diseases.

Cell division is the process by which a single eukaryotic cell (a cell with a true nucleus) divides into two identical daughter cells. This complex process involves several stages, including replication of DNA, separation of chromosomes, and division of the cytoplasm. There are two main types of cell division: mitosis and meiosis.

Mitosis is the type of cell division that results in two genetically identical daughter cells. It is a fundamental process for growth, development, and tissue repair in multicellular organisms. The stages of mitosis include prophase, prometaphase, metaphase, anaphase, and telophase, followed by cytokinesis, which divides the cytoplasm.

Meiosis, on the other hand, is a type of cell division that occurs in the gonads (ovaries and testes) during the production of gametes (sex cells). Meiosis results in four genetically unique daughter cells, each with half the number of chromosomes as the parent cell. This process is essential for sexual reproduction and genetic diversity. The stages of meiosis include meiosis I and meiosis II, which are further divided into prophase, prometaphase, metaphase, anaphase, and telophase.

In summary, cell division is the process by which a single cell divides into two daughter cells, either through mitosis or meiosis. This process is critical for growth, development, tissue repair, and sexual reproduction in multicellular organisms.

The cell cycle is a series of events that take place in a cell leading to its division and duplication. It consists of four main phases: G1 phase, S phase, G2 phase, and M phase.

During the G1 phase, the cell grows in size and synthesizes mRNA and proteins in preparation for DNA replication. In the S phase, the cell's DNA is copied, resulting in two complete sets of chromosomes. During the G2 phase, the cell continues to grow and produces more proteins and organelles necessary for cell division.

The M phase is the final stage of the cell cycle and consists of mitosis (nuclear division) and cytokinesis (cytoplasmic division). Mitosis results in two genetically identical daughter nuclei, while cytokinesis divides the cytoplasm and creates two separate daughter cells.

The cell cycle is regulated by various checkpoints that ensure the proper completion of each phase before progressing to the next. These checkpoints help prevent errors in DNA replication and division, which can lead to mutations and cancer.

Down-regulation is a process that occurs in response to various stimuli, where the number or sensitivity of cell surface receptors or the expression of specific genes is decreased. This process helps maintain homeostasis within cells and tissues by reducing the ability of cells to respond to certain signals or molecules.

In the context of cell surface receptors, down-regulation can occur through several mechanisms:

1. Receptor internalization: After binding to their ligands, receptors can be internalized into the cell through endocytosis. Once inside the cell, these receptors may be degraded or recycled back to the cell surface in smaller numbers.
2. Reduced receptor synthesis: Down-regulation can also occur at the transcriptional level, where the expression of genes encoding for specific receptors is decreased, leading to fewer receptors being produced.
3. Receptor desensitization: Prolonged exposure to a ligand can lead to a decrease in receptor sensitivity or affinity, making it more difficult for the cell to respond to the signal.

In the context of gene expression, down-regulation refers to the decreased transcription and/or stability of specific mRNAs, leading to reduced protein levels. This process can be induced by various factors, including microRNA (miRNA)-mediated regulation, histone modification, or DNA methylation.

Down-regulation is an essential mechanism in many physiological processes and can also contribute to the development of several diseases, such as cancer and neurodegenerative disorders.

Enzyme inhibitors are substances that bind to an enzyme and decrease its activity, preventing it from catalyzing a chemical reaction in the body. They can work by several mechanisms, including blocking the active site where the substrate binds, or binding to another site on the enzyme to change its shape and prevent substrate binding. Enzyme inhibitors are often used as drugs to treat various medical conditions, such as high blood pressure, abnormal heart rhythms, and bacterial infections. They can also be found naturally in some foods and plants, and can be used in research to understand enzyme function and regulation.

Tumor Necrosis Factor Receptor 1 (TNFR1), also known as p55 or CD120a, is a type I transmembrane protein that belongs to the tumor necrosis factor receptor superfamily. It is widely expressed in various tissues and cells, including immune cells, endothelial cells, and fibroblasts. TNFR1 plays a crucial role in regulating inflammation, immunity, cell survival, differentiation, and apoptosis (programmed cell death).

TNFR1 is activated by its ligand, Tumor Necrosis Factor-alpha (TNF-α), which is a potent proinflammatory cytokine produced mainly by activated macrophages and monocytes. Upon binding of TNF-α to TNFR1, a series of intracellular signaling events are initiated through the recruitment of adaptor proteins, such as TNF receptor-associated death domain (TRADD), receptor-interacting protein kinase 1 (RIPK1), and TNF receptor-associated factor 2 (TRAF2). These interactions lead to the activation of several downstream signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), which ultimately regulate gene expression and cellular responses.

TNFR1 has been implicated in various physiological and pathological processes, such as inflammation, infection, autoimmunity, cancer, and neurodegenerative disorders. Dysregulation of TNFR1 signaling can contribute to the development and progression of several diseases, making it an attractive target for therapeutic interventions.

A "knockout" mouse is a genetically engineered mouse in which one or more genes have been deleted or "knocked out" using molecular biology techniques. This allows researchers to study the function of specific genes and their role in various biological processes, as well as potential associations with human diseases. The mice are generated by introducing targeted DNA modifications into embryonic stem cells, which are then used to create a live animal. Knockout mice have been widely used in biomedical research to investigate gene function, disease mechanisms, and potential therapeutic targets.

Up-regulation is a term used in molecular biology and medicine to describe an increase in the expression or activity of a gene, protein, or receptor in response to a stimulus. This can occur through various mechanisms such as increased transcription, translation, or reduced degradation of the molecule. Up-regulation can have important functional consequences, for example, enhancing the sensitivity or response of a cell to a hormone, neurotransmitter, or drug. It is a normal physiological process that can also be induced by disease or pharmacological interventions.

Phosphorylation is the process of adding a phosphate group (a molecule consisting of one phosphorus atom and four oxygen atoms) to a protein or other organic molecule, which is usually done by enzymes called kinases. This post-translational modification can change the function, localization, or activity of the target molecule, playing a crucial role in various cellular processes such as signal transduction, metabolism, and regulation of gene expression. Phosphorylation is reversible, and the removal of the phosphate group is facilitated by enzymes called phosphatases.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Small interfering RNA (siRNA) is a type of short, double-stranded RNA molecule that plays a role in the RNA interference (RNAi) pathway. The RNAi pathway is a natural cellular process that regulates gene expression by targeting and destroying specific messenger RNA (mRNA) molecules, thereby preventing the translation of those mRNAs into proteins.

SiRNAs are typically 20-25 base pairs in length and are generated from longer double-stranded RNA precursors called hairpin RNAs or dsRNAs by an enzyme called Dicer. Once generated, siRNAs associate with a protein complex called the RNA-induced silencing complex (RISC), which uses one strand of the siRNA (the guide strand) to recognize and bind to complementary sequences in the target mRNA. The RISC then cleaves the target mRNA, leading to its degradation and the inhibition of protein synthesis.

SiRNAs have emerged as a powerful tool for studying gene function and have shown promise as therapeutic agents for a variety of diseases, including viral infections, cancer, and genetic disorders. However, their use as therapeutics is still in the early stages of development, and there are challenges associated with delivering siRNAs to specific cells and tissues in the body.

Reactive Oxygen Species (ROS) are highly reactive molecules containing oxygen, including peroxides, superoxide, hydroxyl radical, and singlet oxygen. They are naturally produced as byproducts of normal cellular metabolism in the mitochondria, and can also be generated by external sources such as ionizing radiation, tobacco smoke, and air pollutants. At low or moderate concentrations, ROS play important roles in cell signaling and homeostasis, but at high concentrations, they can cause significant damage to cell structures, including lipids, proteins, and DNA, leading to oxidative stress and potential cell death.

Membrane proteins are a type of protein that are embedded in the lipid bilayer of biological membranes, such as the plasma membrane of cells or the inner membrane of mitochondria. These proteins play crucial roles in various cellular processes, including:

1. Cell-cell recognition and signaling
2. Transport of molecules across the membrane (selective permeability)
3. Enzymatic reactions at the membrane surface
4. Energy transduction and conversion
5. Mechanosensation and signal transduction

Membrane proteins can be classified into two main categories: integral membrane proteins, which are permanently associated with the lipid bilayer, and peripheral membrane proteins, which are temporarily or loosely attached to the membrane surface. Integral membrane proteins can further be divided into three subcategories based on their topology:

1. Transmembrane proteins, which span the entire width of the lipid bilayer with one or more alpha-helices or beta-barrels.
2. Lipid-anchored proteins, which are covalently attached to lipids in the membrane via a glycosylphosphatidylinositol (GPI) anchor or other lipid modifications.
3. Monotopic proteins, which are partially embedded in the membrane and have one or more domains exposed to either side of the bilayer.

Membrane proteins are essential for maintaining cellular homeostasis and are targets for various therapeutic interventions, including drug development and gene therapy. However, their structural complexity and hydrophobicity make them challenging to study using traditional biochemical methods, requiring specialized techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and single-particle cryo-electron microscopy (cryo-EM).

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Cell death is the process by which cells cease to function and eventually die. There are several ways that cells can die, but the two most well-known and well-studied forms of cell death are apoptosis and necrosis.

Apoptosis is a programmed form of cell death that occurs as a normal and necessary process in the development and maintenance of healthy tissues. During apoptosis, the cell's DNA is broken down into small fragments, the cell shrinks, and the membrane around the cell becomes fragmented, allowing the cell to be easily removed by phagocytic cells without causing an inflammatory response.

Necrosis, on the other hand, is a form of cell death that occurs as a result of acute tissue injury or overwhelming stress. During necrosis, the cell's membrane becomes damaged and the contents of the cell are released into the surrounding tissue, causing an inflammatory response.

There are also other forms of cell death, such as autophagy, which is a process by which cells break down their own organelles and proteins to recycle nutrients and maintain energy homeostasis, and pyroptosis, which is a form of programmed cell death that occurs in response to infection and involves the activation of inflammatory caspases.

Cell death is an important process in many physiological and pathological processes, including development, tissue homeostasis, and disease. Dysregulation of cell death can contribute to the development of various diseases, including cancer, neurodegenerative disorders, and autoimmune diseases.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

HL-60 cells are a type of human promyelocytic leukemia cell line that is commonly used in scientific research. They are named after the hospital where they were first isolated, the Hospital of the University of Pennsylvania (HUP) and the 60th culture attempt to grow these cells.

HL-60 cells have the ability to differentiate into various types of blood cells, such as granulocytes, monocytes, and macrophages, when exposed to certain chemical compounds or under specific culturing conditions. This makes them a valuable tool for studying the mechanisms of cell differentiation, proliferation, and apoptosis (programmed cell death).

HL-60 cells are also often used in toxicity studies, drug discovery and development, and research on cancer, inflammation, and infectious diseases. They can be easily grown in the lab and have a stable genotype, making them ideal for use in standardized experiments and comparisons between different studies.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

TNF-related apoptosis-inducing ligand (TRAIL) receptors are a group of cell surface proteins that belong to the tumor necrosis factor (TNF) receptor superfamily. There are four known TRAIL receptors, referred to as TRAIL-R1, TRAIL-R2, TRAIL-R3, and TRAIL-R4.

TRAIL receptors play a crucial role in the regulation of programmed cell death, also known as apoptosis. TRAIL binding to its receptors TRAIL-R1 and TRAIL-R2 can trigger the activation of intracellular signaling pathways that lead to apoptotic cell death. This is an important mechanism for eliminating damaged or abnormal cells, including cancer cells.

On the other hand, TRAIL receptors TRAIL-R3 and TRAIL-R4 do not transmit apoptotic signals because they lack functional death domains. Instead, they act as decoy receptors that can bind to TRAIL and prevent it from interacting with TRAIL-R1 and TRAIL-R2, thereby inhibiting TRAIL-induced apoptosis.

Abnormalities in the regulation of TRAIL receptor signaling have been implicated in various pathological conditions, including cancer, autoimmune diseases, and neurodegenerative disorders. Therefore, targeting TRAIL receptors has emerged as a promising therapeutic strategy for the treatment of these diseases.

Caspase-7 is a type of protease enzyme that plays a central role in the execution phase of apoptosis, which is programmed cell death. It is a member of the cysteine-aspartic acid protease (caspase) family, and is also known as caspase-3 like protease, or ICH-1/Mch2.

Caspase-7 is produced as an inactive precursor protein that is activated when cleaved by other upstream caspases during the apoptotic process. Once activated, it can cleave and activate other cellular proteins, leading to characteristic changes associated with apoptosis such as chromatin condensation, DNA fragmentation, and membrane blebbing.

Caspase-7 has been shown to be involved in various forms of programmed cell death, including developmental apoptosis, tissue homeostasis, and immune system regulation. Dysregulation of caspase-7 activity has been implicated in several diseases, including neurodegenerative disorders, ischemic injury, and cancer.

Mitochondrial membrane potential is the electric potential difference (voltage) across the inner mitochondrial membrane. It is negative inside the mitochondria and positive outside. This electrical gradient is established by the active transport of hydrogen ions (protons) out of the mitochondrial matrix and into the intermembrane space by complexes in the electron transport chain during oxidative phosphorylation. The energy stored in this electrochemical gradient is used to generate ATP, which is the main source of energy for cellular metabolism.

Cytochrome c is a small protein that is involved in the electron transport chain, a key part of cellular respiration in which cells generate energy in the form of ATP. Cytochrome c contains a heme group, which binds to and transports electrons. The cytochrome c group refers to a class of related cytochromes that have similar structures and functions. These proteins are found in the mitochondria of eukaryotic cells (such as those of plants and animals) and in the inner membranes of bacteria. They play a crucial role in the production of energy within the cell, and are also involved in certain types of programmed cell death (apoptosis).

Necrosis is the premature death of cells or tissues due to damage or injury, such as from infection, trauma, infarction (lack of blood supply), or toxic substances. It's a pathological process that results in the uncontrolled and passive degradation of cellular components, ultimately leading to the release of intracellular contents into the extracellular space. This can cause local inflammation and may lead to further tissue damage if not treated promptly.

There are different types of necrosis, including coagulative, liquefactive, caseous, fat, fibrinoid, and gangrenous necrosis, each with distinct histological features depending on the underlying cause and the affected tissues or organs.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Bcl-2 is a family of proteins that play a crucial role in regulating cell death (apoptosis), which is a normal process that eliminates damaged or unnecessary cells from the body. Specifically, Bcl-2 proteins are involved in controlling the mitochondrial pathway of apoptosis.

The bcl-2 gene provides instructions for making one member of this protein family, called B-cell lymphoma 2 protein. This protein is located primarily on the outer membrane of mitochondria and helps to prevent apoptosis by inhibiting the release of cytochrome c from the mitochondria into the cytoplasm.

In healthy cells, the balance between pro-apoptotic (promoting cell death) and anti-apoptotic (inhibiting cell death) proteins is critical for maintaining normal tissue homeostasis. However, in some cancers, including certain types of leukemia and lymphoma, the bcl-2 gene is abnormally overexpressed, leading to an excess of Bcl-2 protein that disrupts this balance and allows cancer cells to survive and proliferate.

Therefore, understanding the role of bcl-2 in apoptosis has important implications for developing new therapies for cancer and other diseases associated with abnormal cell death regulation.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

REceptor Activator of NF-kB (RANK) Ligand is a type of protein that plays a crucial role in the immune system and bone metabolism. It belongs to the tumor necrosis factor (TNF) superfamily and is primarily produced by osteoblasts, which are cells responsible for bone formation.

RANK Ligand binds to its receptor RANK, which is found on the surface of osteoclasts, a type of cell involved in bone resorption or breakdown. The binding of RANK Ligand to RANK activates signaling pathways that promote the differentiation, activation, and survival of osteoclasts, thereby increasing bone resorption.

Abnormalities in the RANKL-RANK signaling pathway have been implicated in various bone diseases, such as osteoporosis, rheumatoid arthritis, and certain types of cancer that metastasize to bones. Therefore, targeting this pathway with therapeutic agents has emerged as a promising approach for the treatment of these conditions.

Protein-kinase B, also known as AKT, is a group of intracellular proteins that play a crucial role in various cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration. The AKT family includes three isoforms: AKT1, AKT2, and AKT3, which are encoded by the genes PKBalpha, PKBbeta, and PKBgamma, respectively.

Proto-oncogene proteins c-AKT refer to the normal, non-mutated forms of these proteins that are involved in the regulation of cell growth and survival under physiological conditions. However, when these genes are mutated or overexpressed, they can become oncogenes, leading to uncontrolled cell growth and cancer development.

Activation of c-AKT occurs through a signaling cascade that begins with the binding of extracellular ligands such as insulin-like growth factor 1 (IGF-1) or epidermal growth factor (EGF) to their respective receptors on the cell surface. This triggers a series of phosphorylation events that ultimately lead to the activation of c-AKT, which then phosphorylates downstream targets involved in various cellular processes.

In summary, proto-oncogene proteins c-AKT are normal intracellular proteins that play essential roles in regulating cell growth and survival under physiological conditions. However, their dysregulation can contribute to cancer development and progression.

Drug synergism is a pharmacological concept that refers to the interaction between two or more drugs, where the combined effect of the drugs is greater than the sum of their individual effects. This means that when these drugs are administered together, they produce an enhanced therapeutic response compared to when they are given separately.

Drug synergism can occur through various mechanisms, such as:

1. Pharmacodynamic synergism - When two or more drugs interact with the same target site in the body and enhance each other's effects.
2. Pharmacokinetic synergism - When one drug affects the metabolism, absorption, distribution, or excretion of another drug, leading to an increased concentration of the second drug in the body and enhanced therapeutic effect.
3. Physiochemical synergism - When two drugs interact physically, such as when one drug enhances the solubility or permeability of another drug, leading to improved absorption and bioavailability.

It is important to note that while drug synergism can result in enhanced therapeutic effects, it can also increase the risk of adverse reactions and toxicity. Therefore, healthcare providers must carefully consider the potential benefits and risks when prescribing combinations of drugs with known or potential synergistic effects.

Tumor Necrosis Factor (TNF) is a type of cytokine, which is a category of proteins that are crucial to cell signaling. TNF plays a significant role in the body's immune response and inflammation process. Specifically, it's primarily produced by activated macrophages as a defensive response against infection, but it can also be produced by other cells such as T-cells and NK cells.

TNF has two types of receptors, TNFR1 and TNFR2, through which it exerts its biological effects. These effects include:

1. Activation of immune cells: TNF helps in the activation of other inflammatory cells like more macrophages and stimulates the release of other cytokines.
2. Cell survival or death: Depending on the context, TNF can promote cell survival or induce programmed cell death (apoptosis), particularly in cancer cells.
3. Fever and acute phase response: TNF is one of the mediators that cause fever and the acute phase reaction during an infection.

The term 'Tumor Necrosis Factor' comes from its historical discovery where it was noted to cause necrosis (death) of tumor cells in certain conditions, although this is not its primary function in the body. Overproduction or dysregulation of TNF has been implicated in several diseases such as rheumatoid arthritis, inflammatory bowel disease, and some types of cancer.

Tertiary protein structure refers to the three-dimensional arrangement of all the elements (polypeptide chains) of a single protein molecule. It is the highest level of structural organization and results from interactions between various side chains (R groups) of the amino acids that make up the protein. These interactions, which include hydrogen bonds, ionic bonds, van der Waals forces, and disulfide bridges, give the protein its unique shape and stability, which in turn determines its function. The tertiary structure of a protein can be stabilized by various factors such as temperature, pH, and the presence of certain ions. Any changes in these factors can lead to denaturation, where the protein loses its tertiary structure and thus its function.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

BAK (Bcl-2 Homologous Antagonist-Killer) protein is a member of the Bcl-2 family, which consists of proteins that regulate programmed cell death, also known as apoptosis. The Bcl-2 family includes both pro-apoptotic and anti-apoptotic members, and their interactions play a crucial role in determining whether a cell lives or dies.

BAK is a pro-apoptotic protein that forms oligomers and creates pores in the outer mitochondrial membrane, leading to the release of cytochrome c and other pro-apoptotic factors into the cytosol. This triggers a cascade of events that ultimately results in cell death.

BAK is kept in an inactive state under normal conditions by binding to anti-apoptotic Bcl-2 family members, such as Bcl-xL and Mcl-1. However, when cells receive signals to undergo apoptosis, the interactions between pro- and anti-apoptotic proteins are disrupted, allowing BAK to become activated and initiate the cell death process.

In summary, BAK is a crucial protein involved in regulating programmed cell death, and its dysregulation has been implicated in various diseases, including cancer and neurodegenerative disorders.

BH3 Interacting Domain Death Agonist Protein, also known as BAD protein, is a member of the Bcl-2 family of proteins. This protein is involved in the regulation of programmed cell death, or apoptosis. The BH3 domain of BAD protein allows it to interact with other members of the Bcl-2 family and modulate their function. When activated, BAD protein can promote cell death by binding to and inhibiting anti-apoptotic proteins such as Bcl-2 and Bcl-xL. This helps to release pro-apoptotic proteins such as Bax and Bak, which can then trigger the intrinsic pathway of apoptosis. The activation of BAD protein is tightly regulated by post-translational modifications, including phosphorylation and dephosphorylation, which can be influenced by various signals within the cell.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Biological models, also known as physiological models or organismal models, are simplified representations of biological systems, processes, or mechanisms that are used to understand and explain the underlying principles and relationships. These models can be theoretical (conceptual or mathematical) or physical (such as anatomical models, cell cultures, or animal models). They are widely used in biomedical research to study various phenomena, including disease pathophysiology, drug action, and therapeutic interventions.

Examples of biological models include:

1. Mathematical models: These use mathematical equations and formulas to describe complex biological systems or processes, such as population dynamics, metabolic pathways, or gene regulation networks. They can help predict the behavior of these systems under different conditions and test hypotheses about their underlying mechanisms.
2. Cell cultures: These are collections of cells grown in a controlled environment, typically in a laboratory dish or flask. They can be used to study cellular processes, such as signal transduction, gene expression, or metabolism, and to test the effects of drugs or other treatments on these processes.
3. Animal models: These are living organisms, usually vertebrates like mice, rats, or non-human primates, that are used to study various aspects of human biology and disease. They can provide valuable insights into the pathophysiology of diseases, the mechanisms of drug action, and the safety and efficacy of new therapies.
4. Anatomical models: These are physical representations of biological structures or systems, such as plastic models of organs or tissues, that can be used for educational purposes or to plan surgical procedures. They can also serve as a basis for developing more sophisticated models, such as computer simulations or 3D-printed replicas.

Overall, biological models play a crucial role in advancing our understanding of biology and medicine, helping to identify new targets for therapeutic intervention, develop novel drugs and treatments, and improve human health.

Neoplastic gene expression regulation refers to the processes that control the production of proteins and other molecules from genes in neoplastic cells, or cells that are part of a tumor or cancer. In a normal cell, gene expression is tightly regulated to ensure that the right genes are turned on or off at the right time. However, in cancer cells, this regulation can be disrupted, leading to the overexpression or underexpression of certain genes.

Neoplastic gene expression regulation can be affected by a variety of factors, including genetic mutations, epigenetic changes, and signals from the tumor microenvironment. These changes can lead to the activation of oncogenes (genes that promote cancer growth and development) or the inactivation of tumor suppressor genes (genes that prevent cancer).

Understanding neoplastic gene expression regulation is important for developing new therapies for cancer, as targeting specific genes or pathways involved in this process can help to inhibit cancer growth and progression.

T-lymphocytes, also known as T-cells, are a type of white blood cell that plays a key role in the adaptive immune system's response to infection. They are produced in the bone marrow and mature in the thymus gland. There are several different types of T-cells, including CD4+ helper T-cells, CD8+ cytotoxic T-cells, and regulatory T-cells (Tregs).

CD4+ helper T-cells assist in activating other immune cells, such as B-lymphocytes and macrophages. They also produce cytokines, which are signaling molecules that help coordinate the immune response. CD8+ cytotoxic T-cells directly kill infected cells by releasing toxic substances. Regulatory T-cells help maintain immune tolerance and prevent autoimmune diseases by suppressing the activity of other immune cells.

T-lymphocytes are important in the immune response to viral infections, cancer, and other diseases. Dysfunction or depletion of T-cells can lead to immunodeficiency and increased susceptibility to infections. On the other hand, an overactive T-cell response can contribute to autoimmune diseases and chronic inflammation.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Medical Definition:
Myeloid Cell Leukemia Sequence 1 Protein (MCSFR1) is a transmembrane receptor protein that belongs to the class III receptor tyrosine kinase family. It is also known as CD115 or CSF1R. This protein plays a crucial role in the survival, differentiation, and proliferation of mononuclear phagocytes, including macrophages and osteoclasts. The MCSFR1 protein binds to its ligands, colony-stimulating factor 1 (CSF1) and interleukin-34 (IL-34), leading to the activation of various intracellular signaling pathways that regulate cellular functions.

In the context of cancer, particularly in myeloid leukemias, chromosomal rearrangements can lead to the formation of the MCSFR1 fusion proteins, which have been implicated in the pathogenesis of certain types of leukemia, such as acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). These fusion proteins can lead to constitutive activation of signaling pathways, promoting cell growth and survival, ultimately contributing to leukemic transformation.

Molecular models are three-dimensional representations of molecular structures that are used in the field of molecular biology and chemistry to visualize and understand the spatial arrangement of atoms and bonds within a molecule. These models can be physical or computer-generated and allow researchers to study the shape, size, and behavior of molecules, which is crucial for understanding their function and interactions with other molecules.

Physical molecular models are often made up of balls (representing atoms) connected by rods or sticks (representing bonds). These models can be constructed manually using materials such as plastic or wooden balls and rods, or they can be created using 3D printing technology.

Computer-generated molecular models, on the other hand, are created using specialized software that allows researchers to visualize and manipulate molecular structures in three dimensions. These models can be used to simulate molecular interactions, predict molecular behavior, and design new drugs or chemicals with specific properties. Overall, molecular models play a critical role in advancing our understanding of molecular structures and their functions.

DNA damage refers to any alteration in the structure or composition of deoxyribonucleic acid (DNA), which is the genetic material present in cells. DNA damage can result from various internal and external factors, including environmental exposures such as ultraviolet radiation, tobacco smoke, and certain chemicals, as well as normal cellular processes such as replication and oxidative metabolism.

Examples of DNA damage include base modifications, base deletions or insertions, single-strand breaks, double-strand breaks, and crosslinks between the two strands of the DNA helix. These types of damage can lead to mutations, genomic instability, and chromosomal aberrations, which can contribute to the development of diseases such as cancer, neurodegenerative disorders, and aging-related conditions.

The body has several mechanisms for repairing DNA damage, including base excision repair, nucleotide excision repair, mismatch repair, and double-strand break repair. However, if the damage is too extensive or the repair mechanisms are impaired, the cell may undergo apoptosis (programmed cell death) to prevent the propagation of potentially harmful mutations.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Tumor Necrosis Factor (TNF) Receptor II, also known as TNFRSF1B or CD120b, is a type of receptor that binds to the TNF-alpha cytokine and plays a crucial role in the immune system. It is a transmembrane protein mainly expressed on the surface of various cells including immune cells, fibroblasts, and endothelial cells.

The activation of TNFRII by TNF-alpha leads to the initiation of intracellular signaling pathways that regulate inflammatory responses, cell survival, differentiation, and apoptosis (programmed cell death). Dysregulation of this receptor's function has been implicated in several pathological conditions such as autoimmune diseases, cancer, and neurodegenerative disorders.

TNFRII is a member of the TNF receptor superfamily (TNFRSF) and consists of an extracellular domain containing multiple cysteine-rich motifs that facilitate ligand binding, a transmembrane domain, and an intracellular domain responsible for signal transduction. Upon ligand binding, TNFRII forms complexes with various adaptor proteins to activate downstream signaling cascades, ultimately leading to the activation of nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and other signaling molecules.

In summary, Tumor Necrosis Factor Receptor II is a key regulator of immune responses and cell fate decisions, with its dysregulation contributing to various pathological conditions.

Protein-Serine-Threonine Kinases (PSTKs) are a type of protein kinase that catalyzes the transfer of a phosphate group from ATP to the hydroxyl side chains of serine or threonine residues on target proteins. This phosphorylation process plays a crucial role in various cellular signaling pathways, including regulation of metabolism, gene expression, cell cycle progression, and apoptosis. PSTKs are involved in many physiological and pathological processes, and their dysregulation has been implicated in several diseases, such as cancer, diabetes, and neurodegenerative disorders.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Mitogen-Activated Protein Kinases (MAPKs) are a family of serine/threonine protein kinases that play crucial roles in various cellular processes, including proliferation, differentiation, transformation, and apoptosis, in response to diverse stimuli such as mitogens, growth factors, hormones, cytokines, and environmental stresses. They are highly conserved across eukaryotes and consist of a three-tiered kinase module composed of MAPK kinase kinases (MAP3Ks), MAPK kinases (MKKs or MAP2Ks), and MAPKs.

Activation of MAPKs occurs through a sequential phosphorylation and activation cascade, where MAP3Ks phosphorylate and activate MKKs, which in turn phosphorylate and activate MAPKs at specific residues (Thr-X-Tyr or Ser-Pro motifs). Once activated, MAPKs can further phosphorylate and regulate various downstream targets, including transcription factors and other protein kinases.

There are four major groups of MAPKs in mammals: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5/BMK1. Each group of MAPKs has distinct upstream activators, downstream targets, and cellular functions, allowing for a high degree of specificity in signal transduction and cellular responses. Dysregulation of MAPK signaling pathways has been implicated in various human diseases, including cancer, diabetes, neurodegenerative disorders, and inflammatory diseases.

Intracellular signaling peptides and proteins are molecules that play a crucial role in transmitting signals within cells, which ultimately lead to changes in cell behavior or function. These signals can originate from outside the cell (extracellular) or within the cell itself. Intracellular signaling molecules include various types of peptides and proteins, such as:

1. G-protein coupled receptors (GPCRs): These are seven-transmembrane domain receptors that bind to extracellular signaling molecules like hormones, neurotransmitters, or chemokines. Upon activation, they initiate a cascade of intracellular signals through G proteins and secondary messengers.
2. Receptor tyrosine kinases (RTKs): These are transmembrane receptors that bind to growth factors, cytokines, or hormones. Activation of RTKs leads to autophosphorylation of specific tyrosine residues, creating binding sites for intracellular signaling proteins such as adapter proteins, phosphatases, and enzymes like Ras, PI3K, and Src family kinases.
3. Second messenger systems: Intracellular second messengers are small molecules that amplify and propagate signals within the cell. Examples include cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerol (DAG), inositol triphosphate (IP3), calcium ions (Ca2+), and nitric oxide (NO). These second messengers activate or inhibit various downstream effectors, leading to changes in cellular responses.
4. Signal transduction cascades: Intracellular signaling proteins often form complex networks of interacting molecules that relay signals from the plasma membrane to the nucleus. These cascades involve kinases (protein kinases A, B, C, etc.), phosphatases, and adapter proteins, which ultimately regulate gene expression, cell cycle progression, metabolism, and other cellular processes.
5. Ubiquitination and proteasome degradation: Intracellular signaling pathways can also control protein stability by modulating ubiquitin-proteasome degradation. E3 ubiquitin ligases recognize specific substrates and conjugate them with ubiquitin molecules, targeting them for proteasomal degradation. This process regulates the abundance of key signaling proteins and contributes to signal termination or amplification.

In summary, intracellular signaling pathways involve a complex network of interacting proteins that relay signals from the plasma membrane to various cellular compartments, ultimately regulating gene expression, metabolism, and other cellular processes. Dysregulation of these pathways can contribute to disease development and progression, making them attractive targets for therapeutic intervention.

Staurosporine is an alkaloid compound that is derived from the bacterium Streptomyces staurosporeus. It is a potent and broad-spectrum protein kinase inhibitor, which means it can bind to and inhibit various types of protein kinases, including protein kinase C (PKC), cyclin-dependent kinases (CDKs), and tyrosine kinases.

Protein kinases are enzymes that play a crucial role in cell signaling by adding phosphate groups to other proteins, thereby modulating their activity. The inhibition of protein kinases by staurosporine can disrupt these signaling pathways and lead to various biological effects, such as the induction of apoptosis (programmed cell death) and the inhibition of cell proliferation.

Staurosporine has been widely used in research as a tool to study the roles of protein kinases in various cellular processes and diseases, including cancer, neurodegenerative disorders, and inflammation. However, its use as a therapeutic agent is limited due to its lack of specificity and high toxicity.

The Fas-Associated Death Domain Protein (FADD), also known as Mort1 or MORT1, is a protein that plays a crucial role in the programmed cell death pathway, also known as apoptosis. It is composed of an N-terminal death effector domain (DED), a middle domain, and a C-terminal death domain (DD).

FADD functions as an adaptor protein that links the Fas receptor to downstream signaling molecules in the extrinsic pathway of apoptosis. When the Fas receptor is activated by its ligand (FasL), it recruits FADD through homotypic interactions between their DED domains. This recruitment leads to the formation of the death-inducing signaling complex (DISC) and the activation of caspase-8, which subsequently activates downstream effector caspases that ultimately lead to cell death.

FADD is essential for maintaining tissue homeostasis by eliminating damaged or potentially harmful cells, and its dysregulation has been implicated in various pathological conditions, including cancer, neurodegenerative diseases, and autoimmune disorders.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Transgenic mice are genetically modified rodents that have incorporated foreign DNA (exogenous DNA) into their own genome. This is typically done through the use of recombinant DNA technology, where a specific gene or genetic sequence of interest is isolated and then introduced into the mouse embryo. The resulting transgenic mice can then express the protein encoded by the foreign gene, allowing researchers to study its function in a living organism.

The process of creating transgenic mice usually involves microinjecting the exogenous DNA into the pronucleus of a fertilized egg, which is then implanted into a surrogate mother. The offspring that result from this procedure are screened for the presence of the foreign DNA, and those that carry the desired genetic modification are used to establish a transgenic mouse line.

Transgenic mice have been widely used in biomedical research to model human diseases, study gene function, and test new therapies. They provide a valuable tool for understanding complex biological processes and developing new treatments for a variety of medical conditions.

A neoplasm is a tumor or growth that is formed by an abnormal and excessive proliferation of cells, which can be benign or malignant. Neoplasm proteins are therefore any proteins that are expressed or produced in these neoplastic cells. These proteins can play various roles in the development, progression, and maintenance of neoplasms.

Some neoplasm proteins may contribute to the uncontrolled cell growth and division seen in cancer, such as oncogenic proteins that promote cell cycle progression or inhibit apoptosis (programmed cell death). Others may help the neoplastic cells evade the immune system, allowing them to proliferate undetected. Still others may be involved in angiogenesis, the formation of new blood vessels that supply the tumor with nutrients and oxygen.

Neoplasm proteins can also serve as biomarkers for cancer diagnosis, prognosis, or treatment response. For example, the presence or level of certain neoplasm proteins in biological samples such as blood or tissue may indicate the presence of a specific type of cancer, help predict the likelihood of cancer recurrence, or suggest whether a particular therapy will be effective.

Overall, understanding the roles and behaviors of neoplasm proteins can provide valuable insights into the biology of cancer and inform the development of new diagnostic and therapeutic strategies.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Ceramides are a type of lipid molecule that are found naturally in the outer layer of the skin (the stratum corneum). They play a crucial role in maintaining the barrier function and hydration of the skin. Ceramides help to seal in moisture, support the structure of the skin, and protect against environmental stressors such as pollution and bacteria.

In addition to their role in the skin, ceramides have also been studied for their potential therapeutic benefits in various medical conditions. For example, abnormal levels of ceramides have been implicated in several diseases, including diabetes, cardiovascular disease, and cancer. As a result, ceramide-based therapies are being investigated as potential treatments for these conditions.

Medically, ceramides may be mentioned in the context of skin disorders or diseases where there is a disruption in the skin's barrier function, such as eczema, psoriasis, and ichthyosis. In these cases, ceramide-based therapies may be used to help restore the skin's natural barrier and improve its overall health and appearance.

Cytokines are a broad and diverse category of small signaling proteins that are secreted by various cells, including immune cells, in response to different stimuli. They play crucial roles in regulating the immune response, inflammation, hematopoiesis, and cellular communication.

Cytokines mediate their effects by binding to specific receptors on the surface of target cells, which triggers intracellular signaling pathways that ultimately result in changes in gene expression, cell behavior, and function. Some key functions of cytokines include:

1. Regulating the activation, differentiation, and proliferation of immune cells such as T cells, B cells, natural killer (NK) cells, and macrophages.
2. Coordinating the inflammatory response by recruiting immune cells to sites of infection or tissue damage and modulating their effector functions.
3. Regulating hematopoiesis, the process of blood cell formation in the bone marrow, by controlling the proliferation, differentiation, and survival of hematopoietic stem and progenitor cells.
4. Modulating the development and function of the nervous system, including neuroinflammation, neuroprotection, and neuroregeneration.

Cytokines can be classified into several categories based on their structure, function, or cellular origin. Some common types of cytokines include interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, colony-stimulating factors (CSFs), and transforming growth factors (TGFs). Dysregulation of cytokine production and signaling has been implicated in various pathological conditions, such as autoimmune diseases, chronic inflammation, cancer, and neurodegenerative disorders.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Epithelial cells are types of cells that cover the outer surfaces of the body, line the inner surfaces of organs and glands, and form the lining of blood vessels and body cavities. They provide a protective barrier against the external environment, regulate the movement of materials between the internal and external environments, and are involved in the sense of touch, temperature, and pain. Epithelial cells can be squamous (flat and thin), cuboidal (square-shaped and of equal height), or columnar (tall and narrow) in shape and are classified based on their location and function.

Fibroblasts are specialized cells that play a critical role in the body's immune response and wound healing process. They are responsible for producing and maintaining the extracellular matrix (ECM), which is the non-cellular component present within all tissues and organs, providing structural support and biochemical signals for surrounding cells.

Fibroblasts produce various ECM proteins such as collagens, elastin, fibronectin, and laminins, forming a complex network of fibers that give tissues their strength and flexibility. They also help in the regulation of tissue homeostasis by controlling the turnover of ECM components through the process of remodeling.

In response to injury or infection, fibroblasts become activated and start to proliferate rapidly, migrating towards the site of damage. Here, they participate in the inflammatory response, releasing cytokines and chemokines that attract immune cells to the area. Additionally, they deposit new ECM components to help repair the damaged tissue and restore its functionality.

Dysregulation of fibroblast activity has been implicated in several pathological conditions, including fibrosis (excessive scarring), cancer (where they can contribute to tumor growth and progression), and autoimmune diseases (such as rheumatoid arthritis).

CD (cluster of differentiation) antigens are cell-surface proteins that are expressed on leukocytes (white blood cells) and can be used to identify and distinguish different subsets of these cells. They are important markers in the field of immunology and hematology, and are commonly used to diagnose and monitor various diseases, including cancer, autoimmune disorders, and infectious diseases.

CD antigens are designated by numbers, such as CD4, CD8, CD19, etc., which refer to specific proteins found on the surface of different types of leukocytes. For example, CD4 is a protein found on the surface of helper T cells, while CD8 is found on cytotoxic T cells.

CD antigens can be used as targets for immunotherapy, such as monoclonal antibody therapy, in which antibodies are designed to bind to specific CD antigens and trigger an immune response against cancer cells or infected cells. They can also be used as markers to monitor the effectiveness of treatments and to detect minimal residual disease (MRD) after treatment.

It's important to note that not all CD antigens are exclusive to leukocytes, some can be found on other cell types as well, and their expression can vary depending on the activation state or differentiation stage of the cells.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

RNA interference (RNAi) is a biological process in which RNA molecules inhibit the expression of specific genes. This process is mediated by small RNA molecules, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), that bind to complementary sequences on messenger RNA (mRNA) molecules, leading to their degradation or translation inhibition.

RNAi plays a crucial role in regulating gene expression and defending against foreign genetic elements, such as viruses and transposons. It has also emerged as an important tool for studying gene function and developing therapeutic strategies for various diseases, including cancer and viral infections.

Oligopeptides are defined in medicine and biochemistry as short chains of amino acids, typically containing fewer than 20 amino acid residues. These small peptides are important components in various biological processes, such as serving as signaling molecules, enzyme inhibitors, or structural elements in some proteins. They can be found naturally in foods and may also be synthesized for use in medical research and therapeutic applications.

BCL-associated death protein, often referred to as BAD, is a type of protein that belongs to the BCL-2 family. These proteins play a crucial role in regulating programmed cell death, also known as apoptosis. Specifically, BAD is a pro-apoptotic protein, meaning it promotes cell death under certain conditions.

The function of BAD is tightly regulated through various post-translational modifications and interactions with other BCL-2 family members. When activated, BAD can bind to and inhibit anti-apoptotic proteins like BCL-2 or BCL-XL, thereby releasing pro-apoptotic proteins such as BAX and BAK, which form pores in the mitochondrial membrane and initiate the apoptotic cascade.

Dysregulation of BAD and other BCL-2 family members has been implicated in several diseases, including cancer and neurodegenerative disorders. For instance, overexpression of anti-apoptotic proteins or downregulation of pro-apoptotic proteins like BAD can contribute to tumor development and resistance to chemotherapy. Therefore, understanding the role of BAD and other BCL-2 family members in apoptosis regulation is essential for developing novel therapeutic strategies in cancer and other diseases.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Oxidative stress is defined as an imbalance between the production of reactive oxygen species (free radicals) and the body's ability to detoxify them or repair the damage they cause. This imbalance can lead to cellular damage, oxidation of proteins, lipids, and DNA, disruption of cellular functions, and activation of inflammatory responses. Prolonged or excessive oxidative stress has been linked to various health conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and aging-related diseases.

The CD30 ligand, also known as CD30L or CD153, is a type II transmembrane protein that belongs to the tumor necrosis factor (TNF) superfamily. It is a cell surface molecule that plays a role in the immune system by interacting with its receptor, CD30, which is primarily expressed on activated T cells and B cells.

The interaction between CD30 ligand and CD30 provides costimulatory signals that are important for the activation and proliferation of T cells, as well as the differentiation and survival of B cells. CD30 ligand is also involved in the regulation of immune responses and has been implicated in the pathogenesis of certain autoimmune diseases and lymphomas.

CD30 ligand is expressed on a variety of cell types, including activated T cells, B cells, natural killer (NK) cells, and some dendritic cells. It is also found on some non-hematopoietic cells, such as endothelial cells and fibroblasts. The expression of CD30 ligand can be induced by various stimuli, including cytokines, microbial products, and T cell receptor engagement.

Antineoplastic agents, phytogenic, also known as plant-derived anticancer drugs, are medications that are derived from plants and used to treat cancer. These agents have natural origins and work by interfering with the growth and multiplication of cancer cells, helping to slow or stop the spread of the disease. Some examples of antineoplastic agents, phytogenic include paclitaxel (Taxol), vincristine, vinblastine, and etoposide. These drugs are often used in combination with other treatments such as surgery, radiation therapy, and other medications to provide a comprehensive approach to cancer care.

Macrophages are a type of white blood cell that are an essential part of the immune system. They are large, specialized cells that engulf and destroy foreign substances, such as bacteria, viruses, parasites, and fungi, as well as damaged or dead cells. Macrophages are found throughout the body, including in the bloodstream, lymph nodes, spleen, liver, lungs, and connective tissues. They play a critical role in inflammation, immune response, and tissue repair and remodeling.

Macrophages originate from monocytes, which are a type of white blood cell produced in the bone marrow. When monocytes enter the tissues, they differentiate into macrophages, which have a larger size and more specialized functions than monocytes. Macrophages can change their shape and move through tissues to reach sites of infection or injury. They also produce cytokines, chemokines, and other signaling molecules that help coordinate the immune response and recruit other immune cells to the site of infection or injury.

Macrophages have a variety of surface receptors that allow them to recognize and respond to different types of foreign substances and signals from other cells. They can engulf and digest foreign particles, bacteria, and viruses through a process called phagocytosis. Macrophages also play a role in presenting antigens to T cells, which are another type of immune cell that helps coordinate the immune response.

Overall, macrophages are crucial for maintaining tissue homeostasis, defending against infection, and promoting wound healing and tissue repair. Dysregulation of macrophage function has been implicated in a variety of diseases, including cancer, autoimmune disorders, and chronic inflammatory conditions.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

U937 cells are a type of human histiocytic lymphoma cell line that is commonly used in scientific research and studies. They are derived from the peripheral blood of a patient with histiocytic lymphoma, which is a rare type of cancer that affects the immune system's cells called histiocytes.

U937 cells have a variety of uses in research, including studying the mechanisms of cancer cell growth and proliferation, testing the effects of various drugs and treatments on cancer cells, and investigating the role of different genes and proteins in cancer development and progression. These cells are easy to culture and maintain in the laboratory, making them a popular choice for researchers in many fields.

It is important to note that while U937 cells can provide valuable insights into the behavior of cancer cells, they do not necessarily reflect the complexity and diversity of human cancers. Therefore, findings from studies using these cells should be validated in more complex models or clinical trials before being applied to patient care.

Cysteine endopeptidases are a type of enzymes that cleave peptide bonds within proteins. They are also known as cysteine proteases or cysteine proteinases. These enzymes contain a catalytic triad consisting of three amino acids: cysteine, histidine, and aspartate. The thiol group (-SH) of the cysteine residue acts as a nucleophile and attacks the carbonyl carbon of the peptide bond, leading to its cleavage.

Cysteine endopeptidases play important roles in various biological processes, including protein degradation, cell signaling, and inflammation. They are involved in many physiological and pathological conditions, such as apoptosis, immune response, and cancer. Some examples of cysteine endopeptidases include cathepsins, caspases, and calpains.

It is important to note that these enzymes require a reducing environment to maintain the reduced state of their active site cysteine residue. Therefore, they are sensitive to oxidizing agents and inhibitors that target the thiol group. Understanding the structure and function of cysteine endopeptidases is crucial for developing therapeutic strategies that target these enzymes in various diseases.

"Nude mice" is a term used in the field of laboratory research to describe a strain of mice that have been genetically engineered to lack a functional immune system. Specifically, nude mice lack a thymus gland and have a mutation in the FOXN1 gene, which results in a failure to develop a mature T-cell population. This means that they are unable to mount an effective immune response against foreign substances or organisms.

The name "nude" refers to the fact that these mice also have a lack of functional hair follicles, resulting in a hairless or partially hairless phenotype. This feature is actually a secondary consequence of the same genetic mutation that causes their immune deficiency.

Nude mice are commonly used in research because their weakened immune system makes them an ideal host for transplanted tumors, tissues, and cells from other species, including humans. This allows researchers to study the behavior of these foreign substances in a living organism without the complication of an immune response. However, it's important to note that because nude mice lack a functional immune system, they must be kept in sterile conditions and are more susceptible to infection than normal mice.

p38 Mitogen-Activated Protein Kinases (p38 MAPKs) are a family of conserved serine-threonine protein kinases that play crucial roles in various cellular processes, including inflammation, immune response, differentiation, apoptosis, and stress responses. They are activated by diverse stimuli such as cytokines, ultraviolet radiation, heat shock, osmotic stress, and lipopolysaccharides (LPS).

Once activated, p38 MAPKs phosphorylate and regulate several downstream targets, including transcription factors and other protein kinases. This regulation leads to the expression of genes involved in inflammation, cell cycle arrest, and apoptosis. Dysregulation of p38 MAPK signaling has been implicated in various diseases, such as cancer, neurodegenerative disorders, and autoimmune diseases. Therefore, p38 MAPKs are considered promising targets for developing new therapeutic strategies to treat these conditions.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Caspase-2 is a type of protease enzyme that plays a role in programmed cell death, also known as apoptosis. It is a member of the cysteine-aspartic acid protease (caspase) family, which are characterized by their ability to cleave proteins at specific aspartate residues. Caspase-2 is activated in response to various signals that trigger apoptosis and helps to carry out the ordered dismantling of the cell. It also has roles in other cellular processes such as cell cycle regulation, DNA repair, and inflammation.

Cell surface receptors, also known as membrane receptors, are proteins located on the cell membrane that bind to specific molecules outside the cell, known as ligands. These receptors play a crucial role in signal transduction, which is the process of converting an extracellular signal into an intracellular response.

Cell surface receptors can be classified into several categories based on their structure and mechanism of action, including:

1. Ion channel receptors: These receptors contain a pore that opens to allow ions to flow across the cell membrane when they bind to their ligands. This ion flux can directly activate or inhibit various cellular processes.
2. G protein-coupled receptors (GPCRs): These receptors consist of seven transmembrane domains and are associated with heterotrimeric G proteins that modulate intracellular signaling pathways upon ligand binding.
3. Enzyme-linked receptors: These receptors possess an intrinsic enzymatic activity or are linked to an enzyme, which becomes activated when the receptor binds to its ligand. This activation can lead to the initiation of various signaling cascades within the cell.
4. Receptor tyrosine kinases (RTKs): These receptors contain intracellular tyrosine kinase domains that become activated upon ligand binding, leading to the phosphorylation and activation of downstream signaling molecules.
5. Integrins: These receptors are transmembrane proteins that mediate cell-cell or cell-matrix interactions by binding to extracellular matrix proteins or counter-receptors on adjacent cells. They play essential roles in cell adhesion, migration, and survival.

Cell surface receptors are involved in various physiological processes, including neurotransmission, hormone signaling, immune response, and cell growth and differentiation. Dysregulation of these receptors can contribute to the development of numerous diseases, such as cancer, diabetes, and neurological disorders.

Immunoblotting, also known as western blotting, is a laboratory technique used in molecular biology and immunogenetics to detect and quantify specific proteins in a complex mixture. This technique combines the electrophoretic separation of proteins by gel electrophoresis with their detection using antibodies that recognize specific epitopes (protein fragments) on the target protein.

The process involves several steps: first, the protein sample is separated based on size through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Next, the separated proteins are transferred onto a nitrocellulose or polyvinylidene fluoride (PVDF) membrane using an electric field. The membrane is then blocked with a blocking agent to prevent non-specific binding of antibodies.

After blocking, the membrane is incubated with a primary antibody that specifically recognizes the target protein. Following this, the membrane is washed to remove unbound primary antibodies and then incubated with a secondary antibody conjugated to an enzyme such as horseradish peroxidase (HRP) or alkaline phosphatase (AP). The enzyme catalyzes a colorimetric or chemiluminescent reaction that allows for the detection of the target protein.

Immunoblotting is widely used in research and clinical settings to study protein expression, post-translational modifications, protein-protein interactions, and disease biomarkers. It provides high specificity and sensitivity, making it a valuable tool for identifying and quantifying proteins in various biological samples.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Lymphocyte activation is the process by which B-cells and T-cells (types of lymphocytes) become activated to perform effector functions in an immune response. This process involves the recognition of specific antigens presented on the surface of antigen-presenting cells, such as dendritic cells or macrophages.

The activation of B-cells leads to their differentiation into plasma cells that produce antibodies, while the activation of T-cells results in the production of cytotoxic T-cells (CD8+ T-cells) that can directly kill infected cells or helper T-cells (CD4+ T-cells) that assist other immune cells.

Lymphocyte activation involves a series of intracellular signaling events, including the binding of co-stimulatory molecules and the release of cytokines, which ultimately result in the expression of genes involved in cell proliferation, differentiation, and effector functions. The activation process is tightly regulated to prevent excessive or inappropriate immune responses that can lead to autoimmunity or chronic inflammation.

Drug resistance in neoplasms (also known as cancer drug resistance) refers to the ability of cancer cells to withstand the effects of chemotherapeutic agents or medications designed to kill or inhibit the growth of cancer cells. This can occur due to various mechanisms, including changes in the cancer cell's genetic makeup, alterations in drug targets, increased activity of drug efflux pumps, and activation of survival pathways.

Drug resistance can be intrinsic (present at the beginning of treatment) or acquired (developed during the course of treatment). It is a significant challenge in cancer therapy as it often leads to reduced treatment effectiveness, disease progression, and poor patient outcomes. Strategies to overcome drug resistance include the use of combination therapies, development of new drugs that target different mechanisms, and personalized medicine approaches that consider individual patient and tumor characteristics.

Apoptotic protease-activating factor 1 (APAF-1) is a protein that plays a crucial role in the intrinsic pathway of programmed cell death, also known as apoptosis. APAF-1 is involved in the formation of the apoptosome, which is a multi-protein complex that activates caspases, a family of protease enzymes that dismantle cellular structures and contribute to the orderly demolition of cells during apoptosis.

APAF-1 contains a C-terminal WD40 domain, which is responsible for its oligomerization and interaction with other proteins, and an N-terminal caspase recruitment domain (CARD). In response to cellular stress or damage, cytochrome c is released from the mitochondria and binds to the WD40 domain of APAF-1. This binding induces a conformational change in APAF-1, exposing its CARD domain and allowing it to interact with the CARD domain of procaspase-9. The resulting apoptosome formation leads to the activation of caspase-9, which subsequently activates other downstream caspases, ultimately executing the apoptotic program.

Defects in APAF-1 function or regulation have been implicated in various diseases, including cancer and neurodegenerative disorders.

Lipopolysaccharides (LPS) are large molecules found in the outer membrane of Gram-negative bacteria. They consist of a hydrophilic polysaccharide called the O-antigen, a core oligosaccharide, and a lipid portion known as Lipid A. The Lipid A component is responsible for the endotoxic activity of LPS, which can trigger a powerful immune response in animals, including humans. This response can lead to symptoms such as fever, inflammation, and septic shock, especially when large amounts of LPS are introduced into the bloodstream.

TNF Receptor-Associated Factor 1 (TRAF1) is a protein in humans that plays a crucial role in the signaling pathways of tumor necrosis factor (TNF) receptors. TRAF1 is a member of the TRAF family, which includes TRAF1-6. These proteins function as adaptors to mediate signal transduction from the cell surface to the nucleus, ultimately leading to the activation of various transcription factors and the regulation of gene expression.

TRAF1 is primarily associated with the TNFR2 receptor and contributes to the activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These pathways are essential for immune cell activation, differentiation, and survival, as well as inflammatory responses. Dysregulation of TRAF1 function has been implicated in several diseases, including autoimmune disorders and cancer.

In summary, TNF Receptor-Associated Factor 1 (TRAF1) is a protein involved in the signaling pathways of tumor necrosis factor (TNF) receptors, primarily associated with TNFR2, contributing to immune cell activation, differentiation, and survival, as well as inflammatory responses.

Caspase-1 is a type of protease enzyme that plays a crucial role in the inflammatory response and programmed cell death, also known as apoptosis. It is produced as an inactive precursor protein, which is then cleaved into its active form by other proteases or through self-cleavage.

Once activated, caspase-1 helps to process and activate several pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18, which are involved in the recruitment of immune cells to sites of infection or tissue damage. Caspase-1 also contributes to programmed cell death by cleaving and activating other caspases, leading to the controlled destruction of the cell.

Dysregulation of caspase-1 has been implicated in various inflammatory diseases, such as autoimmune disorders and neurodegenerative conditions. Therefore, understanding the mechanisms that regulate caspase-1 activity is an important area of research for developing new therapeutic strategies to treat these diseases.

Fluorescence microscopy is a type of microscopy that uses fluorescent dyes or proteins to highlight and visualize specific components within a sample. In this technique, the sample is illuminated with high-energy light, typically ultraviolet (UV) or blue light, which excites the fluorescent molecules causing them to emit lower-energy, longer-wavelength light, usually visible light in the form of various colors. This emitted light is then collected by the microscope and detected to produce an image.

Fluorescence microscopy has several advantages over traditional brightfield microscopy, including the ability to visualize specific structures or molecules within a complex sample, increased sensitivity, and the potential for quantitative analysis. It is widely used in various fields of biology and medicine, such as cell biology, neuroscience, and pathology, to study the structure, function, and interactions of cells and proteins.

There are several types of fluorescence microscopy techniques, including widefield fluorescence microscopy, confocal microscopy, two-photon microscopy, and total internal reflection fluorescence (TIRF) microscopy, each with its own strengths and limitations. These techniques can provide valuable insights into the behavior of cells and proteins in health and disease.

A "cell line, transformed" is a type of cell culture that has undergone a stable genetic alteration, which confers the ability to grow indefinitely in vitro, outside of the organism from which it was derived. These cells have typically been immortalized through exposure to chemical or viral carcinogens, or by introducing specific oncogenes that disrupt normal cell growth regulation pathways.

Transformed cell lines are widely used in scientific research because they offer a consistent and renewable source of biological material for experimentation. They can be used to study various aspects of cell biology, including signal transduction, gene expression, drug discovery, and toxicity testing. However, it is important to note that transformed cells may not always behave identically to their normal counterparts, and results obtained using these cells should be validated in more physiologically relevant systems when possible.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Phosphatidylinositol 3-Kinases (PI3Ks) are a family of enzymes that play a crucial role in intracellular signal transduction. They phosphorylate the 3-hydroxyl group of the inositol ring in phosphatidylinositol and its derivatives, which results in the production of second messengers that regulate various cellular processes such as cell growth, proliferation, differentiation, motility, and survival.

PI3Ks are divided into three classes based on their structure and substrate specificity. Class I PI3Ks are further subdivided into two categories: class IA and class IB. Class IA PI3Ks are heterodimers consisting of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85α, p85β, p55γ, or p50γ). They are primarily activated by receptor tyrosine kinases and G protein-coupled receptors. Class IB PI3Ks consist of a catalytic subunit (p110γ) and a regulatory subunit (p101 or p84/87). They are mainly activated by G protein-coupled receptors.

Dysregulation of PI3K signaling has been implicated in various human diseases, including cancer, diabetes, and autoimmune disorders. Therefore, PI3Ks have emerged as important targets for drug development in these areas.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

A xenograft model antitumor assay is a type of preclinical cancer research study that involves transplanting human tumor cells or tissues into an immunodeficient mouse. This model allows researchers to study the effects of various treatments, such as drugs or immune therapies, on human tumors in a living organism.

In this assay, human tumor cells or tissues are implanted into the mouse, typically under the skin or in another organ, where they grow and form a tumor. Once the tumor has established, the mouse is treated with the experimental therapy, and the tumor's growth is monitored over time. The response of the tumor to the treatment is then assessed by measuring changes in tumor size or weight, as well as other parameters such as survival rate and metastasis.

Xenograft model antitumor assays are useful for evaluating the efficacy and safety of new cancer therapies before they are tested in human clinical trials. They provide valuable information on how the tumors respond to treatment, drug pharmacokinetics, and toxicity, which can help researchers optimize dosing regimens and identify potential side effects. However, it is important to note that xenograft models have limitations, such as differences in tumor biology between mice and humans, and may not always predict how well a therapy will work in human patients.

Cycloheximide is an antibiotic that is primarily used in laboratory settings to inhibit protein synthesis in eukaryotic cells. It is derived from the actinobacteria species Streptomyces griseus. In medical terms, it is not used as a therapeutic drug in humans due to its significant side effects, including liver toxicity and potential neurotoxicity. However, it remains a valuable tool in research for studying protein function and cellular processes.

The antibiotic works by binding to the 60S subunit of the ribosome, thereby preventing the transfer RNA (tRNA) from delivering amino acids to the growing polypeptide chain during translation. This inhibition of protein synthesis can be lethal to cells, making cycloheximide a useful tool in studying cellular responses to protein depletion or misregulation.

In summary, while cycloheximide has significant research applications due to its ability to inhibit protein synthesis in eukaryotic cells, it is not used as a therapeutic drug in humans because of its toxic side effects.

Protein transport, in the context of cellular biology, refers to the process by which proteins are actively moved from one location to another within or between cells. This is a crucial mechanism for maintaining proper cell function and regulation.

Intracellular protein transport involves the movement of proteins within a single cell. Proteins can be transported across membranes (such as the nuclear envelope, endoplasmic reticulum, Golgi apparatus, or plasma membrane) via specialized transport systems like vesicles and transport channels.

Intercellular protein transport refers to the movement of proteins from one cell to another, often facilitated by exocytosis (release of proteins in vesicles) and endocytosis (uptake of extracellular substances via membrane-bound vesicles). This is essential for communication between cells, immune response, and other physiological processes.

It's important to note that any disruption in protein transport can lead to various diseases, including neurological disorders, cancer, and metabolic conditions.

Cell adhesion refers to the binding of cells to extracellular matrices or to other cells, a process that is fundamental to the development, function, and maintenance of multicellular organisms. Cell adhesion is mediated by various cell surface receptors, such as integrins, cadherins, and immunoglobulin-like cell adhesion molecules (Ig-CAMs), which interact with specific ligands in the extracellular environment. These interactions lead to the formation of specialized junctions, such as tight junctions, adherens junctions, and desmosomes, that help to maintain tissue architecture and regulate various cellular processes, including proliferation, differentiation, migration, and survival. Disruptions in cell adhesion can contribute to a variety of diseases, including cancer, inflammation, and degenerative disorders.

Hydrogen peroxide (H2O2) is a colorless, odorless, clear liquid with a slightly sweet taste, although drinking it is harmful and can cause poisoning. It is a weak oxidizing agent and is used as an antiseptic and a bleaching agent. In diluted form, it is used to disinfect wounds and kill bacteria and viruses on the skin; in higher concentrations, it can be used to bleach hair or remove stains from clothing. It is also used as a propellant in rocketry and in certain industrial processes. Chemically, hydrogen peroxide is composed of two hydrogen atoms and two oxygen atoms, and it is structurally similar to water (H2O), with an extra oxygen atom. This gives it its oxidizing properties, as the additional oxygen can be released and used to react with other substances.

'Death domain receptors' (also known as 'death receptors') are a type of transmembrane receptor proteins that play a crucial role in activating programmed cell death, or apoptosis, in response to specific signals. These receptors have an intracellular domain called the 'death domain,' which can interact with other proteins to initiate the signaling cascade leading to cell death. This process is essential for maintaining tissue homeostasis and eliminating damaged, infected, or potentially cancerous cells. Examples of death domain receptors include Fas (CD95), TNFR1 (Tumor Necrosis Factor Receptor 1), and DR3 (Death Receptor 3).

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

MAP Kinase Kinase Kinase 5 (MAP3K5) is a protein kinase that belongs to the serine/threonine family of kinases. It is also known as MEKK5 or apoptosis signal-regulating kinase 1 (ASK1). This enzyme plays a crucial role in intracellular signaling pathways, particularly those involved in stress responses, inflammation, and programmed cell death (apoptosis). MAP3K5 activates downstream MAP kinases such as p38 and JNK by phosphorylating them, which subsequently regulate various cellular processes like gene expression, proliferation, differentiation, and survival. Mutations in the MAP3K5 gene have been associated with several diseases, including neurodegenerative disorders, cardiovascular diseases, and cancer.

Cyclin-dependent kinase inhibitor p21, also known as CDKN1A or p21/WAF1/CIP1, is a protein that regulates the cell cycle. It inhibits the activity of cyclin-dependent kinases (CDKs), which are enzymes that play crucial roles in controlling the progression of the cell cycle.

The binding of p21 to CDKs prevents the phosphorylation and activation of downstream targets, leading to cell cycle arrest. This protein is transcriptionally activated by tumor suppressor protein p53 in response to DNA damage or other stress signals, and it functions as an important mediator of p53-dependent growth arrest.

By inhibiting CDKs, p21 helps to ensure that cells do not proceed through the cell cycle until damaged DNA has been repaired, thereby preventing the propagation of potentially harmful mutations. Additionally, p21 has been implicated in other cellular processes such as apoptosis, differentiation, and senescence. Dysregulation of p21 has been associated with various human diseases, including cancer.

Adaptor proteins are a type of protein that play a crucial role in intracellular signaling pathways by serving as a link between different components of the signaling complex. Specifically, "signal transducing adaptor proteins" refer to those adaptor proteins that are involved in signal transduction processes, where they help to transmit signals from the cell surface receptors to various intracellular effectors. These proteins typically contain modular domains that allow them to interact with multiple partners, thereby facilitating the formation of large signaling complexes and enabling the integration of signals from different pathways.

Signal transducing adaptor proteins can be classified into several families based on their structural features, including the Src homology 2 (SH2) domain, the Src homology 3 (SH3) domain, and the phosphotyrosine-binding (PTB) domain. These domains enable the adaptor proteins to recognize and bind to specific motifs on other signaling molecules, such as receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors.

One well-known example of a signal transducing adaptor protein is the growth factor receptor-bound protein 2 (Grb2), which contains an SH2 domain that binds to phosphotyrosine residues on activated receptor tyrosine kinases. Grb2 also contains an SH3 domain that interacts with proline-rich motifs on other signaling proteins, such as the guanine nucleotide exchange factor SOS. This interaction facilitates the activation of the Ras small GTPase and downstream signaling pathways involved in cell growth, differentiation, and survival.

Overall, signal transducing adaptor proteins play a critical role in regulating various cellular processes by modulating intracellular signaling pathways in response to extracellular stimuli. Dysregulation of these proteins has been implicated in various diseases, including cancer and inflammatory disorders.

Mitogen-activated protein kinase (MAPK) signaling system is a crucial pathway for the transmission and regulation of various cellular responses in eukaryotic cells. It plays a significant role in several biological processes, including proliferation, differentiation, apoptosis, inflammation, and stress response. The MAPK cascade consists of three main components: MAP kinase kinase kinase (MAP3K or MEKK), MAP kinase kinase (MAP2K or MEK), and MAP kinase (MAPK).

The signaling system is activated by various extracellular stimuli, such as growth factors, cytokines, hormones, and stress signals. These stimuli initiate a phosphorylation cascade that ultimately leads to the activation of MAPKs. The activated MAPKs then translocate into the nucleus and regulate gene expression by phosphorylating various transcription factors and other regulatory proteins.

There are four major MAPK families: extracellular signal-regulated kinases (ERK1/2), c-Jun N-terminal kinases (JNK1/2/3), p38 MAPKs (p38α/β/γ/δ), and ERK5. Each family has distinct functions, substrates, and upstream activators. Dysregulation of the MAPK signaling system can lead to various diseases, including cancer, diabetes, cardiovascular diseases, and neurological disorders. Therefore, understanding the molecular mechanisms underlying this pathway is crucial for developing novel therapeutic strategies.

Tumor suppressor proteins are a type of regulatory protein that helps control the cell cycle and prevent cells from dividing and growing in an uncontrolled manner. They work to inhibit tumor growth by preventing the formation of tumors or slowing down their progression. These proteins can repair damaged DNA, regulate gene expression, and initiate programmed cell death (apoptosis) if the damage is too severe for repair.

Mutations in tumor suppressor genes, which provide the code for these proteins, can lead to a decrease or loss of function in the resulting protein. This can result in uncontrolled cell growth and division, leading to the formation of tumors and cancer. Examples of tumor suppressor proteins include p53, Rb (retinoblastoma), and BRCA1/2.

OX40 ligand, also known as CD134L or TNFSF4, is a type II transmembrane protein belonging to the tumor necrosis factor (TNF) superfamily. It is a homotrimeric glycoprotein that plays an essential role in the activation and survival of T cells during immune responses.

The OX40 ligand binds to its receptor, OX40 (also known as CD134 or TNFRSF4), which is expressed on activated CD4+ and CD8+ T cells. The interaction between OX40L and OX40 provides a costimulatory signal that enhances T cell proliferation, survival, and effector functions.

OX40 ligand is primarily expressed on antigen-presenting cells such as dendritic cells, B cells, and macrophages, but it can also be induced on non-hematopoietic cells like endothelial cells and fibroblasts in response to inflammation.

In addition to its role in T cell activation, OX40 ligand has been implicated in the pathogenesis of various autoimmune diseases, making it a potential target for immunotherapy.

"Serum-free culture media" refers to a type of nutrient medium used in cell culture and tissue engineering that does not contain fetal bovine serum (FBS) or other animal serums. Instead, it is supplemented with defined, chemically-defined components such as hormones, growth factors, vitamins, and amino acids.

The use of serum-free media offers several advantages over traditional media formulations that contain serum. For example, it reduces the risk of contamination with adventitious agents, such as viruses and prions, that may be present in animal serums. Additionally, it allows for greater control over the culture environment, as the concentration and composition of individual components can be carefully regulated. This is particularly important in applications where precise control over cell behavior is required, such as in the production of therapeutic proteins or in stem cell research.

However, serum-free media may not be suitable for all cell types, as some cells require the complex mixture of growth factors and other components found in animal serums to survive and proliferate. Therefore, it is important to carefully evaluate the needs of each specific cell type when selecting a culture medium.

Cricetinae is a subfamily of rodents that includes hamsters, gerbils, and relatives. These small mammals are characterized by having short limbs, compact bodies, and cheek pouches for storing food. They are native to various parts of the world, particularly in Europe, Asia, and Africa. Some species are popular pets due to their small size, easy care, and friendly nature. In a medical context, understanding the biology and behavior of Cricetinae species can be important for individuals who keep them as pets or for researchers studying their physiology.

A cell membrane, also known as the plasma membrane, is a thin semi-permeable phospholipid bilayer that surrounds all cells in animals, plants, and microorganisms. It functions as a barrier to control the movement of substances in and out of the cell, allowing necessary molecules such as nutrients, oxygen, and signaling molecules to enter while keeping out harmful substances and waste products. The cell membrane is composed mainly of phospholipids, which have hydrophilic (water-loving) heads and hydrophobic (water-fearing) tails. This unique structure allows the membrane to be flexible and fluid, yet selectively permeable. Additionally, various proteins are embedded in the membrane that serve as channels, pumps, receptors, and enzymes, contributing to the cell's overall functionality and communication with its environment.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Etoposide is a chemotherapy medication used to treat various types of cancer, including lung cancer, testicular cancer, and certain types of leukemia. It works by inhibiting the activity of an enzyme called topoisomerase II, which is involved in DNA replication and transcription. By doing so, etoposide can interfere with the growth and multiplication of cancer cells.

Etoposide is often administered intravenously in a hospital or clinic setting, although it may also be given orally in some cases. The medication can cause a range of side effects, including nausea, vomiting, hair loss, and an increased risk of infection. It can also have more serious side effects, such as bone marrow suppression, which can lead to anemia, bleeding, and a weakened immune system.

Like all chemotherapy drugs, etoposide is not without risks and should only be used under the close supervision of a qualified healthcare provider. It is important for patients to discuss the potential benefits and risks of this medication with their doctor before starting treatment.

Neutrophils are a type of white blood cell that are part of the immune system's response to infection. They are produced in the bone marrow and released into the bloodstream where they circulate and are able to move quickly to sites of infection or inflammation in the body. Neutrophils are capable of engulfing and destroying bacteria, viruses, and other foreign substances through a process called phagocytosis. They are also involved in the release of inflammatory mediators, which can contribute to tissue damage in some cases. Neutrophils are characterized by the presence of granules in their cytoplasm, which contain enzymes and other proteins that help them carry out their immune functions.

A Structure-Activity Relationship (SAR) in the context of medicinal chemistry and pharmacology refers to the relationship between the chemical structure of a drug or molecule and its biological activity or effect on a target protein, cell, or organism. SAR studies aim to identify patterns and correlations between structural features of a compound and its ability to interact with a specific biological target, leading to a desired therapeutic response or undesired side effects.

By analyzing the SAR, researchers can optimize the chemical structure of lead compounds to enhance their potency, selectivity, safety, and pharmacokinetic properties, ultimately guiding the design and development of novel drugs with improved efficacy and reduced toxicity.

Interferon-gamma (IFN-γ) is a soluble cytokine that is primarily produced by the activation of natural killer (NK) cells and T lymphocytes, especially CD4+ Th1 cells and CD8+ cytotoxic T cells. It plays a crucial role in the regulation of the immune response against viral and intracellular bacterial infections, as well as tumor cells. IFN-γ has several functions, including activating macrophages to enhance their microbicidal activity, increasing the presentation of major histocompatibility complex (MHC) class I and II molecules on antigen-presenting cells, stimulating the proliferation and differentiation of T cells and NK cells, and inducing the production of other cytokines and chemokines. Additionally, IFN-γ has direct antiproliferative effects on certain types of tumor cells and can enhance the cytotoxic activity of immune cells against infected or malignant cells.

Colonic neoplasms refer to abnormal growths in the large intestine, also known as the colon. These growths can be benign (non-cancerous) or malignant (cancerous). The two most common types of colonic neoplasms are adenomas and carcinomas.

Adenomas are benign tumors that can develop into cancer over time if left untreated. They are often found during routine colonoscopies and can be removed during the procedure.

Carcinomas, on the other hand, are malignant tumors that invade surrounding tissues and can spread to other parts of the body. Colorectal cancer is the third leading cause of cancer-related deaths in the United States, and colonic neoplasms are a significant risk factor for developing this type of cancer.

Regular screenings for colonic neoplasms are recommended for individuals over the age of 50 or those with a family history of colorectal cancer or other risk factors. Early detection and removal of colonic neoplasms can significantly reduce the risk of developing colorectal cancer.

Drug screening assays for antitumor agents are laboratory tests used to identify and evaluate the effectiveness of potential drugs or compounds that can inhibit the growth of tumor cells or induce their death. These assays are typically performed in vitro (in a test tube or petri dish) using cell cultures of various types of cancer cells.

The assays measure different parameters such as cell viability, proliferation, apoptosis (programmed cell death), and cytotoxicity to determine the ability of the drug to kill or inhibit the growth of tumor cells. The results of these assays can help researchers identify promising antitumor agents that can be further developed for clinical use in cancer treatment.

There are different types of drug screening assays for antitumor agents, including high-throughput screening (HTS) assays, which allow for the rapid and automated testing of a large number of compounds against various cancer cell lines. Other types of assays include phenotypic screening assays, target-based screening assays, and functional screening assays, each with its own advantages and limitations.

Overall, drug screening assays for antitumor agents play a critical role in the development of new cancer therapies by providing valuable information on the activity and safety of potential drugs, helping to identify effective treatments and reduce the time and cost associated with bringing new drugs to market.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Lymphotoxin-alpha (LT-alpha), also known as Tumor Necrosis Factor-beta (TNF-beta), is a cytokine that belongs to the TNF superfamily. It is primarily produced by activated CD4+ and CD8+ T cells, and to some extent by B cells, natural killer (NK) cells, and neutrophils. LT-alpha can form homotrimers or heterotrimers with Lymphotoxin-beta (LT-beta), which bind to the LT-beta receptor (LTβR) and herceptin-resistant tumor cells (HRT) on the surface of various cell types, including immune cells, fibroblasts, and endothelial cells.

The activation of the LTβR signaling pathway plays a crucial role in the development and organization of secondary lymphoid organs, such as lymph nodes, Peyer's patches, and spleen. Additionally, LT-alpha has proinflammatory effects, inducing apoptosis in susceptible cells, activating immune cells, and contributing to the pathogenesis of several inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.

Molecular structure, in the context of biochemistry and molecular biology, refers to the arrangement and organization of atoms and chemical bonds within a molecule. It describes the three-dimensional layout of the constituent elements, including their spatial relationships, bond lengths, and angles. Understanding molecular structure is crucial for elucidating the functions and reactivities of biological macromolecules such as proteins, nucleic acids, lipids, and carbohydrates. Various experimental techniques, like X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM), are employed to determine molecular structures at atomic resolution, providing valuable insights into their biological roles and potential therapeutic targets.

CHO cells, or Chinese Hamster Ovary cells, are a type of immortalized cell line that are commonly used in scientific research and biotechnology. They were originally derived from the ovaries of a female Chinese hamster (Cricetulus griseus) in the 1950s.

CHO cells have several characteristics that make them useful for laboratory experiments. They can grow and divide indefinitely under appropriate conditions, which allows researchers to culture large quantities of them for study. Additionally, CHO cells are capable of expressing high levels of recombinant proteins, making them a popular choice for the production of therapeutic drugs, vaccines, and other biologics.

In particular, CHO cells have become a workhorse in the field of biotherapeutics, with many approved monoclonal antibody-based therapies being produced using these cells. The ability to genetically modify CHO cells through various methods has further expanded their utility in research and industrial applications.

It is important to note that while CHO cells are widely used in scientific research, they may not always accurately represent human cell behavior or respond to drugs and other compounds in the same way as human cells do. Therefore, results obtained using CHO cells should be validated in more relevant systems when possible.

Protein synthesis inhibitors are a class of medications or chemical substances that interfere with the process of protein synthesis in cells. Protein synthesis is the biological process by which cells create proteins, essential components for the structure, function, and regulation of tissues and organs. This process involves two main stages: transcription and translation.

Translation is the stage where the genetic information encoded in messenger RNA (mRNA) is translated into a specific sequence of amino acids, resulting in a protein molecule. Protein synthesis inhibitors work by targeting various components of the translation machinery, such as ribosomes, transfer RNAs (tRNAs), or translation factors, thereby preventing or disrupting the formation of new proteins.

These inhibitors have clinical applications in treating various conditions, including bacterial and viral infections, cancer, and autoimmune disorders. Some examples of protein synthesis inhibitors include:

1. Antibiotics: Certain antibiotics, like tetracyclines, macrolides, aminoglycosides, and chloramphenicol, target bacterial ribosomes and inhibit their ability to synthesize proteins, thereby killing or inhibiting the growth of bacteria.
2. Antiviral drugs: Protein synthesis inhibitors are used to treat viral infections by targeting various stages of the viral replication cycle, including protein synthesis. For example, ribavirin is an antiviral drug that can inhibit viral RNA-dependent RNA polymerase and mRNA capping, which are essential for viral protein synthesis.
3. Cancer therapeutics: Some chemotherapeutic agents target rapidly dividing cancer cells by interfering with their protein synthesis machinery. For instance, puromycin is an aminonucleoside antibiotic that can be incorporated into elongating polypeptide chains during translation, causing premature termination and inhibiting overall protein synthesis in cancer cells.
4. Immunosuppressive drugs: Protein synthesis inhibitors are also used as immunosuppressants to treat autoimmune disorders and prevent organ rejection after transplantation. For example, tacrolimus and cyclosporine bind to and inhibit the activity of calcineurin, a protein phosphatase that plays a crucial role in T-cell activation and cytokine production.

In summary, protein synthesis inhibitors are valuable tools for treating various diseases, including bacterial and viral infections, cancer, and autoimmune disorders. By targeting the protein synthesis machinery of pathogens or abnormal cells, these drugs can selectively inhibit their growth and proliferation while minimizing harm to normal cells.

K562 cells are a type of human cancer cell that are commonly used in scientific research. They are derived from a patient with chronic myelogenous leukemia (CML), a type of cancer that affects the blood and bone marrow.

K562 cells are often used as a model system to study various biological processes, including cell signaling, gene expression, differentiation, and apoptosis (programmed cell death). They are also commonly used in drug discovery and development, as they can be used to test the effectiveness of potential new therapies against cancer.

K562 cells have several characteristics that make them useful for research purposes. They are easy to grow and maintain in culture, and they can be manipulated genetically to express or knock down specific genes. Additionally, K562 cells are capable of differentiating into various cell types, such as red blood cells and megakaryocytes, which allows researchers to study the mechanisms of cell differentiation.

It's important to note that while K562 cells are a valuable tool for research, they do not fully recapitulate the complexity of human CML or other cancers. Therefore, findings from studies using K562 cells should be validated in more complex model systems or in clinical trials before they can be translated into treatments for patients.

Neoplasms are abnormal growths of cells or tissues in the body that serve no physiological function. They can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slow growing and do not spread to other parts of the body, while malignant neoplasms are aggressive, invasive, and can metastasize to distant sites.

Neoplasms occur when there is a dysregulation in the normal process of cell division and differentiation, leading to uncontrolled growth and accumulation of cells. This can result from genetic mutations or other factors such as viral infections, environmental exposures, or hormonal imbalances.

Neoplasms can develop in any organ or tissue of the body and can cause various symptoms depending on their size, location, and type. Treatment options for neoplasms include surgery, radiation therapy, chemotherapy, immunotherapy, and targeted therapy, among others.

Cell movement, also known as cell motility, refers to the ability of cells to move independently and change their location within tissue or inside the body. This process is essential for various biological functions, including embryonic development, wound healing, immune responses, and cancer metastasis.

There are several types of cell movement, including:

1. **Crawling or mesenchymal migration:** Cells move by extending and retracting protrusions called pseudopodia or filopodia, which contain actin filaments. This type of movement is common in fibroblasts, immune cells, and cancer cells during tissue invasion and metastasis.
2. **Amoeboid migration:** Cells move by changing their shape and squeezing through tight spaces without forming protrusions. This type of movement is often observed in white blood cells (leukocytes) as they migrate through the body to fight infections.
3. **Pseudopodial extension:** Cells extend pseudopodia, which are temporary cytoplasmic projections containing actin filaments. These protrusions help the cell explore its environment and move forward.
4. **Bacterial flagellar motion:** Bacteria use a whip-like structure called a flagellum to propel themselves through their environment. The rotation of the flagellum is driven by a molecular motor in the bacterial cell membrane.
5. **Ciliary and ependymal movement:** Ciliated cells, such as those lining the respiratory tract and fallopian tubes, have hair-like structures called cilia that beat in coordinated waves to move fluids or mucus across the cell surface.

Cell movement is regulated by a complex interplay of signaling pathways, cytoskeletal rearrangements, and adhesion molecules, which enable cells to respond to environmental cues and navigate through tissues.

Interleukin-1 (IL-1) is a type of cytokine, which are proteins that play a crucial role in cell signaling. Specifically, IL-1 is a pro-inflammatory cytokine that is involved in the regulation of immune and inflammatory responses in the body. It is produced by various cells, including monocytes, macrophages, and dendritic cells, in response to infection or injury.

IL-1 exists in two forms, IL-1α and IL-1β, which have similar biological activities but are encoded by different genes. Both forms of IL-1 bind to the same receptor, IL-1R, and activate intracellular signaling pathways that lead to the production of other cytokines, chemokines, and inflammatory mediators.

IL-1 has a wide range of biological effects, including fever induction, activation of immune cells, regulation of hematopoiesis (the formation of blood cells), and modulation of bone metabolism. Dysregulation of IL-1 production or activity has been implicated in various inflammatory diseases, such as rheumatoid arthritis, gout, and inflammatory bowel disease. Therefore, IL-1 is an important target for the development of therapies aimed at modulating the immune response and reducing inflammation.

Adenoviridae is a family of viruses that includes many species that can cause various types of illnesses in humans and animals. These viruses are non-enveloped, meaning they do not have a lipid membrane, and have an icosahedral symmetry with a diameter of approximately 70-90 nanometers.

The genome of Adenoviridae is composed of double-stranded DNA, which contains linear chromosomes ranging from 26 to 45 kilobases in length. The family is divided into five genera: Mastadenovirus, Aviadenovirus, Atadenovirus, Siadenovirus, and Ichtadenovirus.

Human adenoviruses are classified under the genus Mastadenovirus and can cause a wide range of illnesses, including respiratory infections, conjunctivitis, gastroenteritis, and upper respiratory tract infections. Some serotypes have also been associated with more severe diseases such as hemorrhagic cystitis, hepatitis, and meningoencephalitis.

Adenoviruses are highly contagious and can be transmitted through respiratory droplets, fecal-oral route, or by contact with contaminated surfaces. They can also be spread through contaminated water sources. Infections caused by adenoviruses are usually self-limiting, but severe cases may require hospitalization and supportive care.

Neurons, also known as nerve cells or neurocytes, are specialized cells that constitute the basic unit of the nervous system. They are responsible for receiving, processing, and transmitting information and signals within the body. Neurons have three main parts: the dendrites, the cell body (soma), and the axon. The dendrites receive signals from other neurons or sensory receptors, while the axon transmits these signals to other neurons, muscles, or glands. The junction between two neurons is called a synapse, where neurotransmitters are released to transmit the signal across the gap (synaptic cleft) to the next neuron. Neurons vary in size, shape, and structure depending on their function and location within the nervous system.

Monocytes are a type of white blood cell that are part of the immune system. They are large cells with a round or oval shape and a nucleus that is typically indented or horseshoe-shaped. Monocytes are produced in the bone marrow and then circulate in the bloodstream, where they can differentiate into other types of immune cells such as macrophages and dendritic cells.

Monocytes play an important role in the body's defense against infection and tissue damage. They are able to engulf and digest foreign particles, microorganisms, and dead or damaged cells, which helps to clear them from the body. Monocytes also produce cytokines, which are signaling molecules that help to coordinate the immune response.

Elevated levels of monocytes in the bloodstream can be a sign of an ongoing infection, inflammation, or other medical conditions such as cancer or autoimmune disorders.

Cytoprotection refers to the protection of cells, particularly from harmful agents or damaging conditions. This can be achieved through various mechanisms, such as:

1. Activation of cellular defense pathways that help cells resist damage.
2. Inhibition of oxidative stress and inflammation, which can cause cellular damage.
3. Enhancement of cell repair processes, enabling cells to recover from damage more effectively.
4. Prevention of apoptosis (programmed cell death) or promotion of cell survival signals.

In the medical context, cytoprotective agents are often used to protect tissues and organs from injury due to various factors like chemotherapy, radiation therapy, ischemia-reperfusion injury, or inflammation. These agents can include antioxidants, anti-inflammatory drugs, growth factors, and other compounds that help maintain cellular integrity and function.

Propidium is not a medical condition or diagnosis, but rather it is a fluorescent dye that is used in medical and scientific research. It is often used in procedures such as flow cytometry and microscopy to stain and label cells or nucleic acids (DNA or RNA). Propidium iodide is the most commonly used form of propidium, which binds to DNA by intercalating between the bases.

Once stained with propidium iodide, cells with damaged membranes will take up the dye and can be detected and analyzed based on their fluorescence intensity. This makes it possible to identify and quantify dead or damaged cells in a population, as well as to analyze DNA content and cell cycle status.

Overall, propidium is an important tool in medical research and diagnostics, providing valuable information about cell health, viability, and genetic material.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

Phosphatidylserines are a type of phospholipids that are essential components of the cell membrane, particularly in the brain. They play a crucial role in maintaining the fluidity and permeability of the cell membrane, and are involved in various cellular processes such as signal transduction, protein anchorage, and apoptosis (programmed cell death). Phosphatidylserines contain a polar head group made up of serine amino acids and two non-polar fatty acid tails. They are abundant in the inner layer of the cell membrane but can be externalized to the outer layer during apoptosis, where they serve as signals for recognition and removal of dying cells by the immune system. Phosphatidylserines have been studied for their potential benefits in various medical conditions, including cognitive decline, Alzheimer's disease, and depression.

The endothelium is a thin layer of simple squamous epithelial cells that lines the interior surface of blood vessels, lymphatic vessels, and heart chambers. The vascular endothelium, specifically, refers to the endothelial cells that line the blood vessels. These cells play a crucial role in maintaining vascular homeostasis by regulating vasomotor tone, coagulation, platelet activation, inflammation, and permeability of the vessel wall. They also contribute to the growth and repair of the vascular system and are involved in various pathological processes such as atherosclerosis, hypertension, and diabetes.

Hepatocytes are the predominant type of cells in the liver, accounting for about 80% of its cytoplasmic mass. They play a key role in protein synthesis, protein storage, transformation of carbohydrates, synthesis of cholesterol, bile salts and phospholipids, detoxification, modification, and excretion of exogenous and endogenous substances, initiation of formation and secretion of bile, and enzyme production. Hepatocytes are essential for the maintenance of homeostasis in the body.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

4-1BB ligand, also known as CD137L or TNFSF9, is a type II transmembrane protein that belongs to the tumor necrosis factor (TNF) superfamily. It is a ligand for the 4-1BB receptor (CD137), which is a costimulatory molecule expressed on activated T cells.

The interaction between 4-1BB and its ligand provides a critical costimulatory signal that enhances T cell activation, proliferation, and survival. This signaling pathway plays an important role in the regulation of immune responses and has been implicated in various physiological and pathological processes, including autoimmunity, infectious diseases, and cancer.

In the context of cancer immunotherapy, agonistic antibodies targeting 4-1BB have shown promise in preclinical and clinical studies as a means to enhance anti-tumor immune responses. The binding of these antibodies to 4-1BB leads to its clustering and activation, which in turn promotes the expansion and survival of tumor-specific T cells, thereby enhancing their ability to eliminate cancer cells.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Cell cycle proteins are a group of regulatory proteins that control the progression of the cell cycle, which is the series of events that take place in a eukaryotic cell leading to its division and duplication. These proteins can be classified into several categories based on their functions during different stages of the cell cycle.

The major groups of cell cycle proteins include:

1. Cyclin-dependent kinases (CDKs): CDKs are serine/threonine protein kinases that regulate key transitions in the cell cycle. They require binding to a regulatory subunit called cyclin to become active. Different CDK-cyclin complexes are activated at different stages of the cell cycle.
2. Cyclins: Cyclins are a family of regulatory proteins that bind and activate CDKs. Their levels fluctuate throughout the cell cycle, with specific cyclins expressed during particular phases. For example, cyclin D is important for the G1 to S phase transition, while cyclin B is required for the G2 to M phase transition.
3. CDK inhibitors (CKIs): CKIs are regulatory proteins that bind to and inhibit CDKs, thereby preventing their activation. CKIs can be divided into two main families: the INK4 family and the Cip/Kip family. INK4 family members specifically inhibit CDK4 and CDK6, while Cip/Kip family members inhibit a broader range of CDKs.
4. Anaphase-promoting complex/cyclosome (APC/C): APC/C is an E3 ubiquitin ligase that targets specific proteins for degradation by the 26S proteasome. During the cell cycle, APC/C regulates the metaphase to anaphase transition and the exit from mitosis by targeting securin and cyclin B for degradation.
5. Other regulatory proteins: Several other proteins play crucial roles in regulating the cell cycle, such as p53, a transcription factor that responds to DNA damage and arrests the cell cycle, and the polo-like kinases (PLKs), which are involved in various aspects of mitosis.

Overall, cell cycle proteins work together to ensure the proper progression of the cell cycle, maintain genomic stability, and prevent uncontrolled cell growth, which can lead to cancer.

Gene knockdown techniques are methods used to reduce the expression or function of specific genes in order to study their role in biological processes. These techniques typically involve the use of small RNA molecules, such as siRNAs (small interfering RNAs) or shRNAs (short hairpin RNAs), which bind to and promote the degradation of complementary mRNA transcripts. This results in a decrease in the production of the protein encoded by the targeted gene.

Gene knockdown techniques are often used as an alternative to traditional gene knockout methods, which involve completely removing or disrupting the function of a gene. Knockdown techniques allow for more subtle and reversible manipulation of gene expression, making them useful for studying genes that are essential for cell survival or have redundant functions.

These techniques are widely used in molecular biology research to investigate gene function, genetic interactions, and disease mechanisms. However, it is important to note that gene knockdown can have off-target effects and may not completely eliminate the expression of the targeted gene, so results should be interpreted with caution.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

Imidazoles are a class of heterocyclic organic compounds that contain a double-bonded nitrogen atom and two additional nitrogen atoms in the ring. They have the chemical formula C3H4N2. In a medical context, imidazoles are commonly used as antifungal agents. Some examples of imidazole-derived antifungals include clotrimazole, miconazole, and ketoconazole. These medications work by inhibiting the synthesis of ergosterol, a key component of fungal cell membranes, leading to increased permeability and death of the fungal cells. Imidazoles may also have anti-inflammatory, antibacterial, and anticancer properties.

Thiazoles are organic compounds that contain a heterocyclic ring consisting of a nitrogen atom and a sulfur atom, along with two carbon atoms and two hydrogen atoms. They have the chemical formula C3H4NS. Thiazoles are present in various natural and synthetic substances, including some vitamins, drugs, and dyes. In the context of medicine, thiazole derivatives have been developed as pharmaceuticals for their diverse biological activities, such as anti-inflammatory, antifungal, antibacterial, and antihypertensive properties. Some well-known examples include thiazide diuretics (e.g., hydrochlorothiazide) used to treat high blood pressure and edema, and the antidiabetic drug pioglitazone.

MAP Kinase Kinase 4 (MAP2K4 or MKK4) is a serine/threonine protein kinase that plays a crucial role in intracellular signal transduction pathways, particularly the mitogen-activated protein kinase (MAPK) cascades. These cascades are involved in various cellular processes such as proliferation, differentiation, survival, and apoptosis in response to extracellular stimuli like cytokines, growth factors, and stress signals.

MAP2K4 specifically activates the c-Jun N-terminal kinase (JNK) pathway by phosphorylating and activating JNK proteins. The activation of JNK leads to the phosphorylation and regulation of various transcription factors, ultimately influencing gene expression and cellular responses. Dysregulation of MAP2K4 has been implicated in several diseases, including cancer and inflammatory disorders.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

X-ray crystallography is a technique used in structural biology to determine the three-dimensional arrangement of atoms in a crystal lattice. In this method, a beam of X-rays is directed at a crystal and diffracts, or spreads out, into a pattern of spots called reflections. The intensity and angle of each reflection are measured and used to create an electron density map, which reveals the position and type of atoms in the crystal. This information can be used to determine the molecular structure of a compound, including its shape, size, and chemical bonds. X-ray crystallography is a powerful tool for understanding the structure and function of biological macromolecules such as proteins and nucleic acids.

Antisense oligonucleotides (ASOs) are short synthetic single stranded DNA-like molecules that are designed to complementarily bind to a specific RNA sequence through base-pairing, with the goal of preventing the translation of the target RNA into protein or promoting its degradation.

The antisense oligonucleotides work by hybridizing to the targeted messenger RNA (mRNA) molecule and inducing RNase H-mediated degradation, sterically blocking ribosomal translation, or modulating alternative splicing of the pre-mRNA.

ASOs have shown promise as therapeutic agents for various genetic diseases, viral infections, and cancers by specifically targeting disease-causing genes. However, their clinical application is still facing challenges such as off-target effects, stability, delivery, and potential immunogenicity.

Mitochondrial membranes refer to the double-layered structure that surrounds the mitochondrion, an organelle found in the cells of most eukaryotes. The outer mitochondrial membrane is a smooth, porous membrane that allows small molecules and ions to pass through freely, while the inner mitochondrial membrane is highly folded and selectively permeable, controlling the movement of larger molecules and maintaining the electrochemical gradient necessary for ATP synthesis. The space between the two membranes is called the intermembrane space, and the space within the inner membrane is called the matrix. Together, these membranes play a crucial role in energy production, metabolism, and cellular homeostasis.

Immunoprecipitation (IP) is a research technique used in molecular biology and immunology to isolate specific antigens or antibodies from a mixture. It involves the use of an antibody that recognizes and binds to a specific antigen, which is then precipitated out of solution using various methods, such as centrifugation or chemical cross-linking.

In this technique, an antibody is first incubated with a sample containing the antigen of interest. The antibody specifically binds to the antigen, forming an immune complex. This complex can then be captured by adding protein A or G agarose beads, which bind to the constant region of the antibody. The beads are then washed to remove any unbound proteins, leaving behind the precipitated antigen-antibody complex.

Immunoprecipitation is a powerful tool for studying protein-protein interactions, post-translational modifications, and signal transduction pathways. It can also be used to detect and quantify specific proteins in biological samples, such as cells or tissues, and to identify potential biomarkers of disease.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Prostatic neoplasms refer to abnormal growths in the prostate gland, which can be benign or malignant. The term "neoplasm" simply means new or abnormal tissue growth. When it comes to the prostate, neoplasms are often referred to as tumors.

Benign prostatic neoplasms, such as prostate adenomas, are non-cancerous overgrowths of prostate tissue. They usually grow slowly and do not spread to other parts of the body. While they can cause uncomfortable symptoms like difficulty urinating, they are generally not life-threatening.

Malignant prostatic neoplasms, on the other hand, are cancerous growths. The most common type of prostate cancer is adenocarcinoma, which arises from the glandular cells in the prostate. Prostate cancer often grows slowly and may not cause any symptoms for many years. However, some types of prostate cancer can be aggressive and spread quickly to other parts of the body, such as the bones or lymph nodes.

It's important to note that while prostate neoplasms can be concerning, early detection and treatment can significantly improve outcomes for many men. Regular check-ups with a healthcare provider are key to monitoring prostate health and catching any potential issues early on.

Autophagy is a fundamental cellular process that involves the degradation and recycling of damaged or unnecessary cellular components, such as proteins and organelles. The term "autophagy" comes from the Greek words "auto" meaning self and "phagy" meaning eating. It is a natural process that occurs in all types of cells and helps maintain cellular homeostasis by breaking down and recycling these components.

There are several different types of autophagy, including macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Macroautophagy is the most well-known form and involves the formation of a double-membraned vesicle called an autophagosome, which engulfs the cellular component to be degraded. The autophagosome then fuses with a lysosome, an organelle containing enzymes that break down and recycle the contents of the autophagosome.

Autophagy plays important roles in various cellular processes, including adaptation to starvation, removal of damaged organelles, clearance of protein aggregates, and regulation of programmed cell death (apoptosis). Dysregulation of autophagy has been implicated in a number of diseases, including cancer, neurodegenerative disorders, and infectious diseases.

p53 is a tumor suppressor gene that encodes a protein responsible for controlling cell growth and division. The p53 protein plays a crucial role in preventing the development of cancer by regulating the cell cycle and activating DNA repair processes when genetic damage is detected. If the damage is too severe to be repaired, p53 can trigger apoptosis, or programmed cell death, to prevent the propagation of potentially cancerous cells. Mutations in the TP53 gene, which encodes the p53 protein, are among the most common genetic alterations found in human cancers and are often associated with a poor prognosis.

Transcription Factor CHOP, also known as DNA Binding Protein C/EBP Homologous Protein or GADD153 (Growth Arrest and DNA Damage-inducible protein 153), is a transcription factor that is involved in the regulation of gene expression in response to various stress stimuli, such as endoplasmic reticulum (ER) stress, hypoxia, and DNA damage.

CHOP is a member of the C/EBP (CCAAT/enhancer-binding protein) family of transcription factors, which bind to specific DNA sequences called cis-acting elements in the promoter regions of target genes. CHOP can form heterodimers with other C/EBP family members and bind to their target DNA sequences, thereby regulating gene expression.

Under normal physiological conditions, CHOP is expressed at low levels. However, under stress conditions, such as ER stress, the expression of CHOP is upregulated through the activation of the unfolded protein response (UPR) signaling pathways. Once activated, CHOP can induce the transcription of genes involved in apoptosis, cell cycle arrest, and oxidative stress response, leading to programmed cell death or survival, depending on the severity and duration of the stress signal.

Therefore, CHOP plays a critical role in maintaining cellular homeostasis by regulating gene expression in response to various stress stimuli, and its dysregulation has been implicated in several pathological conditions, including neurodegenerative diseases, cancer, and metabolic disorders.

Endothelial cells are the type of cells that line the inner surface of blood vessels, lymphatic vessels, and heart chambers. They play a crucial role in maintaining vascular homeostasis by controlling vasomotor tone, coagulation, platelet activation, and inflammation. Endothelial cells also regulate the transport of molecules between the blood and surrounding tissues, and contribute to the maintenance of the structural integrity of the vasculature. They are flat, elongated cells with a unique morphology that allows them to form a continuous, nonthrombogenic lining inside the vessels. Endothelial cells can be isolated from various tissues and cultured in vitro for research purposes.

Cytoplasmic receptors and nuclear receptors are two types of intracellular receptors that play crucial roles in signal transduction pathways and regulation of gene expression. They are classified based on their location within the cell. Here are the medical definitions for each:

1. Cytoplasmic Receptors: These are a group of intracellular receptors primarily found in the cytoplasm of cells, which bind to specific hormones, growth factors, or other signaling molecules. Upon binding, these receptors undergo conformational changes that allow them to interact with various partners, such as adapter proteins and enzymes, leading to activation of downstream signaling cascades. These pathways ultimately result in modulation of cellular processes like proliferation, differentiation, and apoptosis. Examples of cytoplasmic receptors include receptor tyrosine kinases (RTKs), serine/threonine kinase receptors, and cytokine receptors.
2. Nuclear Receptors: These are a distinct class of intracellular receptors that reside primarily in the nucleus of cells. They bind to specific ligands, such as steroid hormones, thyroid hormones, vitamin D, retinoic acid, and various other lipophilic molecules. Upon binding, nuclear receptors undergo conformational changes that facilitate their interaction with co-regulatory proteins and the DNA. This interaction results in the modulation of gene transcription, ultimately leading to alterations in protein expression and cellular responses. Examples of nuclear receptors include estrogen receptor (ER), androgen receptor (AR), glucocorticoid receptor (GR), thyroid hormone receptor (TR), vitamin D receptor (VDR), and peroxisome proliferator-activated receptors (PPARs).

Both cytoplasmic and nuclear receptors are essential components of cellular communication networks, allowing cells to respond appropriately to extracellular signals and maintain homeostasis. Dysregulation of these receptors has been implicated in various diseases, including cancer, diabetes, and autoimmune disorders.

Breast neoplasms refer to abnormal growths in the breast tissue that can be benign or malignant. Benign breast neoplasms are non-cancerous tumors or growths, while malignant breast neoplasms are cancerous tumors that can invade surrounding tissues and spread to other parts of the body.

Breast neoplasms can arise from different types of cells in the breast, including milk ducts, milk sacs (lobules), or connective tissue. The most common type of breast cancer is ductal carcinoma, which starts in the milk ducts and can spread to other parts of the breast and nearby structures.

Breast neoplasms are usually detected through screening methods such as mammography, ultrasound, or MRI, or through self-examination or clinical examination. Treatment options for breast neoplasms depend on several factors, including the type and stage of the tumor, the patient's age and overall health, and personal preferences. Treatment may include surgery, radiation therapy, chemotherapy, hormone therapy, or targeted therapy.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Acetylcysteine is a medication that is used for its antioxidant effects and to help loosen thick mucus in the lungs. It is commonly used to treat conditions such as chronic bronchitis, emphysema, and cystic fibrosis. Acetylcysteine is also known by the brand names Mucomyst and Accolate. It works by thinning and breaking down mucus in the airways, making it easier to cough up and clear the airways. Additionally, acetylcysteine is an antioxidant that helps to protect cells from damage caused by free radicals. It is available as a oral tablet, liquid, or inhaled medication.

Medical Definition:
Microtubule-associated proteins (MAPs) are a diverse group of proteins that bind to microtubules, which are key components of the cytoskeleton in eukaryotic cells. MAPs play crucial roles in regulating microtubule dynamics and stability, as well as in mediating interactions between microtubules and other cellular structures. They can be classified into several categories based on their functions, including:

1. Microtubule stabilizers: These MAPs promote the assembly of microtubules and protect them from disassembly by enhancing their stability. Examples include tau proteins and MAP2.
2. Microtubule dynamics regulators: These MAPs modulate the rate of microtubule polymerization and depolymerization, allowing for dynamic reorganization of the cytoskeleton during cell division and other processes. Examples include stathmin and XMAP215.
3. Microtubule motor proteins: These MAPs use energy from ATP hydrolysis to move along microtubules, transporting various cargoes within the cell. Examples include kinesin and dynein.
4. Adapter proteins: These MAPs facilitate interactions between microtubules and other cellular structures, such as membranes, organelles, or signaling molecules. Examples include MAP4 and CLASPs.

Dysregulation of MAPs has been implicated in several diseases, including neurodegenerative disorders like Alzheimer's disease (where tau proteins form abnormal aggregates called neurofibrillary tangles) and cancer (where altered microtubule dynamics can contribute to uncontrolled cell division).

Extracellular signal-regulated mitogen-activated protein kinases (ERKs or Extracellular signal-regulated kinases) are a subfamily of the MAPK (mitogen-activated protein kinase) family, which are serine/threonine protein kinases that regulate various cellular processes such as proliferation, differentiation, migration, and survival in response to extracellular signals.

ERKs are activated by a cascade of phosphorylation events initiated by the binding of growth factors, hormones, or other extracellular molecules to their respective receptors. This activation results in the formation of a complex signaling pathway that involves the sequential activation of several protein kinases, including Ras, Raf, MEK (MAPK/ERK kinase), and ERK.

Once activated, ERKs translocate to the nucleus where they phosphorylate and activate various transcription factors, leading to changes in gene expression that ultimately result in the appropriate cellular response. Dysregulation of the ERK signaling pathway has been implicated in a variety of diseases, including cancer, diabetes, and neurological disorders.

Indole is not strictly a medical term, but it is a chemical compound that can be found in the human body and has relevance to medical and biological research. Indoles are organic compounds that contain a bicyclic structure consisting of a six-membered benzene ring fused to a five-membered pyrrole ring.

In the context of medicine, indoles are particularly relevant due to their presence in certain hormones and other biologically active molecules. For example, the neurotransmitter serotonin contains an indole ring, as does the hormone melatonin. Indoles can also be found in various plant-based foods, such as cruciferous vegetables (e.g., broccoli, kale), and have been studied for their potential health benefits.

Some indoles, like indole-3-carbinol and diindolylmethane, are found in these vegetables and can have anti-cancer properties by modulating estrogen metabolism, reducing inflammation, and promoting cell death (apoptosis) in cancer cells. However, it is essential to note that further research is needed to fully understand the potential health benefits and risks associated with indoles.

COS cells are a type of cell line that are commonly used in molecular biology and genetic research. The name "COS" is an acronym for "CV-1 in Origin," as these cells were originally derived from the African green monkey kidney cell line CV-1. COS cells have been modified through genetic engineering to express high levels of a protein called SV40 large T antigen, which allows them to efficiently take up and replicate exogenous DNA.

There are several different types of COS cells that are commonly used in research, including COS-1, COS-3, and COS-7 cells. These cells are widely used for the production of recombinant proteins, as well as for studies of gene expression, protein localization, and signal transduction.

It is important to note that while COS cells have been a valuable tool in scientific research, they are not without their limitations. For example, because they are derived from monkey kidney cells, there may be differences in the way that human genes are expressed or regulated in these cells compared to human cells. Additionally, because COS cells express SV40 large T antigen, they may have altered cell cycle regulation and other phenotypic changes that could affect experimental results. Therefore, it is important to carefully consider the choice of cell line when designing experiments and interpreting results.

Proto-oncogene proteins, such as c-Myc, are crucial regulators of normal cell growth, differentiation, and apoptosis (programmed cell death). When proto-oncogenes undergo mutations or alterations in their regulation, they can become overactive or overexpressed, leading to the formation of oncogenes. Oncogenic forms of c-Myc contribute to uncontrolled cell growth and division, which can ultimately result in cancer development.

The c-Myc protein is a transcription factor that binds to specific DNA sequences, influencing the expression of target genes involved in various cellular processes, such as:

1. Cell cycle progression: c-Myc promotes the expression of genes required for the G1 to S phase transition, driving cells into the DNA synthesis and division phase.
2. Metabolism: c-Myc regulates genes associated with glucose metabolism, glycolysis, and mitochondrial function, enhancing energy production in rapidly dividing cells.
3. Apoptosis: c-Myc can either promote or inhibit apoptosis, depending on the cellular context and the presence of other regulatory factors.
4. Differentiation: c-Myc generally inhibits differentiation by repressing genes that are necessary for specialized cell functions.
5. Angiogenesis: c-Myc can induce the expression of pro-angiogenic factors, promoting the formation of new blood vessels to support tumor growth.

Dysregulation of c-Myc is frequently observed in various types of cancer, making it an important therapeutic target for cancer treatment.

Confocal microscopy is a powerful imaging technique used in medical and biological research to obtain high-resolution, contrast-rich images of thick samples. This super-resolution technology provides detailed visualization of cellular structures and processes at various depths within a specimen.

In confocal microscopy, a laser beam focused through a pinhole illuminates a small spot within the sample. The emitted fluorescence or reflected light from this spot is then collected by a detector, passing through a second pinhole that ensures only light from the focal plane reaches the detector. This process eliminates out-of-focus light, resulting in sharp images with improved contrast compared to conventional widefield microscopy.

By scanning the laser beam across the sample in a raster pattern and collecting fluorescence at each point, confocal microscopy generates optical sections of the specimen. These sections can be combined to create three-dimensional reconstructions, allowing researchers to study cellular architecture and interactions within complex tissues.

Confocal microscopy has numerous applications in medical research, including studying protein localization, tracking intracellular dynamics, analyzing cell morphology, and investigating disease mechanisms at the cellular level. Additionally, it is widely used in clinical settings for diagnostic purposes, such as analyzing skin lesions or detecting pathogens in patient samples.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Doxorubicin is a type of chemotherapy medication known as an anthracycline. It works by interfering with the DNA in cancer cells, which prevents them from growing and multiplying. Doxorubicin is used to treat a wide variety of cancers, including leukemia, lymphoma, breast cancer, lung cancer, ovarian cancer, and many others. It may be given alone or in combination with other chemotherapy drugs.

Doxorubicin is usually administered through a vein (intravenously) and can cause side effects such as nausea, vomiting, hair loss, mouth sores, and increased risk of infection. It can also cause damage to the heart muscle, which can lead to heart failure in some cases. For this reason, doctors may monitor patients' heart function closely while they are receiving doxorubicin treatment.

It is important for patients to discuss the potential risks and benefits of doxorubicin therapy with their healthcare provider before starting treatment.

Lymphocytes are a type of white blood cell that is an essential part of the immune system. They are responsible for recognizing and responding to potentially harmful substances such as viruses, bacteria, and other foreign invaders. There are two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-cells).

B-lymphocytes produce antibodies, which are proteins that help to neutralize or destroy foreign substances. When a B-cell encounters a foreign substance, it becomes activated and begins to divide and differentiate into plasma cells, which produce and secrete large amounts of antibodies. These antibodies bind to the foreign substance, marking it for destruction by other immune cells.

T-lymphocytes, on the other hand, are involved in cell-mediated immunity. They directly attack and destroy infected cells or cancerous cells. T-cells can also help to regulate the immune response by producing chemical signals that activate or inhibit other immune cells.

Lymphocytes are produced in the bone marrow and mature in either the bone marrow (B-cells) or the thymus gland (T-cells). They circulate throughout the body in the blood and lymphatic system, where they can be found in high concentrations in lymph nodes, the spleen, and other lymphoid organs.

Abnormalities in the number or function of lymphocytes can lead to a variety of immune-related disorders, including immunodeficiency diseases, autoimmune disorders, and cancer.

Gamma rays are a type of ionizing radiation that is released from the nucleus of an atom during radioactive decay. They are high-energy photons, with wavelengths shorter than 0.01 nanometers and frequencies greater than 3 x 10^19 Hz. Gamma rays are electromagnetic radiation, similar to X-rays, but with higher energy levels and the ability to penetrate matter more deeply. They can cause damage to living tissue and are used in medical imaging and cancer treatment.

Transcriptional activation is the process by which a cell increases the rate of transcription of specific genes from DNA to RNA. This process is tightly regulated and plays a crucial role in various biological processes, including development, differentiation, and response to environmental stimuli.

Transcriptional activation occurs when transcription factors (proteins that bind to specific DNA sequences) interact with the promoter region of a gene and recruit co-activator proteins. These co-activators help to remodel the chromatin structure around the gene, making it more accessible for the transcription machinery to bind and initiate transcription.

Transcriptional activation can be regulated at multiple levels, including the availability and activity of transcription factors, the modification of histone proteins, and the recruitment of co-activators or co-repressors. Dysregulation of transcriptional activation has been implicated in various diseases, including cancer and genetic disorders.

HCT116 cells are a type of human colon cancer cell line that is widely used in scientific research. They were originally established in the early 1980s from a primary colon tumor that had metastasized to the liver. HCT116 cells are known for their stability, robust growth, and susceptibility to various genetic manipulations, making them a popular choice for studying cancer biology, drug discovery, and gene function.

These cells have several important features that make them useful in research. For example, they harbor mutations in key genes involved in colorectal cancer development, such as the adenomatous polyposis coli (APC) gene and the KRAS oncogene. Additionally, HCT116 cells can be easily cultured in the lab and are amenable to a variety of experimental techniques, including genetic modification, drug screening, and protein analysis.

It is important to note that while HCT116 cells provide valuable insights into colon cancer biology, they represent only one type of cancer cell line, and their behavior may not necessarily reflect the complexity of human tumors in vivo. Therefore, researchers must exercise caution when interpreting results obtained from these cells and consider other complementary approaches to validate their findings.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

Immunologic receptors are specialized proteins found on the surface of immune cells that recognize and bind to specific molecules, known as antigens, on the surface of pathogens or infected cells. This binding triggers a series of intracellular signaling events that activate the immune cell and initiate an immune response.

There are several types of immunologic receptors, including:

1. T-cell receptors (TCRs): These receptors are found on the surface of T cells and recognize antigens presented in the context of major histocompatibility complex (MHC) molecules.
2. B-cell receptors (BCRs): These receptors are found on the surface of B cells and recognize free antigens in solution.
3. Pattern recognition receptors (PRRs): These receptors are found inside immune cells and recognize conserved molecular patterns associated with pathogens, such as lipopolysaccharides and flagellin.
4. Fc receptors: These receptors are found on the surface of various immune cells and bind to the constant region of antibodies, mediating effector functions such as phagocytosis and antibody-dependent cellular cytotoxicity (ADCC).

Immunologic receptors play a critical role in the recognition and elimination of pathogens and infected cells, and dysregulation of these receptors can lead to immune disorders and diseases.

CD95 (also known as Fas or APO-1) is a type of cell surface receptor that can bind to specific proteins and trigger programmed cell death, also known as apoptosis. It is an important regulator of the immune system and helps to control the activation and deletion of immune cells. CD95 ligand (CD95L), the protein that binds to CD95, is expressed on activated T-cells and can induce apoptosis in other cells that express CD95, including other T-cells and tumor cells.

An antigen is any substance that can stimulate an immune response, leading to the production of antibodies or activation of immune cells. In the context of CD95, antigens may refer to substances that can induce the expression of CD95 on the surface of cells, making them susceptible to CD95L-mediated apoptosis. These antigens could include viral proteins, tumor antigens, or other substances that trigger an immune response.

Therefore, the medical definition of 'antigens, CD95' may refer to substances that can induce the expression of CD95 on the surface of cells and make them targets for CD95L-mediated apoptosis.

Gene expression profiling is a laboratory technique used to measure the activity (expression) of thousands of genes at once. This technique allows researchers and clinicians to identify which genes are turned on or off in a particular cell, tissue, or organism under specific conditions, such as during health, disease, development, or in response to various treatments.

The process typically involves isolating RNA from the cells or tissues of interest, converting it into complementary DNA (cDNA), and then using microarray or high-throughput sequencing technologies to determine which genes are expressed and at what levels. The resulting data can be used to identify patterns of gene expression that are associated with specific biological states or processes, providing valuable insights into the underlying molecular mechanisms of diseases and potential targets for therapeutic intervention.

In recent years, gene expression profiling has become an essential tool in various fields, including cancer research, drug discovery, and personalized medicine, where it is used to identify biomarkers of disease, predict patient outcomes, and guide treatment decisions.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

CD4-positive T-lymphocytes, also known as CD4+ T cells or helper T cells, are a type of white blood cell that plays a crucial role in the immune response. They express the CD4 receptor on their surface and help coordinate the immune system's response to infectious agents such as viruses and bacteria.

CD4+ T cells recognize and bind to specific antigens presented by antigen-presenting cells, such as dendritic cells or macrophages. Once activated, they can differentiate into various subsets of effector cells, including Th1, Th2, Th17, and Treg cells, each with distinct functions in the immune response.

CD4+ T cells are particularly important in the immune response to HIV (human immunodeficiency virus), which targets and destroys these cells, leading to a weakened immune system and increased susceptibility to opportunistic infections. The number of CD4+ T cells is often used as a marker of disease progression in HIV infection, with lower counts indicating more advanced disease.

Antioxidants are substances that can prevent or slow damage to cells caused by free radicals, which are unstable molecules that the body produces as a reaction to environmental and other pressures. Antioxidants are able to neutralize free radicals by donating an electron to them, thus stabilizing them and preventing them from causing further damage to the cells.

Antioxidants can be found in a variety of foods, including fruits, vegetables, nuts, and grains. Some common antioxidants include vitamins C and E, beta-carotene, and selenium. Antioxidants are also available as dietary supplements.

In addition to their role in protecting cells from damage, antioxidants have been studied for their potential to prevent or treat a number of health conditions, including cancer, heart disease, and age-related macular degeneration. However, more research is needed to fully understand the potential benefits and risks of using antioxidant supplements.

The thymus gland is an essential organ of the immune system, located in the upper chest, behind the sternum and surrounding the heart. It's primarily active until puberty and begins to shrink in size and activity thereafter. The main function of the thymus gland is the production and maturation of T-lymphocytes (T-cells), which are crucial for cell-mediated immunity, helping to protect the body from infection and cancer.

The thymus gland provides a protected environment where immune cells called pre-T cells develop into mature T cells. During this process, they learn to recognize and respond appropriately to foreign substances while remaining tolerant to self-tissues, which is crucial for preventing autoimmune diseases.

Additionally, the thymus gland produces hormones like thymosin that regulate immune cell activities and contribute to the overall immune response.

In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces ... Bucur O, Ray S, Bucur MC, Almasan A (May 2006). "APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in ... TNF-Related Apoptosis-Inducing Ligand). Vitamins & Hormones. Vol. 67. pp. 1-17. doi:10.1016/S0083-6729(04)67001-4. ISBN 978-0- ... "Identification and characterization of a new member of the TNF family that induces apoptosis". Immunity. 3 (6): 673-82. doi: ...
Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R (2001). "The complexity of TNF-related apoptosis-inducing ligand". ... This receptor can be activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL/APO-2L), and ... Kuang AA, Diehl GE, Zhang J, Winoto A (Aug 2000). "FADD is required for DR4- and DR5-mediated apoptosis: lack of trail-induced ... and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway". Immunity. 7 (6): 821-30. doi:10.1016/s1074-7613(00 ...
2001). "The complexity of TNF-related apoptosis-inducing ligand". Ann. N. Y. Acad. Sci. 926 (1): 52-63. doi:10.1111/j.1749- ... Shu HB, Halpin DR, Goeddel DV (Jul 1997). "Casper is a FADD- and caspase-related inducer of apoptosis". Immunity. 6 (6): 751-63 ... CASP8 and FADD-like apoptosis regulator is a protein that in humans is encoded by the CFLAR gene. Also called c-FLIP (FLICE- ... Overview of all the structural information available in the PDB for UniProt: O15519 (CASP8 and FADD-like apoptosis regulator) ...
TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL". J. Immunol. 160 (1 ... 2003). "TNF-related apoptosis-inducing ligand death pathway-mediated human beta-cell destruction". Diabetologia. 45 (12): 1678- ... 2002). "Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain". J. ... 2002). "Apoptosis-mediating receptor-ligand systems in human retinal pigment epithelial cells". Graefes Arch. Clin. Exp. ...
2003). "TNF-related apoptosis-inducing ligand death pathway-mediated human beta-cell destruction". Diabetologia. 45 (12): 1678- ... 2000). "Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL ... 2002). "Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain". J. ... syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand". J ...
"Adenovirus E1A oncogene expression in tumor cells enhances killing by TNF-related apoptosis-inducing ligand (TRAIL)". Journal ... Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E (August 1992). "The adenovirus E1A proteins induce apoptosis, ... and induce apoptosis. When in coordination with E1B or other oncogenic genes such as activated ras, E1A is able to transform ... However, the structure of E1A can be fixed upon the ligand binding. The structure of cyclic-AMP response element binding ...
OPG also binds to TNF-related apoptosis-inducing ligand (TRAIL) and inhibits TRAIL induced apoptosis of specific cells, ... OPG has also been shown to bind and inhibit TNF-related apoptosis-inducing ligand (TRAIL) which is responsible for inducing ... "TRAF-6 dependent signaling pathway is essential for TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast ... between osteoprotegerin and receptor activator of NF-kappaB or tumor necrosis factor-related apoptosis-inducing ligand: ...
... "miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in ... Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z (February 2012). "MiR-25 regulates apoptosis by targeting Bim in human ovarian ... Xie T, Liang J, Guo R, Liu N, Noble PW, Jiang D (May 2011). "Comprehensive microRNA analysis in bleomycin-induced pulmonary ... Kwok HH, Yue PY, Mak NK, Wong RN (August 2012). "Ginsenoside Rb₁ induces type I collagen expression through peroxisome ...
Myelomonocytic cell products that cause apoptosis include FasL, TNF-α, and TNF-related apoptosis-inducing ligand (TRAIL). ... Cancer cells induce apoptosis of activated T cells (a class of lymphocyte) by secreting exosomes containing death ligands such ... Another T cell inhibitor appears to be the apoptosis inducer Fas ligand (FasL) that is found in the tumor vasculature of tumor ... Both IDO and PD-L1 may induce T cell apoptosis. ... TAMs have been induced in vitro by exposing macrophage ...
Th1 and NK cells both contribute to killing of tumor cells via the TNF-related apoptosis-inducing ligand (TRAIL) pathway. NK ... For example, it was recently shown that CD4+ T cells primarily produce TNF after recognition of tumor-antigens in melanoma. TNF ... Th17 differentiation is induced by TGF-β and IL-6, and signature cytokines of Th17 cells include IL-17A and IL-17F. The ... In conjuncture with TNF (Tumor Necrosis Factors), IFN-γ can have direct cytotoxic effects on tumor cells (Franzen et al., 1986 ...
Koyama S, Koike N, Adachi S (2002). "Expression of TNF-related apoptosis-inducing ligand (TRAIL) and its receptors in gastric ... 2002). "Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain". J. ... This receptor is activated by tumor necrosis factor-related apoptosis inducing ligand (TNFSF10/TRAIL), and thus transduces cell ... and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts". J. Biol. Chem. 275 ...
Elevated secretion of TNF-α and TNF-related apoptosis-inducing ligand (TRAIL) by neutrophils enhances the immune response and ... ① Bacterial toxins from S. Typhimurium, Listeria, and Clostridium can kill tumor cells directly by inducing apoptosis or ... kills tumor cells by inducing apoptosis. ⑧ The macrophage inflammasome is activated through contact with bacterial components ( ... Toxins delivered via Salmonella can upregulate Connexin 43 (Cx43), leading to bacteria-induced gap junctions between the tumor ...
2004). "IFNalpha-stimulated neutrophils and monocytes release a soluble form of TNF-related apoptosis-inducing ligand (TRAIL/ ... 2007). "Mechanism of apoptosis induced by IFN-alpha in human myeloma cells: role of Jak1 and Bim and potentiation by rapamycin ... 2005). "Cross-regulation of TNF and IFN-α in autoimmune diseases". Proc. Natl. Acad. Sci. U.S.A. 102 (9): 3372-7. Bibcode: ... 2006). "Interferon-alpha-induced expression of phospholipid scramblase 1 through STAT1 requires the sequential activation of ...
TNF-related apoptosis inducing ligand). TRAIL is a ligand native to the human body that is currently being developed as a ... Surprisingly, the authors found that each of the agents was able to induce apoptosis in all phases of the cell cycle, ... suggesting that the mechanism through which the drugs induce apoptosis may be independent of the drugs' biochemical targets. In ... Very little direct information is available on whether cells undergo apoptosis from a certain point in the cell cycle. One ...
TNF alpha) and receptors Fas ligand and receptors TNF-related apoptosis-inducing ligand (TRAIL; also called APO-2) and ... and increased numbers of secondary follicles as a result of the inability to induce apoptosis. TNF-related apoptosis-inducing ... "TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies". Biomedicine ... mediates signals that induce apoptosis by binding Fas ligand and therefore plays an important role in follicular atresia. Lack ...
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (Figure 5) is a member of the tumor necrosis factor (TNF) ... Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995;3:673-82 Pitti RM, ... "Dlk/ZIP kinase-induced apoptosis in human medulloblastoma cells: requirement of the mitochondrial apoptosis pathway". British ... As a p53 inducible gene, NOXA is transcribed and translated to Noxa in response to DNA damage and hypoxia induced apoptosis. A ...
Also, FOXO1 regulates TNF-related apoptosis-inducing ligand (TRAIL), which caused FOXO1-induced apoptosis in the human prostate ... It suppresses survival of tumor cells by inducing apoptosis in prostate cancer cells and glioma cells by upregulating the ... Fatty acids in the beta cells activate FOXO1, resulting in apoptosis of the beta cells. FOXO1 activation plays a role in cell ... Additionally, FOXO1 trans-activate Bim protein, which a member of the Bcl-2 family that promotes apoptosis and plays a role in ...
Medications, such as fosbretabulin (a type of combretastatin), bortezomib and TNF-Related Apoptosis Induced Ligand (TRAIL), are ...
... increasing sensitivity to FAS mediated cell death and enhancement of TNF-related apoptosis inducing ligand. They have also been ... This effect is not related to TNF-α inhibition since potent TNF-α inhibitors such as rolipram and pentoxifylline did not ... Inhibition of TNF-α is not the mechanism of thalidomide's inhibition of angiogenesis since numerous other TNF-α inhibitors do ... is induced in the presence of TNF-α and the adhesion of MM cells to BMSC. In vitro proliferation of MM cell lines and ...
... and by anti-Fas agonist antibody or TNF-related apoptosis inducing ligand in vivo. The expression and processing of this ... "Entrez Gene: CASP14 caspase 14, apoptosis-related cysteine peptidase". Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M.; ... 2004). "Vitamin D3 induces caspase-14 expression in psoriatic lesions and enhances caspase-14 processing in organotypic skin ... Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive ...
... the CD95 ligand, TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptors, and loss of heterozygosity. Evidence also ... Mutation of the p53 tumor suppressor gene, induced by UV radiation, has been identified as a crucial step in AK formation. This ... It works in two ways, first by disrupting cell membranes and mitochondria resulting cell death, and then by inducing antibody- ... This is suspected to be related to the abnormal keratinocyte proliferation and differentiation in AKs, which facilitate an ...
... receptor activator of NF-kappa-B ligand and tumor necrosis factor (TNF)-related apoptosis-inducing ligand protein have been ... Dao HH, Essalihi R, Bouvet C, Moreau P (May 2005). "Evolution and modulation of age-related medial elastocalcinosis: impact on ... This condition occurs as an age-related degenerative process. However, it can occur in pseudoxanthoma elasticum and idiopathic ...
"TNF-related apoptosis-inducing ligand" Pointertrails, or mouse trails, show where the GUI pointer has been recently Technical ...
TNF-related apoptosis inducing ligands, galectin-1 and DC-SIGN and production of immunosuppressive molecules such as IL-10, TGF ... These tolerogenic effects are mostly mediated through regulation of T cells such as inducing T cell anergy, T cell apoptosis ... Tol-DCs can be induced by various stimuli. It has been shown that following molecules induce/promote/favour induction of tol- ... "Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells". Blood. 102 (10): 3815-21 ...
TNF-related apoptosis-inducing ligands (TRAILs), and reactive oxygen species. Most of the tumor cells are destroyed in this ... In the second phase, newly synthesized IFN-gamma induces tumor death (to a limited amount) as well as promoting the production ... Tumor infiltration by lymphocytes is seen as a reflection of a tumor-related immune response. There is increasing evidence that ... This again promotes more tumor killing by these cells via apoptosis and the production of reactive oxygen and nitrogen ...
"Identification of Glucocorticoid-Induced TNF Receptor-Related Protein Ligand on Keratinocytes: Ligation by GITR Induces ... and rescue T cells from anti-CD3-induced apoptosis. GITR can be used as Treg marker and its signaling abrogates the suppressive ... 2007). "Cancer immunoediting by GITR (glucocorticoid-induced TNF-related protein) ligand in humans: NK cell/tumor cell ... "The glucocorticoid-induced TNF receptor family-related protein (GITR) is critical to the development of acute pancreatitis in ...
Tumor necrosis factor ligand superfamily member 12 also known as TNF-related weak inducer of apoptosis (TWEAK) is a protein ... a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis". The Journal of Biological Chemistry. ... TWEAK can induce apoptosis via multiple pathways of cell death in a cell type-specific manner. This cytokine is also found to ... The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This protein is a ...
TNF-related activation-induced cytokine (TRANCE), osteoprotegerin ligand (OPGL), and osteoclast differentiation factor (ODF), ... RANKL is an apoptosis regulator gene, a binding partner of osteoprotegerin (OPG), a ligand for the receptor RANK and controls ... RANKL is identified as a part of the TNF family; RANKL is specifically categorized under the TNFSF11, the TNF ligand ... Receptor activator of nuclear factor kappa-Β ligand (RANKL), also known as tumor necrosis factor ligand superfamily member 11 ( ...
Death receptor-mediated apoptosis occurs via activation of death ligands (Fas, TNF, and TRAIL) and death receptors. Upon ... which activates the downstream caspase cascade to induce apoptosis. The PERK-ATF4-CHOP pathway can induce apoptosis by binding ... Under most conditions, CHOP can directly bind to the promoters of downstream related genes. However, under specific condition, ... The overexpression of CHOP can lead to cell cycle arrest and result in cell apoptosis. At the same time, CHOP-induced apoptosis ...
... to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD ... Tartaglia, LA; Ayres, TM; Wong, GHW; Goeddel, DV (1993), "A novel domain within the 55 kd TNF receptor signals cell death", ... The PYD domain, also known as the Domain in Apoptosis and INterferon response (DAPIN) domain, is typically found in vertebrates ... DD-containing proteins are associated with apoptosis and inflammation, similar to the CARD domain. It has also been linked with ...
In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces ... Bucur O, Ray S, Bucur MC, Almasan A (May 2006). "APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in ... TNF-Related Apoptosis-Inducing Ligand). Vitamins & Hormones. Vol. 67. pp. 1-17. doi:10.1016/S0083-6729(04)67001-4. ISBN 978-0- ... "Identification and characterization of a new member of the TNF family that induces apoptosis". Immunity. 3 (6): 673-82. doi: ...
TRAIL (TNF-related apoptosis-inducing ligand) inhibits human adipocyte differentiation via caspase-mediated downregulation of ...
... related apoptosis-inducing ligand (TRAIL) is a member of. Tumor necrosis element (TNF)-related apoptosis-inducing ligand (TRAIL ... member of the tumor necrosis factor superfamily known as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) (16). ... is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. ... fail to induce downstream cell signaling events leading to apoptosis (10, 32). Initial binding experiments suggested that TRAIL ...
TNF-related apoptosis-inducing ligand (TRAIL) is definitely a potential chemotherapeutic agent with. TNF-related apoptosis- ... However, Path concentrations which better induced apoptosis (20 ng/ml), also led to loss of cIAP-1 and XIAP proteins appearance ... inducing ligand (TRAIL) is definitely a potential chemotherapeutic agent with high selectivity for malignant cells. depletion ... These outcomes recommend cIAP-1 SVT-40776 and XIAP depletion could be necessary for effective TRAIL-induced apoptosis. To check ...
... related apoptosis-inducing ligand (TRAIL). Background/Aims Combination therapy utilizing tumor necrosis element (TNF)-related ... 2 The apoptotic effect of combined parthenolide (PT) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) ... 1 The inhibitory aftereffect of mixed parthenolide (PT) and tumor necrosis element (TNF)-related apoptosis-inducing ligand ( ... apoptosis-inducing ligand (TRAIL) together with other anticancer real estate agents is a promising technique to overcome TRAIL ...
These include Fas, TNF-R1, lymphocyte-associated receptor of death (LARD), DR4, and TNF-related apoptosis-inducing ligand ... The latter two are receptors for the cytotoxic ligand TNF-related apoptosis-inducing ligand (TRAIL), and one of the paradoxes ... LIT is expressed predominantly on PBL, where it can competitively inhibit TRAIL-induced apoptosis through DR4/TRICK2, and may ... A growing number of receptors belonging to the TNF receptor family have been identified that contain a conserved cytoplasmic ...
TRAIL-R2 is a cell surface receptor for TNF-related apoptosis-inducing ligand (TRAIL), involved in apoptosis. Raised ... TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. Addition of the 80-protein assay ... TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2, also known as death receptor 5) (HR 1.44, 95% CI 1.19, 1.74); IL-27 ... TNF-related apoptosis-inducing ligand. TRAIL-R:. TNF-related apoptosis-inducing ligand receptor ...
... is known to cause apoptosis in several types of malignant tumor cells through its interaction with the death domain-containing ... Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) ... TNF-Related Apoptosis-Inducing Ligand * TNF-Related Apoptosis- ... Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to cause apoptosis in several types of malignant tumor ... Receptors, TNF-Related Apoptosis-Inducing Ligand / biosynthesis * Receptors, TNF-Related Apoptosis-Inducing Ligand / genetics* ...
Receptors, TNF-Related Apoptosis-Inducing Ligand Grants and funding * P30 AI027767/AI/NIAID NIH HHS/United States ... Both in vivo near-infrared imaging of caspase activity and TUNEL staining demonstrated that TRA-8 rapidly induced apoptosis of ... Chicken type II collagen was used to induce CIA in mice, which were then treated with an anti-human DR5 antibody, TRA-8. ... Treatment of arthritis by macrophage depletion and immunomodulation: testing an apoptosis-mediated therapy in a humanized death ...
These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, ... These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, ... At the frontier of these biologic drugs are TNF-α blockers. ... At the frontier of these biologic drugs are TNF-α blockers. ... TNF Receptor 2; TNP, 2,4,6 Trinitrophenol; TPL2, Tumor Progression Locus 2; TRAIL, TNF-Related Apoptosis-Inducing Ligand; Treg ...
Lexatumumab, a human agonistic monoclonal antibody against tumor necrosis factor (TNF)-related apoptosis-inducing ligand ... Related: Apoptosis CASP3 Head and Neck Cancers Head and Neck Cancers - Molecular Biology CASP4 ... 2009; 278(2):183-191 [PubMed] Related Publications Apoptosis plays a role in the elimination of DNA-damaged cells thus ... Overexpression of the active form of this enzyme induces apoptosis in fibroblasts. Max, a central component of the Myc/Max/Mad ...
TNF-related apoptosis-inducing ligand (TRAIL) may bind to 5 separate receptors. [39] Functional cytoplasmic death domains ... Signaling by means of the TNF-receptor family (eg, TNF-R, CD40, TNF-related activation-induced cytokine [TRANCE], receptor ... CD40 ligand inhibits Fas/CD95-mediated apoptosis of human blood-derived dendritic cells. Eur J Immunol. 1997 Dec. 27(12):3161-5 ... 35, 36, 37] However, although dendritic cells express CD95, CD95 ligation does not induce apoptosis. [38] ...
TNF-RELATED APOPTOSIS INDUCING LIGAND. Oligo-state. monomer. SMTL ID. 1d2q.2. Ligands. -. Polypeptides. TNF-RELATED APOPTOSIS ... INDUCING LIGAND. Oligo-state. homo-trimer. SMTL ID. 1d2q.3. Ligands. -. Polypeptides. TNF-RELATED APOPTOSIS INDUCING LIGAND. ...
Modulation of TNF-related apoptosis inducing ligand apoptosis in colon cancer cells by omega-3 docosahexaenoic fatty acid. 2009 ... Modulation of TNF-related apoptosis inducing ligand apoptosis in colon cancer cells by omega-3 docosahexaenoic fatty acid ... Flow cytometric analysis of TNF-related apoptosis inducing ligand (TRAIL) internalization. SKENDER, Belma, Olga VONDÁLOVÁ ... Flow cytometric analysis of TNF-related apoptosis inducing ligand (TRAIL) internalization. In International Conference ...
Quantitative real-time PCR for miR-34a and its targets; ,i,MET,/i, oncogene; gene-regulating apoptosis (,i,TP53INP2,/i, and ,i, ... Overexpression of Bcl2 blocks TNF-related apoptosis-inducing ligand- (TRAIL-) induced apoptosis in human lung cancer cells [136 ... "Overexpression of BCL2 blocks TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells," ... C. Ren, T. Ren, K. Yang et al., "Inhibition of SOX2 induces cell apoptosis and G1/S arrest in Ewings sarcoma through the PI3K/ ...
... and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Circulating OPG and breast cancer risk has been examined ... may influence breast cancer risk via its role as the decoy receptor for both the RANK ligand (RANKL) ... also binds to TNF-related apoptosis-inducing ligand (TRAIL), thereby preventing cancer cell death via apoptosis [7, 8]. ... TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast ...
Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during ... Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T ... Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T ... Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis. J. Immunol. 174, ...
... induction of apoptosis, modulation of oxidative stress, amelioration of inflammation, modulation of insulin signaling and ... TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines. Toxicol. In Vitro 2011, 25, 630- ... Chrysin was also shown to enhance TNF-related apoptosis-inducing ligand (TRAIL) induced apoptosis in cancer cell lines [131]. ... Inhibits cell proliferation, arrests cell cycle, induces apoptosis [43]. DMBA-induced breast cancer in rats Delays the ...
TNF-related apoptosis-inducing ligand (TRAIL) as a pro-apoptotic signal transducer with cancer therapeutic potential., PERCARIO ... HIV-1 Nef Induces Proinflammatory State in Macrophages through Its Acidic Cluster Domain: Involvement of TNF Alpha Receptor ... TRAIL is a key target in S-phase slowing-dependent apoptosis induced by Interferon-beta in cervical carcinoma cells, AFFABRIS, ... Apoptosis and growth inhibition of squamous carcinoma cells treated with IFN-alfa, IFN-beta and retinoic acid are associated ...
... integrin enhances the proapototic activity of TNF a related apoptosis inducing ligand (TRAIL). Apoptosis, 2008; 13(2):225-235. ... Cellular targeting of the apoptosis-inducing compound Gliotoxin to fibrotic rat livers. The Journal of Pharmacology and ... Inhibition of renal Rho kinase attenuates ischemia/reperfusion-induced injury. Journal of the American Society of Nephrology, ...
Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells tumorlytic capacities. Here, ... Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells tumorlytic capacities. Here, ... The two main TNF receptors used in apoptotic induction are Fas (CD95) and TNF-related apoptosis-inducing ligand (TRAIL) (35). ... TNF-related apoptosis-inducing ligand-mediated signaling is another death receptor-induced mechanism NK cells employ to kill ...
Regulation of the Src-PP2A interaction in tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced ... Antagonists of anaphase-promoting complex (APC)-2-cell cycle and apoptosis regulatory protein (CARP)-1 interaction are novel ... apoptosis. J Biol Chem. 2013; 288: 33263-71.. Authors: Xu J, Xu Z, Zhou JY, Zhuang Z, Wang E, Boerner J, Wu GS. ... regulators of cell growth and apoptosis. J Biol Chem. 2011;286:38000-17.. Authors: Puliyappadamba VT, Wu W, Bevis D, Zhang L, ...
2) We investigate induction of apoptosis in breast cancer cells by TRAIL receptor agonists. I am an attending physician in the ... ONC201 was originally identified as a small molecule that induces transcription of TNF-related apoptosis-inducing ligand (TRAIL ... MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, ... the ligand for the death receptors DR4 and DR5. We have demonstrated that resistance to TRAIL-induced apoptosis can be overcome ...
Both surface and soluble forms of TRAIL rapidly induce apoptosis in a wide range of tumor cell lines but not normal tissue. ... and Apo2 ligand (APO-2L). CD253 is a member of the Tumor Necrosis Factor Superfamily and is encoded by the ,/span>,span style= ... Both surface and soluble forms of TRAIL rapidly induce apoptosis in a wide range of tumor cell lines but not normal tissue. ... TRAIL can bind to and exert apoptosis through DR4 (TRAIL-R1) and DR5 (TRAIL-R2) receptors. It can also bind to decoy receptors ...
Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice ... Related Content. A correction has been published: Correction: Conditional Regulatory T-Cell Depletion Releases Adaptive ... Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. . Proc Natl Acad Sci U S A ... Accelerated chemically induced tumor development mediated by CD4+CD25+ regulatory T cells in wild-type hosts ...
... mechanistic studies showed that TSPO protects BTICs selectively against TNF-related apoptosis inducing ligand (TRAIL)-induced ... TSPO ligands may represent potential novel therapeutic agents for stress related and anxiety disorders. TSPO initiates ... Differential effects of TSPO ligands on functional connectivity and metabolism related to fear and anxiety in the human brain. ... Our finding that TSPO selectively protects GB cells against TRAIL-induced apoptosis hints to the possibility that TSPO may play ...
Caspases are cysteine-aspartic proteases that were initially discovered to play a role in apoptosis. However, caspase 8, in ... TNF-related apoptosis-inducing ligand (TRAIL) is another member of the TNF family that may activate caspase 8 in adipocytes and ... TRAIL (TNF-related apoptosis-inducing ligand) inhibits human adipocyte differentiation via caspase-mediated downregulation of ... TRAIL (TNF-related apoptosis-inducing ligand) regulates adipocyte metabolism by caspase-mediated cleavage of PPARgamma ...
Hispolon enhanced TRAIL-mediated apoptosis in renal carcinoma cells. ... we evaluated the sensitizing effect of hispolon on TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human ... Involvement of Up-regulation of Death Receptors and Bim in Hispolon-mediated TNF-related Apoptosis-inducing Ligand ... Methods: Apoptosis was analyzed by using cell-based cytometer. The mRNA levels were assessed by reverse transcription-PCR. Bax ...
Degradation by Caspase 8 During TNF-related Apoptosis-inducing Ligand (TRAIL)-induced Apoptosis. Exp Cell Res. 2010-10-13 [PMID ... Discover related pathways, diseases and genes to cIAP-2/HIAP-1 Antibody (NBP1-27972). Need help? Read the Bioinformatics Tool ... The inhibitor of apoptosis proteins (IAPs) are important regulators of cell death and inflammation. The cellular inhibitor of ... Knockout of c-IAP2 leads to excessive apoptosis, whereas, its overexpression has been found in several malignancies such as ...
RT-induced damage to cancer cells leads to different outcomes, such as survival, senescence, or death. During RT, alterations ... The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette-Guerin (BCG) immunotherapy for ... tumor necrosis factor-related apoptosis-inducing ligand; TIGIT, T cell immune receptor with Ig and ITIM domains. NK cell, ... T cells and the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on both neutrophils and Th1 cells ...
  • It causes apoptosis primarily in tumor cells, by binding to certain death receptors. (wikipedia.org)
  • Application of engineered ligands that have variable affinity for different death (DR4 and DR5) and decoy receptors (DCR1 and DCR2) may allow selective targeting of cancer cells by controlling activation of Type 1/Type 2 pathways of cell death and single cell fluctuations. (wikipedia.org)
  • TRAIL triggers apoptosis upon engagement of one of its two agonistic receptors, named DR4 (death receptor 4) (33) and DR5 (death receptor 5) (7, 46). (opioid-receptors.com)
  • In response to TRAIL, these receptors recruit the adaptor protein FADD (Fas-associated death domain), through death domain homophilic interactions (5), and the initiators procaspase-8 and -10, through death effector domain interactions with FADD, hence forming the macromolecular complex called DISC (death-inducing signaling complex). (opioid-receptors.com)
  • In addition to the agonistic TRAIL receptors DR4 and DR5, TRAIL can bind to related but antagonistic receptors, including TRID or TRAIL-R3 (11, 27, 32) and TRUNDD or TRAIL-R4 (10), also coined DcR1 (decoy receptor 1) and DcR2 (decoy receptor 2), respectively. (opioid-receptors.com)
  • Transient overexpression of DcR1 or DcR2 in TRAIL-sensitive Sav1 tumor cells prevents cell death triggering by TRAIL (10, 11), and recent evidence indicates that tumor and normal cells can acquire resistance to TRAIL-induced killing by up-regulating TRAIL antagonistic receptors (6, 8, 9, 34). (opioid-receptors.com)
  • Apoptosis can be triggered by the engagement of cell surface receptors by their ligands. (ox.ac.uk)
  • A growing number of receptors belonging to the TNF receptor family have been identified that contain a conserved cytoplasmic death domain. (ox.ac.uk)
  • The latter two are receptors for the cytotoxic ligand TNF-related apoptosis-inducing ligand (TRAIL), and one of the paradoxes raised by the cloning of these molecules was why do most cells not die upon contact with the widely expressed TRAIL molecule? (ox.ac.uk)
  • In a second project we are investigating the induction of apoptosis by activation of death receptors for the ligand TRAIL in breast and ovarian cancer cells. (cancer.gov)
  • We have shown that most breast and ovarian cancer cell lines are resistant to the induction of apoptosis by TRAIL, the ligand for the death receptors DR4 and DR5. (cancer.gov)
  • Involvement of Up-regulation of Death Receptors and Bim in Hispolon-mediated TNF-related Apoptosis-inducing Ligand Sensitization in Human Renal Carcinoma. (greenmedinfo.com)
  • Hispolon induced up-regulation of Bim and death receptors expression at the post-translational level. (greenmedinfo.com)
  • In the 1990's, the Human Genome Project inspired my team to discover several novel members of the TNF cytokine superfamily, most notably, Apo2L/TRAIL and its "death" and "decoy" receptors. (gene.com)
  • A dysregulated immune system (including changes in the number and/or function of immune cells, cytokine levels, and the expression of inhibitory receptors or their ligands) plays a key role in the development of HCC. (wjgnet.com)
  • To determine the central pathway in mediating complex organic dust-induced airway inflammation, this study targeted the common adaptor protein, myeloid differentiation factor 88 (MyD88), and investigated the relative contributions of receptors upstream from this adaptor. (cdc.gov)
  • In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces the process of cell death called apoptosis. (wikipedia.org)
  • TRAIL has also been designated CD253 (cluster of differentiation 253) and TNFSF10 (tumor necrosis factor (ligand) superfamily, member 10). (wikipedia.org)
  • In humans, the gene that encodes TRAIL is located at chromosome 3q26, which is not close to other TNF family members. (wikipedia.org)
  • These artificial TRAIL mimics bind to DR4/DR5 on cancer cells and induce cell death via both apoptosis and necrosis, which makes them a potential candidate for anticancer drug development. (wikipedia.org)
  • Tumor necrosis element (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. (opioid-receptors.com)
  • member of the tumor necrosis factor superfamily known as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) (16). (opioid-receptors.com)
  • Upon TRAIL binding, DcR1 and DcR2 fail to recruit FADD and, consequently, fail to induce downstream cell signaling events leading to apoptosis (10, 32). (opioid-receptors.com)
  • To date, the molecular mechanisms by which DcR1 and DcR2 confer resistance to TRAIL-induced apoptosis remain unclear (1, 6, 9, 13). (opioid-receptors.com)
  • In the current study, we demonstrate that DcR1 and DcR2 inhibit TRAIL-induced apoptosis by distinct mechanisms. (opioid-receptors.com)
  • TRAIL-induced lack of cIAP-1 and XIAP requires caspase activity. (acancerjourney.info)
  • These outcomes claim that TRAIL-mediated apoptosis proceeds SVT-40776 through caspase 8-reliant degradation of cIAP-1. (acancerjourney.info)
  • Outcomes Cellular depletion of cIAP-1 enhances the performance of TRAIL-mediated apoptosis We originally examined mobile degrees of cIAP-1, cIAP-2 and XIAP in the hepatocarcinoma cell series HuH-7 during treatment with raising concentrations of Path (0C20 ng/ml). (acancerjourney.info)
  • On the other hand, no significant adjustments in cIAP-2 proteins levels had been discovered in either cell series (Fig. 1A and D). These outcomes recommend cIAP-1 SVT-40776 and XIAP depletion could be necessary for effective TRAIL-induced apoptosis. (acancerjourney.info)
  • Just clones with shRNA concentrating on cIAP-1 had been sensitized to TRAIL-mediated apoptosis, whereas cIAP-2 or XIAP mobile depletion acquired no significant influence on apoptosis SVT-40776 inhibition (Fig. 2BCC). (acancerjourney.info)
  • Collectively, these data claim that effective TRAIL-mediated apoptosis could be facilitated by reducing cIAP-1 mobile levels. (acancerjourney.info)
  • Open up in Ntf5 another window Amount 1 Degradation of cIAP-1 and XIAP is normally connected with TRAIL-mediated apoptosis(A) Hepatocellular carcinoma cells HuH-7 had been treated with raising concentrations of Path (0C20 ng/ml). (acancerjourney.info)
  • Open up in another window Shape 2 Knock-down of cIAP-1, however, not XIAP or cIAP-2, sensitizes to TRAIL-mediated apoptosis(A) Clones of HuH-7 cells stably transfected with shRNA against cIAP-1, cIAP-2 or XIAP had been evaluated by immunoblot evaluation to verify effectiveness of proteins knock-down. (acancerjourney.info)
  • Background/Aims Combination therapy utilizing tumor necrosis element (TNF)-related apoptosis-inducing ligand (TRAIL) together with other anticancer real estate agents is a promising technique to overcome TRAIL level of resistance in malignant cells. (researchensemble.com)
  • Mouse monoclonal to PRAK that HT-29 cells are resistant to TRAIL-induced cell death highly. (researchensemble.com)
  • A) HT-29 and HCT 116 cells had been treated with Path every day and night in the concentrations indicated … To look for the synergistic aftereffect of PT on TRAIL-induced cell loss of life HT-29 cells had been incubated in the lack or existence of PT (10 μM) and Path (5 25 or 40 ng/mL). (researchensemble.com)
  • 2 PT Enhances TRAIL - induced Apoptotic Cell Death To support the earlier observations annexin-V analysis was performed using FACScan. (researchensemble.com)
  • Co-treatment with TRAIL and 3-Butylidenephthalide PT caused a 3-fold increase in the proportion of annexin V-positive cells (41.86%) indicating that PT promotes TRAIL-induced apoptosis in TRAIL-resistant cells. (researchensemble.com)
  • Fig. 2 The apoptotic effect of combined parthenolide (PT) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) treatment. (researchensemble.com)
  • After treatment with TRAIL and/or 5-fluorouracil (5-FU) … We also evaluated cell cycle modifications induced by PT and TRAIL in HT-29 cells. (researchensemble.com)
  • In combined treatment a much greater sub-G1 population (27.77%) was observed indicating that the combination of two agents dramatically promoted apoptosis in TRAIL-resistant cells (Fig. 2B). (researchensemble.com)
  • 3 PT enhances TRAIL-induced Apoptotic Via Caspase Activation Many anticancer agencies can handle initiating caspase activation and inducing. (researchensemble.com)
  • Lymphocyte inhibitor of TRAIL (TNF-related apoptosis-inducing ligand): a new receptor protecting lymphocytes from the death ligand TRAIL. (ox.ac.uk)
  • LIT is expressed predominantly on PBL, where it can competitively inhibit TRAIL-induced apoptosis through DR4/TRICK2, and may function to modulate lymphocyte sensitivity to TRAIL. (ox.ac.uk)
  • 5% false discovery rate) between risk of MACE and eight proteins: matrix metalloproteinase (MMP)-12, IL-27 subunit α (IL-27a), kidney injury molecule (KIM)-1, fibroblast growth factor (FGF)-23, protein S100-A12, TNF receptor (TNFR)-1, TNFR-2 and TNF-related apoptosis-inducing ligand receptor (TRAIL-R)2. (springer.com)
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to cause apoptosis in several types of malignant tumor cells through its interaction with the death domain-containing receptor, death receptor 5 (DR5). (nih.gov)
  • In the present study, we showed that co-treatment with troglitazone (TGZ), a synthetic ligand of peroxisome proliferator-activated receptor γ (PPARγ), and TRAIL synergistically induced apoptosis through DR5 upregulation in human colon cancer DLD-1 cells. (nih.gov)
  • Circulating osteoprotegerin (OPG), a member of the receptor activator of nuclear factor kappa-B (RANK) axis, may influence breast cancer risk via its role as the decoy receptor for both the RANK ligand (RANKL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). (biomedcentral.com)
  • RGD-avidin-biotin pretargeting to a (v) b (3) integrin enhances the proapototic activity of TNF a related apoptosis inducing ligand (TRAIL). (rug.nl)
  • 2) We investigate induction of apoptosis in breast cancer cells by TRAIL receptor agonists. (cancer.gov)
  • We have demonstrated that resistance to TRAIL-induced apoptosis can be overcome by co-incubation of the cells with chemotherapeutic agents, semi-synthetic retinoids (such as 4HPR), or molecularly targeted agents (such as anti-ErbB-2 antibodies). (cancer.gov)
  • Our current work utilizes biochemical and genetic approaches to identify mechanisms that regulate the induction of death by TRAIL ligand in breast and ovarian cancer cells. (cancer.gov)
  • Flow Cytometric Analysis of TRAIL-induced Killing and RIK-2 Blocking using FITC Annexin V staining. (bdbiosciences.com)
  • Cells induced to undergo apoptosis by treatment with recombinant human TRAIL gave a population of cells that was Annexin V-FITC positive (second panel, M2). (bdbiosciences.com)
  • The results indicate that clone RIK-2 can block cell mediated killing induced by recombinant human TRAIL as measured by Annexin V-FITC staining of Jurkat cells. (bdbiosciences.com)
  • Hispolon enhanced TRAIL-mediated apoptosis in renal carcinoma cells. (greenmedinfo.com)
  • In this study, we evaluated the sensitizing effect of hispolon on TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human renal carcinoma cells. (greenmedinfo.com)
  • Fas ligand or TRAIL), cytokines (e.g. (jove.com)
  • TNF , TNF-related apoptosis-inducing ligand ( TRAIL ), and Fas ligand ( FasL ). (massgenomics.org)
  • Among these associations, we found KIM-1 (kidney injury molecule-1), TNFR (TNF [tumor necrosis factor] receptor) 1 and 2, TRAIL-R2 (TRAIL [TNF-related apoptosis-inducing ligand] receptor 2), and RETN (resistin) to be associated with all 4 lipid fractions. (lu.se)
  • Granqvist, V 2022, ' Mechanisms of TRAIL- and Smac mimetic-induced cell death and phenotypical changes in breast cancer ', Doktor, Institutionen för laboratoriemedicin, Lund. (lu.se)
  • while, DLBCL itself was found to elevate the levels of M-CSF, TNF-ß, and TRAIL. (bvsalud.org)
  • Association between endometriosis and polymorphisms in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), TRAIL receptor and osteoprotegerin genes and their serum levels. (cdc.gov)
  • Antagonists of anaphase-promoting complex (APC)-2-cell cycle and apoptosis regulatory protein (CARP)-1 interaction are novel regulators of cell growth and apoptosis. (karmanos.org)
  • c-IAP2 (inhibitor of apoptosis protein-2) belongs to IAPs family and besides exerting antiapoptotic effects through its interaction with multiple cytokines, it participates in inflammation, immunity and mitogenic kinase signal transduction, cell proliferation, invasion and metastasis also. (novusbio.com)
  • the expression levels of protein associated with apoptosis and endoplasmic reticulum stress (ERS) of SKO-007 cells in various groups were detected by Western blotting method. (researchgate.net)
  • Objective: To investigate the effects of prion protein 106-126 peptide on inducing apoptosis in differentiated PC12 cells. (researchgate.net)
  • Conclusion: Prion protein 106-126 peptide can induce apoptosis in differentiated PC12 cells and present cellular toxicity definitely. (researchgate.net)
  • However, in certain cell types, the extrinsic pathway also induces mitochondrial damage by cleaving the pro-apoptotic Bcl-2 family protein Bid to its activated truncated form (tBid), which leads to Bak and Bax activation. (biologists.com)
  • Jeffrey, I. W. , Bushell, M. , Tilleray, V. J. , Morley, S. and Clemens, M. J. (2002) Inhibition of protein synthesis in apoptosis: differential requirements by the tumor necrosis factor alpha family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase. (gla.ac.uk)
  • Exposure of mammalian cells to agents that induce apoptosis results in a rapid and substantial inhibition of protein synthesis. (gla.ac.uk)
  • Similar experiments with embryonic fibroblasts from control mice and animals defective for expression of the double-stranded RNA-regulated protein kinase (PKR) reveal requirements for both caspase activity and PKR for inhibition of protein synthesis in response to TNFα. (gla.ac.uk)
  • These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. (frontiersin.org)
  • In MCF-7 breast cancer cells, tumor necrosis factor α (TNFα) and TNF-related apoptosis-inducing ligand inhibit overall translation by a mechanism that requires caspase (but not necessarily caspase-3) activity. (gla.ac.uk)
  • Moreover, apoptosis was considerably improved in cells treated with Path plus JP1584 when compared with cells treated with Path alone (Fig. 3BCC). (acancerjourney.info)
  • Mixture PT and Path treatment inhibited cell development and induced apoptosis of HT-29 cells significantly. (researchensemble.com)
  • Mechanisms of peripheral tolerance include inactivation of autoantigen-recognizing T and B cells by the induction of apoptosis, anergy or conversion into immunosuppressive regulatory cells. (frontiersin.org)
  • Therapeutic intervention aims to reverse tumor-induced NK cell suppression and sustain NK cells' tumorlytic capacities. (frontiersin.org)
  • Cancer cells avoid apoptosis by a variety of genetic and epigenetic mechanisms. (cancer.gov)
  • Our goal is to selectively trigger apoptosis in the cancer cells. (cancer.gov)
  • A small number of Annexin-V positive cells in the untreated population represents a basal level of apoptosis (far left/first panel). (bdbiosciences.com)
  • RT-induced damage to cancer cells leads to different outcomes, such as survival, senescence, or death. (nature.com)
  • The ability of the host to trigger apoptosis in infected cells is perhaps the most powerful tool by which viruses can be cleared from the host organism. (mdpi.com)
  • To avoid elimination by this mechanism, human papillomaviruses (HPV) have developed several mechanisms that enable the cells they infect to elude both extrinsic and intrinsic apoptosis. (mdpi.com)
  • In this manuscript, we review the current literature regarding how HPV-infected cells avoid apoptosis and the molecular mechanisms involved in these events. (mdpi.com)
  • Many of the current efforts regarding anti-cancer drug development are focused on directing tumor cells to undergo apoptosis. (mdpi.com)
  • IFNg or TNF), or cytotoxic granules (i.e., perforin/granzyme B) expressed by effector cells are some ways in which target cell death can be induced. (jove.com)
  • We have discovered that the key UPR enzyme IRE1 is hijacked by certain cancer cells to avert apoptosis and resist proteotoxic stress. (gene.com)
  • Alternatively, cells that sense injury or loss of mitochondrial integrity may undergo programmed cell death (apoptosis). (massgenomics.org)
  • At infection sites, activated T cells secrete cytokines (eg, interferon-gamma [IFN-gamma]) that induce production of macrophage migration inhibitory factor, preventing macrophages from leaving. (msdmanuals.com)
  • The process of apoptosis is caspase-8-dependent. (wikipedia.org)
  • Within this complex, procaspase-8 and -10 are activated by autoproteolytic cleavage and initiate the caspase cascade leading to apoptosis (42). (opioid-receptors.com)
  • E,F) Mz-ChA-1 had been treated with raising concentrations of Path (0C20 ng/ml) and apoptosis was evaluated by (E) fluorescence microscopy and (F) SVT-40776 caspase 3/7 activation. (acancerjourney.info)
  • Furthermore the pan-caspase inhibitor Z-VAD-FMK obstructed the nuclear fragmentation and condensation induced with the mixture treatment indicating that the modification in nuclear morphology is certainly mediated with the activation of caspase (Fig. 2C). (researchensemble.com)
  • Both in vivo near-infrared imaging of caspase activity and TUNEL staining demonstrated that TRA-8 rapidly induced apoptosis of macrophages in inflamed synovium. (nih.gov)
  • Conclusion: BZM can greatly enhance the efficacy of LDM against multiple myeloma by increasing the levels of cleaved caspase-3 and PARP, and remarkably increase the apoptosis induced by LDM through further activation of ERS. (researchgate.net)
  • Low concentrations of Path (10 ng/ml) didn't affect IAPs proteins levels and had been associated with humble apoptosis. (acancerjourney.info)
  • However, Path concentrations which better induced apoptosis (20 ng/ml), also led to loss of cIAP-1 and XIAP proteins appearance (Fig. 1ACC). (acancerjourney.info)
  • Numerous cellular proteins detect DNA damage and induce senescence , a permanent change of state characterized by morphological and gene expression changes. (massgenomics.org)
  • In this Commentary, we discuss the implications of these findings for the regulation of apoptosis by Bcl-2 family proteins. (biologists.com)
  • In this study, we investigated the associations between proteins related to CVD and triglyceride (TG), total cholesterol, LDL (low-density lipoprotein), and HDL (high-density lipoprotein) cholesterol levels in individuals from the general population. (lu.se)
  • Further, 15 proteins were related to both TG and HDL cholesterol in a consistent and biologically expected manner, that is, higher TG and lower HDL cholesterol or vice versa. (lu.se)
  • Chicken type II collagen was used to induce CIA in mice, which were then treated with an anti-human DR5 antibody, TRA-8. (nih.gov)
  • Myeloid differentiation factor 88-dependent signaling is critical for acute organic dust-induced airway inflammation in mice. (cdc.gov)
  • ODE-induced AHR was significantly attenuated in MyD88 KO mice, and neutrophil influx and cytokine/chemokine production were nearly absent in MyD88 KO animals after ODE challenges. (cdc.gov)
  • ODE-induced epithelial-cell ICAM-1 expression was diminished in MyD88 KO mice. (cdc.gov)
  • Mice deficient in TLR9, TLR4, and IL-18R, but not IL-1IR, demonstrated partial protection against ODE-induced neutrophil influx and cytokine/chemokine production. (cdc.gov)
  • Bronchoalveolar lavage fluid was collected to quantitate leukocyte influx and cytokine/chemokine (TNF-a, IL-6, chemokine [C-X-C motif] ligands [CXCL1 and CXCL2]) concentrations. (cdc.gov)
  • Additionally, alcohol inhibits the lipopolysaccharide (LPS)-induced inflammatory cytokine, interleukin-6 (IL-6), via the p38 ERK1/2 MAPK pathway [ 9 ]. (cdc.gov)
  • These include regulation of cell cycle, activation of mitochondrial pathway, induction of mitochondrial outer membrane permeabilization, induction of apoptosis, modulation of oxidative stress, amelioration of inflammation, modulation of insulin signaling and inhibition of angiogenesis. (mdpi.com)
  • The RANKL inhibitor denosumab acts to reduce skeletal-related events in patients with bone metastases. (biomedcentral.com)
  • The CD56 bright population produces immunoregulatory cytokines, including interferon-γ (IFN-γ), tumor necrosis factor-beta (TNF-B), tumor necrosis factor-α (TNF-α), granulocyte macrophage-colony stimulating factor (GMCSF), IL-10, and IL-13 ( 4 ). (frontiersin.org)
  • Activated T-lymphocytes impaired OMSCs via the Fas/Fas ligand pathway, as occur in long bone MSCs. (ca.gov)
  • Gene ontology term enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis were performed to identify UC related pathways. (biomedcentral.com)
  • Bone homeostasis is maintained by the interplay between the receptor activator of nuclear factor kappa-B (RANK), its soluble activation ligand (RANKL), and OPG. (biomedcentral.com)
  • RÉSUMÉ L'objectif de l'étude était d'évaler l'importance clinique du ligand de CD40 soluble (sCD40L) chez des patients atteints d'un carcinome hépatocellulaire (CHC) associé au virus de l'hépatite C (VHC). (who.int)
  • Fig. 1 The inhibitory aftereffect of mixed parthenolide (PT) and tumor necrosis element (TNF)-related apoptosis-inducing ligand (Path) treatment on cell proliferation. (researchensemble.com)
  • RT can directly induce cancer cell death through various mechanisms, such as apoptosis, necrosis, and autophagy. (nature.com)
  • Genetic contribution of tumor necrosis factor (TNF)-alpha gene promoter (-1031, -863 and -857) and TNF receptor 2 gene polymorphisms in endometriosis susceptibility. (cdc.gov)
  • Tumor necrosis factor (TNF)-TNF receptor gene polymorphisms and their serum levels in Korean women with endometriosis. (cdc.gov)
  • In every cell lines, JP1584 by itself induced speedy depletion of cIAP-1, however, not XIAP, without noticeable toxicity (Fig 3A). (acancerjourney.info)
  • A) Apoptotic cell death induced by combination treatment. (researchensemble.com)
  • These include Fas, TNF-R1, lymphocyte-associated receptor of death (LARD), DR4, and TNF-related apoptosis-inducing ligand receptor inducer of cell killing-2 (TRICK2). (ox.ac.uk)
  • Clinical scores, histopathologic severity, macrophage apoptosis and depletion, and T cell subset development were evaluated. (nih.gov)
  • Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. (cancerindex.org)
  • Knockdown of CASP5 greatly inhibited GBM proliferation and resulted in G1 cell cycle arrest along with higher apoptosis ratios in vitro and in vivo, while overexpression led to the opposite phenomenon. (cancerindex.org)
  • An aberrant miRNA expression could contribute to cancer development and progression [ 6 , 7 ] and could affect their target genes that are involved in many biological processes, such as cell differentiation, proliferation, apoptosis, metabolism, and development [ 8 ]. (hindawi.com)
  • Apoptosis was analyzed by using cell-based cytometer. (greenmedinfo.com)
  • Immunotherapy mainly includes immune checkpoint inhibitors (ICIs), such as inhibitors of PD-1 (programmed cell death 1)/programmed cell death ligand 1 (PD-L1). (nature.com)
  • This led us to investigate a cell-suicide process called Apoptosis-which has important roles in normal physiology as well as in disease. (gene.com)
  • Related articles include Cutaneous B-Cell Lymphoma and Cutaneous Pseudolymphoma . (medscape.com)
  • Lung cell apoptosis was determined by a terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, and lymphocyte influx and intercellular adhesion molecule-1 (ICAM-1) expression were assessed by immunohistochemistry. (cdc.gov)
  • No difference was evident in the small degree of ODE-induced lung-cell apoptosis. (cdc.gov)
  • To determine the therapeutic efficacy and immunomodulatory effect of an anti-human death receptor 5 (DR5) antibody, TRA-8, in eliminating macrophage subsets in a mouse model of type II collagen-induced arthritis (CIA). (nih.gov)
  • Les concentrations sériques de sCD40L circulant et d'interleukine 10 circulante ont été analysées à l'aide de la méthode immuno-enzymatique chez 30 patients positifs pour le VHC avec un CHC, chez 30 patients patients positifs pour le VHC avec une cirrhose du foie, et chez 30 volontaires d'âge correspondant en bonne santé avec des anticorps anti-VHC négatifs servant de groupe témoin. (who.int)
  • However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. (frontiersin.org)
  • Therefore, the planned research group aims to characterize the role of TSPO as a diagnostic and therapeutic target from structural biology over neurology to psychiatry and to delineate the potential of TSPO ligands as a novel therapeutic approach within the nervous system. (uni-regensburg.de)
  • Overexpression of the active form of this enzyme induces apoptosis in fibroblasts. (cancerindex.org)
  • Alcohol also interferes with proper inflammatory responses by disturbing the enzymatic processing of TNFα by TNFα Converting Enzyme (TACE) and abrogating TNFα/TACE function [ 11 , 12 ]. (cdc.gov)
  • Effect of gene polymorphism of TNF-beta on the concentration of TNF in serum of patient with endometriosis]. (cdc.gov)
  • Area B will provide information on the structure and function of the TSPO molecule in response to TSPO ligands and within its multimeric complex by biophysical methods in order to unravel further molecular mechanisms of TSPO signaling and to give further input for TSPO ligand drug development. (uni-regensburg.de)
  • All patients will undergo PET imaging with the high affinity TSPO ligand [18F]GE-180, FET-PET and MRI prior to the neurosurgical intervention. (uni-regensburg.de)
  • Death ligands (e.g. (jove.com)
  • The primary objectives of this study are: - To determine the proportion of children with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) related death, rehospitalization or major complications after infection with SARS-CoV-2 and/or Multisystem Inflammatory Syndrome in Children (MIS-C), and - To determine immunologic mechanisms and immune signatures associated with disease spectrum and subsequent clinical course during the year of follow-up. (stanford.edu)
  • Inhibition of renal Rho kinase attenuates ischemia/reperfusion-induced injury. (rug.nl)
  • Thus, therapeutics that induce, restore, and maintain immune tolerance toward these autoantigens represent the "Holy Grail" of treatments for autoimmune diseases. (frontiersin.org)
  • At that time, the application of tumor treatment with the spontaneous viruses or wild type viruses which quite often being scavenged by immune system, merely induces a subtle inhibition to tumor progression in patients. (biomedcentral.com)
  • Hagens WI, Beljaars L, Mann DA, Wright MC, Julien B, Lotersztajn S, Reker-Smit C, Poelstra K. Cellular targeting of the apoptosis-inducing compound Gliotoxin to fibrotic rat livers. (rug.nl)
  • Our contributions to elucidating the mechanisms of apoptosis led to clinical investigation of a novel class of molecules called Pro-Apoptotic Receptor Agonists, and aided in the advancement of apoptosis-promoting cancer medicines such as venclexta. (gene.com)
  • Interstitial lung disease related to rheumatoid arthritis : what do we don?t know? (unican.es)
  • Globally, HCC is the sixth most prevalent cancer and the third-most prevalent reason for neoplastic disease-related deaths. (wjgnet.com)
  • TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. (cdc.gov)
  • HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. (cdc.gov)
  • Inhalation of agents in the workplace can induce asthma in a mechanisms involved in asthma. (cdc.gov)
  • The authors have no conflicts of interest related to the manuscript. (wjgnet.com)
  • Taking alpha-lipoic acid by mouth daily for up to 6 months does not improve liver function or reduce liver damage in people with alcohol-related liver disease. (medlineplus.gov)