A conserved A-T rich sequence which is contained in promoters for RNA polymerase II. The segment is seven base pairs long and the nucleotides most commonly found are TATAAAA.
A general transcription factor that plays a major role in the activation of eukaryotic genes transcribed by RNA POLYMERASES. It binds specifically to the TATA BOX promoter element, which lies close to the position of transcription initiation in RNA transcribed by RNA POLYMERASE II. Although considered a principal component of TRANSCRIPTION FACTOR TFIID it also takes part in general transcription factor complexes involved in RNA POLYMERASE I and RNA POLYMERASE III transcription.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Nucleic acid sequences involved in regulating the expression of genes.
The major sequence-specific DNA-binding component involved in the activation of transcription of RNA POLYMERASE II. It was originally described as a complex of TATA-BOX BINDING PROTEIN and TATA-BINDING PROTEIN ASSOCIATED FACTORS. It is now know that TATA BOX BINDING PROTEIN-LIKE PROTEINS may take the place of TATA-box binding protein in the complex.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Promoter-specific RNA polymerase II transcription factor that binds to the GC box, one of the upstream promoter elements, in mammalian cells. The binding of Sp1 is necessary for the initiation of transcription in the promoters of a variety of cellular and viral GENES.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
An RNA POLYMERASE II specific transcription factor. It may play a role in transcriptional activation of gene expression by interacting with the TATA-BOX BINDING PROTEIN component of TRANSCRIPTION FACTOR TFIID.
Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.
The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA.
A class of proteins related in structure and function to TATA-BOX BINDING PROTEIN that can take the place of TATA-BOX BINDING PROTEIN in the transcription initiation complex. They are found in most multicellular organisms and may be involved in tissue-specific promoter regulation. They bind to DNA and interact with TATA-BINDING PROTEIN ASSOCIATED FACTORS, however they may lack specificity for the TATA-BOX.
The first nucleotide of a transcribed DNA sequence where RNA polymerase (DNA-DIRECTED RNA POLYMERASE) begins synthesizing the RNA transcript.
The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.
A method for determining the sequence specificity of DNA-binding proteins. DNA footprinting utilizes a DNA damaging agent (either a chemical reagent or a nuclease) which cleaves DNA at every base pair. DNA cleavage is inhibited where the ligand binds to DNA. (from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.
An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28.
A form of GENE LIBRARY containing the complete DNA sequences present in the genome of a given organism. It contrasts with a cDNA library which contains only sequences utilized in protein coding (lacking introns).
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
An RNA POLYMERASE II specific transcription factor. It plays a role in assembly of the pol II transcriptional preinitiation complex and has been implicated as a target of gene-specific transcriptional activators.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.
Deletion of sequences of nucleic acids from the genetic material of an individual.
Established cell cultures that have the potential to propagate indefinitely.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences.
Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA.
Two-dimensional separation and analysis of nucleotides.
Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions.
The region of DNA which borders the 5' end of a transcription unit and where a variety of regulatory sequences are located.
Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).
The functional hereditary units of FUNGI.
Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
The functional hereditary units of VIRUSES.
The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.
Synthetic or natural oligonucleotides used in hybridization studies in order to identify and study specific nucleic acid fragments, e.g., DNA segments near or within a specific gene locus or gene. The probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the probe include the radioisotope labels 32P and 125I and the chemical label biotin.
Actual loss of portion of a chromosome.
The so-called general transcription factors that bind to RNA POLYMERASE II and that are required to initiate transcription. They include TFIIA; TFIIB; TFIID; TFIIE; TFIIF; TFIIH; TFII-I; and TFIIJ. In vivo they apparently bind in an ordered multi-step process and/or may form a large preinitiation complex called RNA polymerase II holoenzyme.
Proteins that are coded by immediate-early genes, in the absence of de novo protein synthesis. The term was originally used exclusively for viral regulatory proteins that were synthesized just after viral integration into the host cell. It is also used to describe cellular proteins which are synthesized immediately after the resting cell is stimulated by extracellular signals.
A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.
Any method used for determining the location of and relative distances between genes on a chromosome.
Proteins encoded by adenoviruses that are synthesized prior to, and in the absence of, viral DNA replication. The proteins are involved in both positive and negative regulation of expression in viral and cellular genes, and also affect the stability of viral mRNA. Some are also involved in oncogenic transformation.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
One of several general transcription factors that are specific for RNA POLYMERASE III. TFIIIB recruits and positions pol III over the initiation site and remains stably bound to the DNA through multiple rounds of re-initiation by RNA POLYMERASE III.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
Deoxyribonucleic acid that makes up the genetic material of fungi.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
Deoxyribonucleic acid that makes up the genetic material of viruses.
Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates.
Biochemical identification of mutational changes in a nucleotide sequence.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure.
A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.
Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Proteins prepared by recombinant DNA technology.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Proteins found in any species of fungus.
A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure where it transcribes DNA into RNA. It has specific requirements for cations and salt and has shown an intermediate sensitivity to alpha-amanitin in comparison to RNA polymerase I and II. EC 2.7.7.6.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Nucleotide sequences, usually upstream, which are recognized by specific regulatory transcription factors, thereby causing gene response to various regulatory agents. These elements may be found in both promoter and enhancer regions.
Factors that associate with TATA-BOX BINDING PROTEIN. Many of them are components of TRANSCRIPTION FACTOR TFIID
Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected.
A specificity protein transcription factor that regulates expression of a variety of genes including VASCULAR ENDOTHELIAL GROWTH FACTOR and CYCLIN-DEPENDENT KINASE INHIBITOR P27.
The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.
Ubiquitously expressed basic HELIX-LOOP-HELIX MOTIF transcription factors. They bind CANNTG sequences in the promoters of a variety of GENES involved in carbohydrate and lipid metabolism.
Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.
A ubiquitously expressed zinc finger-containing protein that acts both as a repressor and activator of transcription. It interacts with key regulatory proteins such as TATA-BINDING PROTEIN; TFIIB; and ADENOVIRUS E1A PROTEINS.
Species of the genus MASTADENOVIRUS, causing a wide range of diseases in humans. Infections are mostly asymptomatic, but can be associated with diseases of the respiratory, ocular, and gastrointestinal systems. Serotypes (named with Arabic numbers) have been grouped into species designated Human adenovirus A-F.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1.
Regulatory sequences important for viral replication that are located on each end of the HIV genome. The LTR includes the HIV ENHANCER, promoter, and other sequences. Specific regions in the LTR include the negative regulatory element (NRE), NF-kappa B binding sites , Sp1 binding sites, TATA BOX, and trans-acting responsive element (TAR). The binding of both cellular and viral proteins to these regions regulates HIV transcription.
The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.
Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.
Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES.
In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.
A 24-kDa HMGB protein that binds to and distorts the minor grove of DNA.
A family of non-enveloped viruses infecting mammals (MASTADENOVIRUS) and birds (AVIADENOVIRUS) or both (ATADENOVIRUS). Infections may be asymptomatic or result in a variety of diseases.
A group of transcription factors that were originally described as being specific to ERYTHROID CELLS.
Proteins found in any species of virus.
Transcription factors that were originally identified as site-specific DNA-binding proteins essential for DNA REPLICATION by ADENOVIRUSES. They play important roles in MAMMARY GLAND function and development.
Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.
A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures.

Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. (1/1685)

Transcriptional regulation by transforming growth factor beta (TGF-beta) is a complex process which is likely to involve cross talk between different DNA responsive elements and transcription factors to achieve maximal promoter activation and specificity. Here, we describe a concurrent requirement for two discrete responsive elements in the regulation of the c-Jun promoter, one a binding site for a Smad3-Smad4 complex and the other an AP-1 binding site. The two elements are located 120 bp apart in the proximal c-Jun promoter, and each was able to independently bind its corresponding transcription factor complex. The effects of independently mutating each of these elements were nonadditive; disruption of either sequence resulted in complete or severe reductions in TGF-beta responsiveness. This simultaneous requirement for two distinct and independent DNA binding elements suggests that Smad and AP-1 complexes function synergistically to mediate TGF-beta-induced transcriptional activation of the c-Jun promoter.  (+info)

A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. (2/1685)

The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling. Other members of this family have been shown to possess concise promoter regions that direct appropriate tissue-specific expression. The basis for the specific expression of the HFABP has not been previously evaluated, and the mechanisms governing expression of metabolic genes in the heart are not completely understood. We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice. Appropriate tissue-specific expression in cell culture and in transgenic mice was dictated by 1.2 kb of the 5'-flanking sequence of FABP3, the HFABP gene. Comparison of orthologous murine and human genomic sequences demonstrated multiple regions of near-identity within this promoter region, including a CArG-like element close to the TATA box. Binding and transactivation studies demonstrated that this element can function as an atypical myocyte enhancer-binding factor 2 site. Interactions with adjacent sites are likely to be necessary for fully appropriate, tissue-specific, developmental and metabolic regulation.  (+info)

Phosphorylation of yeast TBP by protein kinase CK2 reduces its specific binding to DNA. (3/1685)

Protein kinase CK2 is a ubiquitous Ser/Thr kinase which phosphorylates a large number of proteins including several transcription factors. Recombinant Xenopus laevis CK2 phosphorylates both recombinant Saccharomyces cerevisiae and Schizosaccharomyces pombe TATA binding protein (TBP). The phosphorylation of TBP by CK2 reduces its binding activity to the TATA box. CK2 copurifies with the transcription factor IID (TFIID) complex from HeLa cell extracts and phosphorylates several of the TBP-associated factors within TFIID. Taken together these findings argue for a role of CK2 in the control of transcription by RNA polymerase II through the modulation of the binding activity of TBP to the TATA box.  (+info)

Evolutionary analysis of TATA-less proximal promoter function. (4/1685)

Many molecular studies describe how components of the proximal promoter affect transcriptional processes. However, these studies do not account for the likely effects of distant enhancers or chromatin structure, and thus it is difficult to conclude that the sequence variation in proximal promoters acts to modulate transcription in the natural context of the whole genome. This problem, the biological importance of proximal promoter sequence variation, can be addressed using a combination of molecular and evolutionary analyses. Provided here are molecular and evolutionary analyses of the variation in promoter function and sequence within and between populations of Fundulus heteroclitus for the lactate dehydrogenase-B (Ldh-B) proximal promoter. Approximately one third of the Ldh-B proximal promoter contains interspersed regions that are functionally important: (1) they bind transcription factors in vivo, (2) they effect a change in transcription as assayed by transient transfection into two different fish cell lines, and (3) they bind purified transcription factors in vitro. Evolutionary analyses that compare sequence variation in these functional regions versus the nonfunctional regions indicate that the changes in the Ldh-B proximal promoter sequences are due to directional selection. Thus, the Ldh-B proximal promoter sequence variations that affect transcriptional processes constitute a phenotypic change that is subject to natural selection, suggesting that proximal promoter sequence variation affects transcription in the natural context of the whole genome.  (+info)

Transcriptional regulation of cell type-specific expression of the TATA-less A subunit gene for human coagulation factor XIII. (5/1685)

To study the mechanism of gene regulation for coagulation factor XIII A subunit (FXIIIA), we characterized its 5'-flanking region using a monocytoid (U937), a megakaryocytoid (MEG-01), and other cells. Our results confirmed that U937 and MEG-01 contained FXIIIA mRNA. A tentative transcription start site was determined to be 76 bases upstream from the first exon/intron boundary. Reporter gene assays revealed that a 5'-fragment (-2331 to +75) was sufficient to support basal expression in U937 and MEG-01 but not in the other cells. Deletion analysis confined a minimal promoter sequence from -114 to +75. DNase footprinting, electrophoretic mobility shift, and reporter gene assays demonstrated that promoter elements for a myeloid-enriched transcription factor (MZF-1-like protein) and two ubiquitous transcription factors (NF-1 and SP-1) in this region were important for the basal FXIII expression. It was also revealed that an upstream region (-806 to -290) had enhancer activity in MEG-01 but silencer activity in U937. DNA sequences for binding of myeloid-enriched factors (GATA-1 and Ets-1) were recognized in this region, and the GATA-1 element was found to be responsible for the enhancer activity. These transcription factors play a major role in the cell type-specific expression of FXIIIA, which differs from other transglutaminases.  (+info)

An Lrp-like protein of the hyperthermophilic archaeon Sulfolobus solfataricus which binds to its own promoter. (6/1685)

Regulation of gene expression in the domain Archaea, and specifically hyperthermophiles, has been poorly investigated so far. Biochemical experiments and genome sequencing have shown that, despite the prokaryotic cell and genome organization, basal transcriptional elements of members of the domain Archaea (i.e., TATA box-like sequences, RNA polymerase, and transcription factors TBP, TFIIB, and TFIIS) are of the eukaryotic type. However, open reading frames potentially coding for bacterium-type transcription regulation factors have been recognized in different archaeal strains. This finding raises the question of how bacterial and eukaryotic elements interact in regulating gene expression in Archaea. We have identified a gene coding for a bacterium-type transcription factor in the hyperthermophilic archaeon Sulfolobus solfataricus. The protein, named Lrs14, contains a potential helix-turn-helix motif and is related to the Lrp-AsnC family of regulators of gene expression in the class Bacteria. We show that Lrs14, expressed in Escherichia coli, is a highly thermostable DNA-binding protein. Bandshift and DNase I footprint analyses show that Lrs14 specifically binds to multiple sequences in its own promoter and that the region of binding overlaps the TATA box, suggesting that, like the E. coli Lrp, Lrs14 is autoregulated. We also show that the lrs14 transcript is accumulated in the late growth stages of S. solfataricus.  (+info)

Smubp-2 represses the Epstein-Barr virus lytic switch promoter. (7/1685)

Smubp-2 is a novel transcription factor that was first identified through its interaction with the immunoglobulin Smu region (Mizuta et al., 1993) and has been cloned by virtue of its binding to two 12-O-tetradecanoylphorbol-13-acetate-responsive elements in the Epstein-Barr virus immediate-early BZLF1 promoter (Gulley et al., 1997). In this report, we examined the effect of Smubp-2 overexpression on BZLF1 prom oter activity. Overexpression of Smubp-2 in the B lymphocyte cell line BJAB caused repression of the BZLF1 gene promoter. A 14-bp region that partially overlaps with a 12-O-tetradecanoylphorbol-13-acetate-responsive element was required for maximal repression by Smubp-2, but some repression was also seen with a minimal promoter containing only the BZLF1 promoter TATA box and an initiation site. A 30-bp fragment containing the 14-bp region could transfer Smubp-2-mediated repression to heterologous promoters. Smubp-2 was found to associate with the basal transcription factor TATA binding protein (TBP) and to disrupt the formation of a stable TBP-TFIIA-DNA complex on the BZLF1 promoter TATA box and the adenovirus E1B promoter TATA box. Repression of the BZLF1 promoter by overexpressed Smubp-2 was rescued by overexpression of the basal factor TFIIA. These results suggest that complete repression of the BZLF1 promoter by Smubp-2 involves disruption of a functional TBP-TFIIA-TATA box complex and requires the -93 bp-to--79 bp region of the promoter.  (+info)

Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. (8/1685)

Coactivators previously implicated in ligand-dependent activation functions by thyroid hormone receptor (TR) include p300 and CREB-binding protein (CBP), the steroid receptor coactivator-1 (SRC-1)-related family of proteins, and the multicomponent TR-associated protein (TRAP) complex. Here we show that two positive cofactors (PC2 and PC4) derived from the upstream stimulatory activity (USA) cofactor fraction act synergistically to mediate thyroid hormone (T3)-dependent activation either by TR or by a TR-TRAP complex in an in vitro system reconstituted with purified factors and DNA templates. Significantly, the TRAP-mediated enhancement of activation by TR does not require the TATA box-binding protein-associated factors of TFIID. Furthermore, neither the pleiotropic coactivators CBP and p300 nor members of the SRC-1 family were detected in either the TR-TRAP complex or the other components of the in vitro assay system. These results show that activation by TR at the level of naked DNA templates is enhanced by cooperative functions of the TRAP coactivators and the general coactivators PC2 and PC4, and they further indicate a potential functional redundancy between TRAPs and TATA box-binding protein-associated factors in TFIID. In conjunction with earlier studies on other nuclear receptor-interacting cofactors, the present study also suggests a multistep pathway, involving distinct sets of cofactors, for activation of hormone responsive genes.  (+info)

I'm sorry for any confusion, but "TATA box" is actually a term used in molecular biology, specifically in the field of genetics and gene regulation. It does not have a direct medical definition.

The TATA box is a DNA sequence located in the promoter region of many genes, which serves as a binding site for certain proteins involved in the initiation of transcription. Transcription is the first step in gene expression, where the information in a gene is used to create a corresponding protein or RNA molecule.

The TATA box is typically found about 25-30 base pairs upstream of the transcription start site and has the consensus sequence "TATAAA". It is recognized by the TATA-binding protein (TBP), which is a component of the transcription factor II D (TFIIB) complex. The binding of TBP to the TATA box helps to position the RNA polymerase enzyme properly for the initiation of transcription.

While not a medical term per se, understanding the function of the TATA box and other cis-acting elements in gene regulation is important for understanding how genes are turned on and off in various cellular processes and how this can go awry in certain diseases.

The TATA-box binding protein (TBP) is a general transcription factor that plays a crucial role in the initiation of transcription of protein-coding genes in archaea and eukaryotes. It is named after its ability to bind to the TATA box, a conserved DNA sequence found in the promoter regions of many genes.

TBP is a key component of the transcription preinitiation complex (PIC), which also includes other general transcription factors and RNA polymerase II in eukaryotes. The TBP protein has a unique structure, characterized by a saddle-shaped DNA-binding domain that allows it to recognize and bind to the TATA box in a sequence-specific manner.

By binding to the TATA box, TBP helps to position the RNA polymerase II complex at the start site of transcription, allowing for the initiation of RNA synthesis. TBP also plays a role in regulating gene expression by interacting with various coactivators and corepressors that modulate its activity.

Mutations in the TBP gene have been associated with several human diseases, including some forms of cancer and neurodevelopmental disorders.

Promoter regions in genetics refer to specific DNA sequences located near the transcription start site of a gene. They serve as binding sites for RNA polymerase and various transcription factors that regulate the initiation of gene transcription. These regulatory elements help control the rate of transcription and, therefore, the level of gene expression. Promoter regions can be composed of different types of sequences, such as the TATA box and CAAT box, and their organization and composition can vary between different genes and species.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

Genetic transcription is the process by which the information in a strand of DNA is used to create a complementary RNA molecule. This process is the first step in gene expression, where the genetic code in DNA is converted into a form that can be used to produce proteins or functional RNAs.

During transcription, an enzyme called RNA polymerase binds to the DNA template strand and reads the sequence of nucleotide bases. As it moves along the template, it adds complementary RNA nucleotides to the growing RNA chain, creating a single-stranded RNA molecule that is complementary to the DNA template strand. Once transcription is complete, the RNA molecule may undergo further processing before it can be translated into protein or perform its functional role in the cell.

Transcription can be either "constitutive" or "regulated." Constitutive transcription occurs at a relatively constant rate and produces essential proteins that are required for basic cellular functions. Regulated transcription, on the other hand, is subject to control by various intracellular and extracellular signals, allowing cells to respond to changing environmental conditions or developmental cues.

Transcription factors are proteins that play a crucial role in regulating gene expression by controlling the transcription of DNA to messenger RNA (mRNA). They function by binding to specific DNA sequences, known as response elements, located in the promoter region or enhancer regions of target genes. This binding can either activate or repress the initiation of transcription, depending on the properties and interactions of the particular transcription factor. Transcription factors often act as part of a complex network of regulatory proteins that determine the precise spatiotemporal patterns of gene expression during development, differentiation, and homeostasis in an organism.

DNA-binding proteins are a type of protein that have the ability to bind to DNA (deoxyribonucleic acid), the genetic material of organisms. These proteins play crucial roles in various biological processes, such as regulation of gene expression, DNA replication, repair and recombination.

The binding of DNA-binding proteins to specific DNA sequences is mediated by non-covalent interactions, including electrostatic, hydrogen bonding, and van der Waals forces. The specificity of binding is determined by the recognition of particular nucleotide sequences or structural features of the DNA molecule.

DNA-binding proteins can be classified into several categories based on their structure and function, such as transcription factors, histones, and restriction enzymes. Transcription factors are a major class of DNA-binding proteins that regulate gene expression by binding to specific DNA sequences in the promoter region of genes and recruiting other proteins to modulate transcription. Histones are DNA-binding proteins that package DNA into nucleosomes, the basic unit of chromatin structure. Restriction enzymes are DNA-binding proteins that recognize and cleave specific DNA sequences, and are widely used in molecular biology research and biotechnology applications.

Regulatory sequences in nucleic acid refer to specific DNA or RNA segments that control the spatial and temporal expression of genes without encoding proteins. They are crucial for the proper functioning of cells as they regulate various cellular processes such as transcription, translation, mRNA stability, and localization. Regulatory sequences can be found in both coding and non-coding regions of DNA or RNA.

Some common types of regulatory sequences in nucleic acid include:

1. Promoters: DNA sequences typically located upstream of the gene that provide a binding site for RNA polymerase and transcription factors to initiate transcription.
2. Enhancers: DNA sequences, often located at a distance from the gene, that enhance transcription by binding to specific transcription factors and increasing the recruitment of RNA polymerase.
3. Silencers: DNA sequences that repress transcription by binding to specific proteins that inhibit the recruitment of RNA polymerase or promote chromatin compaction.
4. Intron splice sites: Specific nucleotide sequences within introns (non-coding regions) that mark the boundaries between exons (coding regions) and are essential for correct splicing of pre-mRNA.
5. 5' untranslated regions (UTRs): Regions located at the 5' end of an mRNA molecule that contain regulatory elements affecting translation efficiency, stability, and localization.
6. 3' untranslated regions (UTRs): Regions located at the 3' end of an mRNA molecule that contain regulatory elements influencing translation termination, stability, and localization.
7. miRNA target sites: Specific sequences in mRNAs that bind to microRNAs (miRNAs) leading to translational repression or degradation of the target mRNA.

Transcription Factor TFIID is a multi-subunit protein complex that plays a crucial role in the process of transcription, which is the first step in gene expression. In eukaryotic cells, TFIID is responsible for recognizing and binding to the promoter region of genes, specifically to the TATA box, a sequence found in many promoters that acts as a binding site for the general transcription factors.

TFIID is composed of the TATA-box binding protein (TBP) and several TBP-associated factors (TAFs). The TBP subunit initially recognizes and binds to the TATA box, followed by the recruitment of other general transcription factors and RNA polymerase II to form a preinitiation complex. This complex then initiates the transcription of DNA into messenger RNA (mRNA), allowing for the production of proteins and the regulation of gene expression.

Transcription Factor TFIID is essential for accurate and efficient transcription, and its dysfunction can lead to various developmental and physiological abnormalities, including diseases such as cancer.

Molecular cloning is a laboratory technique used to create multiple copies of a specific DNA sequence. This process involves several steps:

1. Isolation: The first step in molecular cloning is to isolate the DNA sequence of interest from the rest of the genomic DNA. This can be done using various methods such as PCR (polymerase chain reaction), restriction enzymes, or hybridization.
2. Vector construction: Once the DNA sequence of interest has been isolated, it must be inserted into a vector, which is a small circular DNA molecule that can replicate independently in a host cell. Common vectors used in molecular cloning include plasmids and phages.
3. Transformation: The constructed vector is then introduced into a host cell, usually a bacterial or yeast cell, through a process called transformation. This can be done using various methods such as electroporation or chemical transformation.
4. Selection: After transformation, the host cells are grown in selective media that allow only those cells containing the vector to grow. This ensures that the DNA sequence of interest has been successfully cloned into the vector.
5. Amplification: Once the host cells have been selected, they can be grown in large quantities to amplify the number of copies of the cloned DNA sequence.

Molecular cloning is a powerful tool in molecular biology and has numerous applications, including the production of recombinant proteins, gene therapy, functional analysis of genes, and genetic engineering.

Deoxyribonucleic acid (DNA) is the genetic material present in the cells of organisms where it is responsible for the storage and transmission of hereditary information. DNA is a long molecule that consists of two strands coiled together to form a double helix. Each strand is made up of a series of four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - that are linked together by phosphate and sugar groups. The sequence of these bases along the length of the molecule encodes genetic information, with A always pairing with T and C always pairing with G. This base-pairing allows for the replication and transcription of DNA, which are essential processes in the functioning and reproduction of all living organisms.

Sp1 (Specificity Protein 1) transcription factor is a protein that binds to specific DNA sequences, known as GC boxes, in the promoter regions of many genes. It plays a crucial role in the regulation of gene expression by controlling the initiation of transcription. Sp1 recognizes and binds to the consensus sequence of GGGCGG upstream of the transcription start site, thereby recruiting other co-activators or co-repressors to modulate the rate of transcription. Sp1 is involved in various cellular processes, including cell growth, differentiation, and apoptosis, and its dysregulation has been implicated in several human diseases, such as cancer.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Restriction mapping is a technique used in molecular biology to identify the location and arrangement of specific restriction endonuclease recognition sites within a DNA molecule. Restriction endonucleases are enzymes that cut double-stranded DNA at specific sequences, producing fragments of various lengths. By digesting the DNA with different combinations of these enzymes and analyzing the resulting fragment sizes through techniques such as agarose gel electrophoresis, researchers can generate a restriction map - a visual representation of the locations and distances between recognition sites on the DNA molecule. This information is crucial for various applications, including cloning, genome analysis, and genetic engineering.

A gene is a specific sequence of nucleotides in DNA that carries genetic information. Genes are the fundamental units of heredity and are responsible for the development and function of all living organisms. They code for proteins or RNA molecules, which carry out various functions within cells and are essential for the structure, function, and regulation of the body's tissues and organs.

Each gene has a specific location on a chromosome, and each person inherits two copies of every gene, one from each parent. Variations in the sequence of nucleotides in a gene can lead to differences in traits between individuals, including physical characteristics, susceptibility to disease, and responses to environmental factors.

Medical genetics is the study of genes and their role in health and disease. It involves understanding how genes contribute to the development and progression of various medical conditions, as well as identifying genetic risk factors and developing strategies for prevention, diagnosis, and treatment.

RNA Polymerase II is a type of enzyme responsible for transcribing DNA into RNA in eukaryotic cells. It plays a crucial role in the process of gene expression, where the information stored in DNA is used to create proteins. Specifically, RNA Polymerase II transcribes protein-coding genes to produce precursor messenger RNA (pre-mRNA), which is then processed into mature mRNA. This mature mRNA serves as a template for protein synthesis during translation.

RNA Polymerase II has a complex structure, consisting of multiple subunits, and it requires the assistance of various transcription factors and coactivators to initiate and regulate transcription. The enzyme recognizes specific promoter sequences in DNA, unwinds the double-stranded DNA, and synthesizes a complementary RNA strand using one of the unwound DNA strands as a template. This process results in the formation of a nascent RNA molecule that is further processed into mature mRNA for protein synthesis or other functional RNAs involved in gene regulation.

'Gene expression regulation' refers to the processes that control whether, when, and where a particular gene is expressed, meaning the production of a specific protein or functional RNA encoded by that gene. This complex mechanism can be influenced by various factors such as transcription factors, chromatin remodeling, DNA methylation, non-coding RNAs, and post-transcriptional modifications, among others. Proper regulation of gene expression is crucial for normal cellular function, development, and maintaining homeostasis in living organisms. Dysregulation of gene expression can lead to various diseases, including cancer and genetic disorders.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Transcription Factor TFIIA is not a specific transcription factor itself, but rather a general term that refers to one of the several protein complexes that make up the larger Preinitiation Complex (PIC) in eukaryotic transcription. The PIC is responsible for the accurate initiation of transcription by RNA polymerase II, which transcribes most protein-coding genes in eukaryotes.

TFIIA is a heterotrimeric complex composed of three subunits: TAF1 (also known as TCP14/TCP22), TAF2 (also known as TCP80), and TAF3 (also known as GTF2A1). It plays a crucial role in the early stages of transcription initiation by helping to stabilize the binding of RNA polymerase II to the promoter region of the gene, as well as facilitating the correct positioning of other general transcription factors.

In addition to its role in the PIC, TFIIA has also been shown to have a function in regulating chromatin structure and accessibility, which can impact gene expression. Overall, Transcription Factor TFIIA is an essential component of the eukaryotic transcription machinery that helps ensure accurate and efficient initiation of gene transcription.

Introns are non-coding sequences of DNA that are present within the genes of eukaryotic organisms, including plants, animals, and humans. Introns are removed during the process of RNA splicing, in which the initial RNA transcript is cut and reconnected to form a mature, functional RNA molecule.

After the intron sequences are removed, the remaining coding sequences, known as exons, are joined together to create a continuous stretch of genetic information that can be translated into a protein or used to produce non-coding RNAs with specific functions. The removal of introns allows for greater flexibility in gene expression and regulation, enabling the generation of multiple proteins from a single gene through alternative splicing.

In summary, introns are non-coding DNA sequences within genes that are removed during RNA processing to create functional RNA molecules or proteins.

Sequence homology in nucleic acids refers to the similarity or identity between the nucleotide sequences of two or more DNA or RNA molecules. It is often used as a measure of biological relationship between genes, organisms, or populations. High sequence homology suggests a recent common ancestry or functional constraint, while low sequence homology may indicate a more distant relationship or different functions.

Nucleic acid sequence homology can be determined by various methods such as pairwise alignment, multiple sequence alignment, and statistical analysis. The degree of homology is typically expressed as a percentage of identical or similar nucleotides in a given window of comparison.

It's important to note that the interpretation of sequence homology depends on the biological context and the evolutionary distance between the sequences compared. Therefore, functional and experimental validation is often necessary to confirm the significance of sequence homology.

HeLa cells are a type of immortalized cell line used in scientific research. They are derived from a cancer that developed in the cervical tissue of Henrietta Lacks, an African-American woman, in 1951. After her death, cells taken from her tumor were found to be capable of continuous division and growth in a laboratory setting, making them an invaluable resource for medical research.

HeLa cells have been used in a wide range of scientific studies, including research on cancer, viruses, genetics, and drug development. They were the first human cell line to be successfully cloned and are able to grow rapidly in culture, doubling their population every 20-24 hours. This has made them an essential tool for many areas of biomedical research.

It is important to note that while HeLa cells have been instrumental in numerous scientific breakthroughs, the story of their origin raises ethical questions about informed consent and the use of human tissue in research.

Deoxyribonuclease I (DNase I) is an enzyme that cleaves the phosphodiester bonds in the DNA molecule, breaking it down into smaller pieces. It is also known as DNase A or bovine pancreatic deoxyribonuclease. This enzyme specifically hydrolyzes the internucleotide linkages of DNA by cleaving the phosphodiester bond between the 3'-hydroxyl group of one deoxyribose sugar and the phosphate group of another, leaving 3'-phosphomononucleotides as products.

DNase I plays a crucial role in various biological processes, including DNA degradation during apoptosis (programmed cell death), DNA repair, and host defense against pathogens by breaking down extracellular DNA from invading microorganisms or damaged cells. It is widely used in molecular biology research for applications such as DNA isolation, removing contaminating DNA from RNA samples, and generating defined DNA fragments for cloning purposes. DNase I can be found in various sources, including bovine pancreas, human tears, and bacterial cultures.

TATA box binding protein-like proteins (TBP-like proteins or TBPLs) are a family of transcription factors that share structural and functional similarities with the TATA box binding protein (TBP). TBP is a critical component of the initiation complex that binds to the TATA box, a specific DNA sequence found in the promoter regions of many genes.

TBPLs are involved in regulating gene expression by recognizing and binding to specific DNA sequences, similar to TBP. However, TBPLs have distinct roles in transcriptional regulation compared to TBP. They can either act as activators or repressors of transcription, depending on the context and the target genes they interact with.

TBPLs are found in various organisms, including animals, plants, and fungi. In humans, there are three known TBPLs: TBPL1 (also known as TRF3), TBPL2 (also known as TRF2), and TBPL3 (also known as DR1). These proteins have been implicated in various cellular processes, such as development, differentiation, and stress response.

In summary, TATA box binding protein-like proteins are a family of transcription factors that share structural and functional similarities with TBP but have distinct roles in regulating gene expression.

A Transcription Initiation Site (TIS) is a specific location within the DNA sequence where the process of transcription is initiated. In other words, it is the starting point where the RNA polymerase enzyme binds to the DNA template and begins synthesizing an RNA molecule. The TIS is typically located just upstream of the coding region of a gene and is often marked by specific sequences or structures that help regulate transcription, such as promoters and enhancers.

During the initiation of transcription, the RNA polymerase recognizes and binds to the promoter region, which lies adjacent to the TIS. The promoter contains cis-acting elements, including the TATA box and the initiator (Inr) element, that are recognized by transcription factors and other regulatory proteins. These proteins help position the RNA polymerase at the correct location on the DNA template and facilitate the initiation of transcription.

Once the RNA polymerase is properly positioned, it begins to unwind the double-stranded DNA at the TIS, creating a transcription bubble where the single-stranded DNA template can be accessed. The RNA polymerase then adds nucleotides one by one to the growing RNA chain, synthesizing an mRNA molecule that will ultimately be translated into a protein or, in some cases, serve as a non-coding RNA with regulatory functions.

In summary, the Transcription Initiation Site (TIS) is a crucial component of gene expression, marking the location where transcription begins and playing a key role in regulating this essential biological process.

Exons are the coding regions of DNA that remain in the mature, processed mRNA after the removal of non-coding intronic sequences during RNA splicing. These exons contain the information necessary to encode proteins, as they specify the sequence of amino acids within a polypeptide chain. The arrangement and order of exons can vary between different genes and even between different versions of the same gene (alternative splicing), allowing for the generation of multiple protein isoforms from a single gene. This complexity in exon structure and usage significantly contributes to the diversity and functionality of the proteome.

DNA footprinting is a laboratory technique used to identify specific DNA-protein interactions and map the binding sites of proteins on a DNA molecule. This technique involves the use of enzymes or chemicals that can cleave the DNA strand, but are prevented from doing so when a protein is bound to the DNA. By comparing the pattern of cuts in the presence and absence of the protein, researchers can identify the regions of the DNA where the protein binds.

The process typically involves treating the DNA-protein complex with a chemical or enzymatic agent that cleaves the DNA at specific sequences or sites. After the reaction is stopped, the DNA is separated into single strands and analyzed using techniques such as gel electrophoresis to visualize the pattern of cuts. The regions of the DNA where protein binding has occurred are protected from cleavage and appear as gaps or "footprints" in the pattern of cuts.

DNA footprinting is a valuable tool for studying gene regulation, as it can provide insights into how proteins interact with specific DNA sequences to control gene expression. It can also be used to study protein-DNA interactions involved in processes such as DNA replication, repair, and recombination.

A plasmid is a small, circular, double-stranded DNA molecule that is separate from the chromosomal DNA of a bacterium or other organism. Plasmids are typically not essential for the survival of the organism, but they can confer beneficial traits such as antibiotic resistance or the ability to degrade certain types of pollutants.

Plasmids are capable of replicating independently of the chromosomal DNA and can be transferred between bacteria through a process called conjugation. They often contain genes that provide resistance to antibiotics, heavy metals, and other environmental stressors. Plasmids have also been engineered for use in molecular biology as cloning vectors, allowing scientists to replicate and manipulate specific DNA sequences.

Plasmids are important tools in genetic engineering and biotechnology because they can be easily manipulated and transferred between organisms. They have been used to produce vaccines, diagnostic tests, and genetically modified organisms (GMOs) for various applications, including agriculture, medicine, and industry.

Transcriptional activation is the process by which a cell increases the rate of transcription of specific genes from DNA to RNA. This process is tightly regulated and plays a crucial role in various biological processes, including development, differentiation, and response to environmental stimuli.

Transcriptional activation occurs when transcription factors (proteins that bind to specific DNA sequences) interact with the promoter region of a gene and recruit co-activator proteins. These co-activators help to remodel the chromatin structure around the gene, making it more accessible for the transcription machinery to bind and initiate transcription.

Transcriptional activation can be regulated at multiple levels, including the availability and activity of transcription factors, the modification of histone proteins, and the recruitment of co-activators or co-repressors. Dysregulation of transcriptional activation has been implicated in various diseases, including cancer and genetic disorders.

Transfection is a term used in molecular biology that refers to the process of deliberately introducing foreign genetic material (DNA, RNA or artificial gene constructs) into cells. This is typically done using chemical or physical methods, such as lipofection or electroporation. Transfection is widely used in research and medical settings for various purposes, including studying gene function, producing proteins, developing gene therapies, and creating genetically modified organisms. It's important to note that transfection is different from transduction, which is the process of introducing genetic material into cells using viruses as vectors.

Genetic enhancer elements are DNA sequences that increase the transcription of specific genes. They work by binding to regulatory proteins called transcription factors, which in turn recruit RNA polymerase II, the enzyme responsible for transcribing DNA into messenger RNA (mRNA). This results in the activation of gene transcription and increased production of the protein encoded by that gene.

Enhancer elements can be located upstream, downstream, or even within introns of the genes they regulate, and they can act over long distances along the DNA molecule. They are an important mechanism for controlling gene expression in a tissue-specific and developmental stage-specific manner, allowing for the precise regulation of gene activity during embryonic development and throughout adult life.

It's worth noting that genetic enhancer elements are often referred to simply as "enhancers," and they are distinct from other types of regulatory DNA sequences such as promoters, silencers, and insulators.

Chloramphenicol O-acetyltransferase is an enzyme that is encoded by the cat gene in certain bacteria. This enzyme is responsible for adding acetyl groups to chloramphenicol, which is an antibiotic that inhibits bacterial protein synthesis. When chloramphenicol is acetylated by this enzyme, it becomes inactivated and can no longer bind to the ribosome and prevent bacterial protein synthesis.

Bacteria that are resistant to chloramphenicol often have a plasmid-borne cat gene, which encodes for the production of Chloramphenicol O-acetyltransferase. This enzyme allows the bacteria to survive in the presence of chloramphenicol by rendering it ineffective. The transfer of this plasmid between bacteria can also confer resistance to other susceptible strains.

In summary, Chloramphenicol O-acetyltransferase is an enzyme that inactivates chloramphenicol by adding acetyl groups to it, making it an essential factor in bacterial resistance to this antibiotic.

A genomic library is a collection of cloned DNA fragments that represent the entire genetic material of an organism. It serves as a valuable resource for studying the function, organization, and regulation of genes within a given genome. Genomic libraries can be created using different types of vectors, such as bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs), or plasmids, to accommodate various sizes of DNA inserts. These libraries facilitate the isolation and manipulation of specific genes or genomic regions for further analysis, including sequencing, gene expression studies, and functional genomics research.

A mutation is a permanent change in the DNA sequence of an organism's genome. Mutations can occur spontaneously or be caused by environmental factors such as exposure to radiation, chemicals, or viruses. They may have various effects on the organism, ranging from benign to harmful, depending on where they occur and whether they alter the function of essential proteins. In some cases, mutations can increase an individual's susceptibility to certain diseases or disorders, while in others, they may confer a survival advantage. Mutations are the driving force behind evolution, as they introduce new genetic variability into populations, which can then be acted upon by natural selection.

Transcription Factor IIB (TFIIB) is a general transcription factor that plays an essential role in the initiation of gene transcription by RNA polymerase II in eukaryotic cells. It is a small protein consisting of approximately 350 amino acids and has several functional domains, including a zinc-binding domain, a helix-turn-helix motif, and a cyclin-like fold.

TFIIB acts as a bridge between the RNA polymerase II complex and the promoter DNA, recognizing and binding to specific sequences in the promoter region known as the B recognition element (BRE) and the TATA box. By interacting with other transcription factors, such as TFIIF and TFIIH, TFIIB helps to position RNA polymerase II correctly on the promoter DNA and to unwind the double helix, allowing for the initiation of transcription.

TFIIB is a highly conserved protein across eukaryotes, and mutations in the gene encoding TFIIB have been associated with several human diseases, including developmental disorders and cancer.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Gene expression regulation, viral, refers to the processes that control the production of viral gene products, such as proteins and nucleic acids, during the viral life cycle. This can involve both viral and host cell factors that regulate transcription, RNA processing, translation, and post-translational modifications of viral genes.

Viral gene expression regulation is critical for the virus to replicate and produce progeny virions. Different types of viruses have evolved diverse mechanisms to regulate their gene expression, including the use of promoters, enhancers, transcription factors, RNA silencing, and epigenetic modifications. Understanding these regulatory processes can provide insights into viral pathogenesis and help in the development of antiviral therapies.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Oligodeoxyribonucleotides (ODNs) are relatively short, synthetic single-stranded DNA molecules. They typically contain 15 to 30 nucleotides, but can range from 2 to several hundred nucleotides in length. ODNs are often used as tools in molecular biology research for various applications such as:

1. Nucleic acid detection and quantification (e.g., real-time PCR)
2. Gene regulation (antisense, RNA interference)
3. Gene editing (CRISPR-Cas systems)
4. Vaccine development
5. Diagnostic purposes

Due to their specificity and affinity towards complementary DNA or RNA sequences, ODNs can be designed to target a particular gene or sequence of interest. This makes them valuable tools in understanding gene function, regulation, and interaction with other molecules within the cell.

A sequence deletion in a genetic context refers to the removal or absence of one or more nucleotides (the building blocks of DNA or RNA) from a specific region in a DNA or RNA molecule. This type of mutation can lead to the loss of genetic information, potentially resulting in changes in the function or expression of a gene. If the deletion involves a critical portion of the gene, it can cause diseases, depending on the role of that gene in the body. The size of the deleted sequence can vary, ranging from a single nucleotide to a large segment of DNA.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

"Saccharomyces cerevisiae" is not typically considered a medical term, but it is a scientific name used in the field of microbiology. It refers to a species of yeast that is commonly used in various industrial processes, such as baking and brewing. It's also widely used in scientific research due to its genetic tractability and eukaryotic cellular organization.

However, it does have some relevance to medical fields like medicine and nutrition. For example, certain strains of S. cerevisiae are used as probiotics, which can provide health benefits when consumed. They may help support gut health, enhance the immune system, and even assist in the digestion of certain nutrients.

In summary, "Saccharomyces cerevisiae" is a species of yeast with various industrial and potential medical applications.

A consensus sequence in genetics refers to the most common nucleotide (DNA or RNA) or amino acid at each position in a multiple sequence alignment. It is derived by comparing and analyzing several sequences of the same gene or protein from different individuals or organisms. The consensus sequence provides a general pattern or motif that is shared among these sequences and can be useful in identifying functional regions, conserved domains, or evolutionary relationships. However, it's important to note that not every sequence will exactly match the consensus sequence, as variations can occur naturally due to mutations or genetic differences among individuals.

Single-strand specific DNA and RNA endonucleases are enzymes that cleave or cut single-stranded DNA or RNA molecules at specific sites, leaving a free 3'-hydroxyl group and a 5'-phosphate group on the resulting fragments. These enzymes recognize and bind to particular nucleotide sequences or structural motifs in single-stranded nucleic acids, making them useful tools for various molecular biology techniques such as DNA and RNA mapping, sequencing, and manipulation.

Examples of single-strand specific endonucleases include S1 nuclease (specific to single-stranded DNA), mung bean nuclease (specific to single-stranded DNA with a preference for 3'-overhangs), and RNase A (specific to single-stranded RNA). These enzymes have distinct substrate specificities, cleavage patterns, and optimal reaction conditions, which should be carefully considered when selecting them for specific applications.

Nucleotide mapping is not a widely recognized medical term, but it is commonly used in the field of molecular biology and genetics. It generally refers to the process of determining the precise order of nucleotides (adenine, thymine, guanine, and cytosine) in a DNA or RNA molecule using various sequencing techniques.

Mapping the nucleotide sequence is crucial for understanding the genetic makeup and function of an organism, identifying genetic variations associated with diseases, developing diagnostic tests, and designing personalized treatments. The term "nucleotide mapping" may also be used to describe the alignment of short DNA or RNA sequences to a reference genome to identify their location and any potential mutations.

Regulator genes are a type of gene that regulates the activity of other genes in an organism. They do not code for a specific protein product but instead control the expression of other genes by producing regulatory proteins such as transcription factors, repressors, or enhancers. These regulatory proteins bind to specific DNA sequences near the target genes and either promote or inhibit their transcription into mRNA. This allows regulator genes to play a crucial role in coordinating complex biological processes, including development, differentiation, metabolism, and response to environmental stimuli.

There are several types of regulator genes, including:

1. Constitutive regulators: These genes are always active and produce regulatory proteins that control the expression of other genes in a consistent manner.
2. Inducible regulators: These genes respond to specific signals or environmental stimuli by producing regulatory proteins that modulate the expression of target genes.
3. Negative regulators: These genes produce repressor proteins that bind to DNA and inhibit the transcription of target genes, thereby reducing their expression.
4. Positive regulators: These genes produce activator proteins that bind to DNA and promote the transcription of target genes, thereby increasing their expression.
5. Master regulators: These genes control the expression of multiple downstream target genes involved in specific biological processes or developmental pathways.

Regulator genes are essential for maintaining proper gene expression patterns and ensuring normal cellular function. Mutations in regulator genes can lead to various diseases, including cancer, developmental disorders, and metabolic dysfunctions.

A "5' flanking region" in genetics refers to the DNA sequence that is located upstream (towards the 5' end) of a gene's transcription start site. This region contains various regulatory elements, such as promoters and enhancers, that control the initiation and rate of transcription of the gene. The 5' flanking region is important for the proper regulation of gene expression and can be influenced by genetic variations or mutations, which may lead to changes in gene function and contribute to disease susceptibility.

Repetitive sequences in nucleic acid refer to repeated stretches of DNA or RNA nucleotide bases that are present in a genome. These sequences can vary in length and can be arranged in different patterns such as direct repeats, inverted repeats, or tandem repeats. In some cases, these repetitive sequences do not code for proteins and are often found in non-coding regions of the genome. They can play a role in genetic instability, regulation of gene expression, and evolutionary processes. However, certain types of repeat expansions have been associated with various neurodegenerative disorders and other human diseases.

Fungal genes refer to the genetic material present in fungi, which are eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The genetic material of fungi is composed of DNA, just like in other eukaryotes, and is organized into chromosomes located in the nucleus of the cell.

Fungal genes are segments of DNA that contain the information necessary to produce proteins and RNA molecules required for various cellular functions. These genes are transcribed into messenger RNA (mRNA) molecules, which are then translated into proteins by ribosomes in the cytoplasm.

Fungal genomes have been sequenced for many species, revealing a diverse range of genes that encode proteins involved in various cellular processes such as metabolism, signaling, and regulation. Comparative genomic analyses have also provided insights into the evolutionary relationships among different fungal lineages and have helped to identify unique genetic features that distinguish fungi from other eukaryotes.

Understanding fungal genes and their functions is essential for advancing our knowledge of fungal biology, as well as for developing new strategies to control fungal pathogens that can cause diseases in humans, animals, and plants.

Small nuclear RNA (snRNA) are a type of RNA molecules that are typically around 100-300 nucleotides in length. They are found within the nucleus of eukaryotic cells and are components of small nuclear ribonucleoproteins (snRNPs), which play important roles in various aspects of RNA processing, including splicing of pre-messenger RNA (pre-mRNA) and regulation of transcription.

There are several classes of snRNAs, each with a distinct function. The most well-studied class is the spliceosomal snRNAs, which include U1, U2, U4, U5, and U6 snRNAs. These snRNAs form complexes with proteins to form small nuclear ribonucleoprotein particles (snRNPs) that recognize specific sequences in pre-mRNA and catalyze the removal of introns during splicing.

Other classes of snRNAs include signal recognition particle (SRP) RNA, which is involved in targeting proteins to the endoplasmic reticulum, and Ro60 RNA, which is associated with autoimmune diseases such as systemic lupus erythematosus.

Overall, small nuclear RNAs are essential components of the cellular machinery that regulates gene expression and protein synthesis in eukaryotic cells.

A "reporter gene" is a type of gene that is linked to a gene of interest in order to make the expression or activity of that gene detectable. The reporter gene encodes for a protein that can be easily measured and serves as an indicator of the presence and activity of the gene of interest. Commonly used reporter genes include those that encode for fluorescent proteins, enzymes that catalyze colorimetric reactions, or proteins that bind to specific molecules.

In the context of genetics and genomics research, a reporter gene is often used in studies involving gene expression, regulation, and function. By introducing the reporter gene into an organism or cell, researchers can monitor the activity of the gene of interest in real-time or after various experimental treatments. The information obtained from these studies can help elucidate the role of specific genes in biological processes and diseases, providing valuable insights for basic research and therapeutic development.

Trans-activators are proteins that increase the transcriptional activity of a gene or a set of genes. They do this by binding to specific DNA sequences and interacting with the transcription machinery, thereby enhancing the recruitment and assembly of the complexes needed for transcription. In some cases, trans-activators can also modulate the chromatin structure to make the template more accessible to the transcription machinery.

In the context of HIV (Human Immunodeficiency Virus) infection, the term "trans-activator" is often used specifically to refer to the Tat protein. The Tat protein is a viral regulatory protein that plays a critical role in the replication of HIV by activating the transcription of the viral genome. It does this by binding to a specific RNA structure called the Trans-Activation Response Element (TAR) located at the 5' end of all nascent HIV transcripts, and recruiting cellular cofactors that enhance the processivity and efficiency of RNA polymerase II, leading to increased viral gene expression.

DNA restriction enzymes, also known as restriction endonucleases, are a type of enzyme that cut double-stranded DNA at specific recognition sites. These enzymes are produced by bacteria and archaea as a defense mechanism against foreign DNA, such as that found in bacteriophages (viruses that infect bacteria).

Restriction enzymes recognize specific sequences of nucleotides (the building blocks of DNA) and cleave the phosphodiester bonds between them. The recognition sites for these enzymes are usually palindromic, meaning that the sequence reads the same in both directions when facing the opposite strands of DNA.

Restriction enzymes are widely used in molecular biology research for various applications such as genetic engineering, genome mapping, and DNA fingerprinting. They allow scientists to cut DNA at specific sites, creating precise fragments that can be manipulated and analyzed. The use of restriction enzymes has been instrumental in the development of recombinant DNA technology and the Human Genome Project.

Nuclear proteins are a category of proteins that are primarily found in the nucleus of a eukaryotic cell. They play crucial roles in various nuclear functions, such as DNA replication, transcription, repair, and RNA processing. This group includes structural proteins like lamins, which form the nuclear lamina, and regulatory proteins, such as histones and transcription factors, that are involved in gene expression. Nuclear localization signals (NLS) often help target these proteins to the nucleus by interacting with importin proteins during active transport across the nuclear membrane.

Site-directed mutagenesis is a molecular biology technique used to introduce specific and targeted changes to a specific DNA sequence. This process involves creating a new variant of a gene or a specific region of interest within a DNA molecule by introducing a planned, deliberate change, or mutation, at a predetermined site within the DNA sequence.

The methodology typically involves the use of molecular tools such as PCR (polymerase chain reaction), restriction enzymes, and/or ligases to introduce the desired mutation(s) into a plasmid or other vector containing the target DNA sequence. The resulting modified DNA molecule can then be used to transform host cells, allowing for the production of large quantities of the mutated gene or protein for further study.

Site-directed mutagenesis is a valuable tool in basic research, drug discovery, and biotechnology applications where specific changes to a DNA sequence are required to understand gene function, investigate protein structure/function relationships, or engineer novel biological properties into existing genes or proteins.

Saccharomyces cerevisiae proteins are the proteins that are produced by the budding yeast, Saccharomyces cerevisiae. This organism is a single-celled eukaryote that has been widely used as a model organism in scientific research for many years due to its relatively simple genetic makeup and its similarity to higher eukaryotic cells.

The genome of Saccharomyces cerevisiae has been fully sequenced, and it is estimated to contain approximately 6,000 genes that encode proteins. These proteins play a wide variety of roles in the cell, including catalyzing metabolic reactions, regulating gene expression, maintaining the structure of the cell, and responding to environmental stimuli.

Many Saccharomyces cerevisiae proteins have human homologs and are involved in similar biological processes, making this organism a valuable tool for studying human disease. For example, many of the proteins involved in DNA replication, repair, and recombination in yeast have human counterparts that are associated with cancer and other diseases. By studying these proteins in yeast, researchers can gain insights into their function and regulation in humans, which may lead to new treatments for disease.

Viral genes refer to the genetic material present in viruses that contains the information necessary for their replication and the production of viral proteins. In DNA viruses, the genetic material is composed of double-stranded or single-stranded DNA, while in RNA viruses, it is composed of single-stranded or double-stranded RNA.

Viral genes can be classified into three categories: early, late, and structural. Early genes encode proteins involved in the replication of the viral genome, modulation of host cell processes, and regulation of viral gene expression. Late genes encode structural proteins that make up the viral capsid or envelope. Some viruses also have structural genes that are expressed throughout their replication cycle.

Understanding the genetic makeup of viruses is crucial for developing antiviral therapies and vaccines. By targeting specific viral genes, researchers can develop drugs that inhibit viral replication and reduce the severity of viral infections. Additionally, knowledge of viral gene sequences can inform the development of vaccines that stimulate an immune response to specific viral proteins.

Nucleic acid conformation refers to the three-dimensional structure that nucleic acids (DNA and RNA) adopt as a result of the bonding patterns between the atoms within the molecule. The primary structure of nucleic acids is determined by the sequence of nucleotides, while the conformation is influenced by factors such as the sugar-phosphate backbone, base stacking, and hydrogen bonding.

Two common conformations of DNA are the B-form and the A-form. The B-form is a right-handed helix with a diameter of about 20 Å and a pitch of 34 Å, while the A-form has a smaller diameter (about 18 Å) and a shorter pitch (about 25 Å). RNA typically adopts an A-form conformation.

The conformation of nucleic acids can have significant implications for their function, as it can affect their ability to interact with other molecules such as proteins or drugs. Understanding the conformational properties of nucleic acids is therefore an important area of research in molecular biology and medicine.

An oligonucleotide probe is a short, single-stranded DNA or RNA molecule that contains a specific sequence of nucleotides designed to hybridize with a complementary sequence in a target nucleic acid (DNA or RNA). These probes are typically 15-50 nucleotides long and are used in various molecular biology techniques, such as polymerase chain reaction (PCR), DNA sequencing, microarray analysis, and blotting methods.

Oligonucleotide probes can be labeled with various reporter molecules, like fluorescent dyes or radioactive isotopes, to enable the detection of hybridized targets. The high specificity of oligonucleotide probes allows for the precise identification and quantification of target nucleic acids in complex biological samples, making them valuable tools in diagnostic, research, and forensic applications.

A chromosome deletion is a type of genetic abnormality that occurs when a portion of a chromosome is missing or deleted. Chromosomes are thread-like structures located in the nucleus of cells that contain our genetic material, which is organized into genes.

Chromosome deletions can occur spontaneously during the formation of reproductive cells (eggs or sperm) or can be inherited from a parent. They can affect any chromosome and can vary in size, from a small segment to a large portion of the chromosome.

The severity of the symptoms associated with a chromosome deletion depends on the size and location of the deleted segment. In some cases, the deletion may be so small that it does not cause any noticeable symptoms. However, larger deletions can lead to developmental delays, intellectual disabilities, physical abnormalities, and various medical conditions.

Chromosome deletions are typically detected through a genetic test called karyotyping, which involves analyzing the number and structure of an individual's chromosomes. Other more precise tests, such as fluorescence in situ hybridization (FISH) or chromosomal microarray analysis (CMA), may also be used to confirm the diagnosis and identify the specific location and size of the deletion.

Transcription factors (TFs) are proteins that regulate the transcription of genetic information from DNA to RNA by binding to specific DNA sequences. They play a crucial role in controlling gene expression, which is the process by which information in genes is converted into a functional product, such as a protein.

TFII, on the other hand, refers to a general class of transcription factors that are involved in the initiation of RNA polymerase II-dependent transcription. These proteins are often referred to as "general transcription factors" because they are required for the transcription of most protein-coding genes in eukaryotic cells.

TFII factors help to assemble the preinitiation complex (PIC) at the promoter region of a gene, which is a group of proteins that includes RNA polymerase II and other cofactors necessary for transcription. Once the PIC is assembled, TFII factors help to recruit RNA polymerase II to the promoter and initiate transcription.

Some examples of TFII factors include TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Each of these factors plays a specific role in the initiation of transcription, such as recognizing and binding to specific DNA sequences or modifying the chromatin structure around the promoter to make it more accessible to RNA polymerase II.

Immediate-early proteins (IEPs) are a class of regulatory proteins that play a crucial role in the early stages of gene expression in viral infection and cellular stress responses. These proteins are synthesized rapidly, without the need for new protein synthesis, after the induction of immediate-early genes (IEGs).

In the context of viral infection, IEPs are often the first proteins produced by the virus upon entry into the host cell. They function as transcription factors that bind to specific DNA sequences and regulate the expression of early and late viral genes required for replication and packaging of the viral genome.

IEPs can also be involved in modulating host cell signaling pathways, altering cell cycle progression, and inducing apoptosis (programmed cell death). Dysregulation of IEPs has been implicated in various diseases, including cancer and neurological disorders.

It is important to note that the term "immediate-early proteins" is primarily used in the context of viral infection, while in other contexts such as cellular stress responses or oncogene activation, these proteins may be referred to by different names, such as "early response genes" or "transcription factors."

A conserved sequence in the context of molecular biology refers to a pattern of nucleotides (in DNA or RNA) or amino acids (in proteins) that has remained relatively unchanged over evolutionary time. These sequences are often functionally important and are highly conserved across different species, indicating strong selection pressure against changes in these regions.

In the case of protein-coding genes, the corresponding amino acid sequence is deduced from the DNA sequence through the genetic code. Conserved sequences in proteins may indicate structurally or functionally important regions, such as active sites or binding sites, that are critical for the protein's activity. Similarly, conserved non-coding sequences in DNA may represent regulatory elements that control gene expression.

Identifying conserved sequences can be useful for inferring evolutionary relationships between species and for predicting the function of unknown genes or proteins.

Chromosome mapping, also known as physical mapping, is the process of determining the location and order of specific genes or genetic markers on a chromosome. This is typically done by using various laboratory techniques to identify landmarks along the chromosome, such as restriction enzyme cutting sites or patterns of DNA sequence repeats. The resulting map provides important information about the organization and structure of the genome, and can be used for a variety of purposes, including identifying the location of genes associated with genetic diseases, studying evolutionary relationships between organisms, and developing genetic markers for use in breeding or forensic applications.

Adenovirus early proteins refer to the viral proteins that are expressed by adenoviruses during the early phase of their replication cycle. Adenoviruses are a group of viruses that can cause various symptoms, such as respiratory illness, conjunctivitis, and gastroenteritis.

The adenovirus replication cycle is divided into two phases: the early phase and the late phase. During the early phase, which occurs shortly after the virus infects a host cell, the viral genome is transcribed and translated into early proteins that help to prepare the host cell for viral replication. These early proteins play various roles in regulating the host cell's transcription, translation, and DNA replication machinery, as well as inhibiting the host cell's antiviral response.

There are several different adenovirus early proteins that have been identified, each with its own specific function. For example, E1A is an early protein that acts as a transcriptional activator and helps to activate the expression of other viral genes. E1B is another early protein that functions as a DNA-binding protein and inhibits the host cell's apoptosis (programmed cell death) response.

Overall, adenovirus early proteins are critical for the efficient replication of the virus within host cells, and understanding their functions can provide valuable insights into the mechanisms of viral infection and pathogenesis.

In genetics, sequence alignment is the process of arranging two or more DNA, RNA, or protein sequences to identify regions of similarity or homology between them. This is often done using computational methods to compare the nucleotide or amino acid sequences and identify matching patterns, which can provide insight into evolutionary relationships, functional domains, or potential genetic disorders. The alignment process typically involves adjusting gaps and mismatches in the sequences to maximize the similarity between them, resulting in an aligned sequence that can be visually represented and analyzed.

Gene expression regulation in fungi refers to the complex cellular processes that control the production of proteins and other functional gene products in response to various internal and external stimuli. This regulation is crucial for normal growth, development, and adaptation of fungal cells to changing environmental conditions.

In fungi, gene expression is regulated at multiple levels, including transcriptional, post-transcriptional, translational, and post-translational modifications. Key regulatory mechanisms include:

1. Transcription factors (TFs): These proteins bind to specific DNA sequences in the promoter regions of target genes and either activate or repress their transcription. Fungi have a diverse array of TFs that respond to various signals, such as nutrient availability, stress, developmental cues, and quorum sensing.
2. Chromatin remodeling: The organization and compaction of DNA into chromatin can influence gene expression. Fungi utilize ATP-dependent chromatin remodeling complexes and histone modifying enzymes to alter chromatin structure, thereby facilitating or inhibiting the access of transcriptional machinery to genes.
3. Non-coding RNAs: Small non-coding RNAs (sncRNAs) play a role in post-transcriptional regulation of gene expression in fungi. These sncRNAs can guide RNA-induced transcriptional silencing (RITS) complexes to specific target loci, leading to the repression of gene expression through histone modifications and DNA methylation.
4. Alternative splicing: Fungi employ alternative splicing mechanisms to generate multiple mRNA isoforms from a single gene, thereby increasing proteome diversity. This process can be regulated by RNA-binding proteins that recognize specific sequence motifs in pre-mRNAs and promote or inhibit splicing events.
5. Protein stability and activity: Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and sumoylation, can influence their stability, localization, and activity. These PTMs play a crucial role in regulating various cellular processes, including signal transduction, stress response, and cell cycle progression.

Understanding the complex interplay between these regulatory mechanisms is essential for elucidating the molecular basis of fungal development, pathogenesis, and drug resistance. This knowledge can be harnessed to develop novel strategies for combating fungal infections and improving agricultural productivity.

Transcription Factor TFIIIB is a complex of proteins that plays a crucial role in the initiation of transcription of protein-coding genes in eukaryotic cells. It is involved in the transcription process that occurs in the nucleus of the cell, where genetic information is transcribed from DNA to RNA.

TFIIIB is composed of three subunits: TATA-binding protein (TBP), and two proteins known as B' and B" or Brf1 and Brf2. Together, these subunits recognize and bind to specific sequences in the DNA, known as the promoter region, to initiate transcription. The TFIIIB complex helps recruit other transcription factors and RNA polymerase III, the enzyme responsible for transcribing DNA into RNA, to the promoter region.

TFIIIB is unique because it is involved in the transcription of genes that encode small RNAs, such as transfer RNAs (tRNAs) and 5S ribosomal RNA (rRNA), which are essential components of the protein synthesis machinery. Therefore, TFIIIB plays a critical role in regulating gene expression and maintaining cellular function.

Recombinant fusion proteins are artificially created biomolecules that combine the functional domains or properties of two or more different proteins into a single protein entity. They are generated through recombinant DNA technology, where the genes encoding the desired protein domains are linked together and expressed as a single, chimeric gene in a host organism, such as bacteria, yeast, or mammalian cells.

The resulting fusion protein retains the functional properties of its individual constituent proteins, allowing for novel applications in research, diagnostics, and therapeutics. For instance, recombinant fusion proteins can be designed to enhance protein stability, solubility, or immunogenicity, making them valuable tools for studying protein-protein interactions, developing targeted therapies, or generating vaccines against infectious diseases or cancer.

Examples of recombinant fusion proteins include:

1. Etaglunatide (ABT-523): A soluble Fc fusion protein that combines the heavy chain fragment crystallizable region (Fc) of an immunoglobulin with the extracellular domain of the human interleukin-6 receptor (IL-6R). This fusion protein functions as a decoy receptor, neutralizing IL-6 and its downstream signaling pathways in rheumatoid arthritis.
2. Etanercept (Enbrel): A soluble TNF receptor p75 Fc fusion protein that binds to tumor necrosis factor-alpha (TNF-α) and inhibits its proinflammatory activity, making it a valuable therapeutic option for treating autoimmune diseases like rheumatoid arthritis, ankylosing spondylitis, and psoriasis.
3. Abatacept (Orencia): A fusion protein consisting of the extracellular domain of cytotoxic T-lymphocyte antigen 4 (CTLA-4) linked to the Fc region of an immunoglobulin, which downregulates T-cell activation and proliferation in autoimmune diseases like rheumatoid arthritis.
4. Belimumab (Benlysta): A monoclonal antibody that targets B-lymphocyte stimulator (BLyS) protein, preventing its interaction with the B-cell surface receptor and inhibiting B-cell activation in systemic lupus erythematosus (SLE).
5. Romiplostim (Nplate): A fusion protein consisting of a thrombopoietin receptor agonist peptide linked to an immunoglobulin Fc region, which stimulates platelet production in patients with chronic immune thrombocytopenia (ITP).
6. Darbepoetin alfa (Aranesp): A hyperglycosylated erythropoiesis-stimulating protein that functions as a longer-acting form of recombinant human erythropoietin, used to treat anemia in patients with chronic kidney disease or cancer.
7. Palivizumab (Synagis): A monoclonal antibody directed against the F protein of respiratory syncytial virus (RSV), which prevents RSV infection and is administered prophylactically to high-risk infants during the RSV season.
8. Ranibizumab (Lucentis): A recombinant humanized monoclonal antibody fragment that binds and inhibits vascular endothelial growth factor A (VEGF-A), used in the treatment of age-related macular degeneration, diabetic retinopathy, and other ocular disorders.
9. Cetuximab (Erbitux): A chimeric monoclonal antibody that binds to epidermal growth factor receptor (EGFR), used in the treatment of colorectal cancer and head and neck squamous cell carcinoma.
10. Adalimumab (Humira): A fully humanized monoclonal antibody that targets tumor necrosis factor-alpha (TNF-α), used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriasis, and Crohn's disease.
11. Bevacizumab (Avastin): A recombinant humanized monoclonal antibody that binds to VEGF-A, used in the treatment of various cancers, including colorectal, lung, breast, and kidney cancer.
12. Trastuzumab (Herceptin): A humanized monoclonal antibody that targets HER2/neu receptor, used in the treatment of breast cancer.
13. Rituximab (Rituxan): A chimeric monoclonal antibody that binds to CD20 antigen on B cells, used in the treatment of non-Hodgkin's lymphoma and rheumatoid arthritis.
14. Palivizumab (Synagis): A humanized monoclonal antibody that binds to the F protein of respiratory syncytial virus, used in the prevention of respiratory syncytial virus infection in high-risk infants.
15. Infliximab (Remicade): A chimeric monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including Crohn's disease, ulcerative colitis, rheumatoid arthritis, and ankylosing spondylitis.
16. Natalizumab (Tysabri): A humanized monoclonal antibody that binds to α4β1 integrin, used in the treatment of multiple sclerosis and Crohn's disease.
17. Adalimumab (Humira): A fully human monoclonal antibody that targets TNF-α, used in the treatment of various inflammatory diseases, including rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, and ulcerative colitis.
18. Golimumab (Simponi): A fully human monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and ulcerative colitis.
19. Certolizumab pegol (Cimzia): A PEGylated Fab' fragment of a humanized monoclonal antibody that targets TNF-α, used in the treatment of rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, and Crohn's disease.
20. Ustekinumab (Stelara): A fully human monoclonal antibody that targets IL-12 and IL-23, used in the treatment of psoriasis, psoriatic arthritis, and Crohn's disease.
21. Secukinumab (Cosentyx): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis.
22. Ixekizumab (Taltz): A fully human monoclonal antibody that targets IL-17A, used in the treatment of psoriasis and psoriatic arthritis.
23. Brodalumab (Siliq): A fully human monoclonal antibody that targets IL-17 receptor A, used in the treatment of psoriasis.
24. Sarilumab (Kevzara): A fully human monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis.
25. Tocilizumab (Actemra): A humanized monoclonal antibody that targets the IL-6 receptor, used in the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, polyarticular juvenile idiopathic arthritis, giant cell arteritis, and chimeric antigen receptor T-cell-induced cytokine release syndrome.
26. Siltuximab (Sylvant): A chimeric monoclonal antibody that targets IL-6, used in the treatment of multicentric Castleman disease.
27. Satralizumab (Enspryng): A humanized monoclonal antibody that targets IL-6 receptor alpha, used in the treatment of neuromyelitis optica spectrum disorder.
28. Sirukumab (Plivensia): A human monoclonal antibody that targets IL-6, used in the treatment

Fungal DNA refers to the genetic material present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds, as well as larger organisms like mushrooms. The DNA of fungi, like that of all living organisms, is made up of nucleotides that are arranged in a double helix structure.

Fungal DNA contains the genetic information necessary for the growth, development, and reproduction of fungi. This includes the instructions for making proteins, which are essential for the structure and function of cells, as well as other important molecules such as enzymes and nucleic acids.

Studying fungal DNA can provide valuable insights into the biology and evolution of fungi, as well as their potential uses in medicine, agriculture, and industry. For example, researchers have used genetic engineering techniques to modify the DNA of fungi to produce drugs, biofuels, and other useful products. Additionally, understanding the genetic makeup of pathogenic fungi can help scientists develop new strategies for preventing and treating fungal infections.

Repressor proteins are a type of regulatory protein in molecular biology that suppress the transcription of specific genes into messenger RNA (mRNA) by binding to DNA. They function as part of gene regulation processes, often working in conjunction with an operator region and a promoter region within the DNA molecule. Repressor proteins can be activated or deactivated by various signals, allowing for precise control over gene expression in response to changing cellular conditions.

There are two main types of repressor proteins:

1. DNA-binding repressors: These directly bind to specific DNA sequences (operator regions) near the target gene and prevent RNA polymerase from transcribing the gene into mRNA.
2. Allosteric repressors: These bind to effector molecules, which then cause a conformational change in the repressor protein, enabling it to bind to DNA and inhibit transcription.

Repressor proteins play crucial roles in various biological processes, such as development, metabolism, and stress response, by controlling gene expression patterns in cells.

Viral DNA refers to the genetic material present in viruses that consist of DNA as their core component. Deoxyribonucleic acid (DNA) is one of the two types of nucleic acids that are responsible for storing and transmitting genetic information in living organisms. Viruses are infectious agents much smaller than bacteria that can only replicate inside the cells of other organisms, called hosts.

Viral DNA can be double-stranded (dsDNA) or single-stranded (ssDNA), depending on the type of virus. Double-stranded DNA viruses have a genome made up of two complementary strands of DNA, while single-stranded DNA viruses contain only one strand of DNA.

Examples of dsDNA viruses include Adenoviruses, Herpesviruses, and Poxviruses, while ssDNA viruses include Parvoviruses and Circoviruses. Viral DNA plays a crucial role in the replication cycle of the virus, encoding for various proteins necessary for its multiplication and survival within the host cell.

Luciferases are a class of enzymes that catalyze the oxidation of their substrates, leading to the emission of light. This bioluminescent process is often associated with certain species of bacteria, insects, and fish. The term "luciferase" comes from the Latin word "lucifer," which means "light bearer."

The most well-known example of luciferase is probably that found in fireflies, where the enzyme reacts with a compound called luciferin to produce light. This reaction requires the presence of oxygen and ATP (adenosine triphosphate), which provides the energy needed for the reaction to occur.

Luciferases have important applications in scientific research, particularly in the development of sensitive assays for detecting gene expression and protein-protein interactions. By labeling a protein or gene of interest with luciferase, researchers can measure its activity by detecting the light emitted during the enzymatic reaction. This allows for highly sensitive and specific measurements, making luciferases valuable tools in molecular biology and biochemistry.

DNA Mutational Analysis is a laboratory test used to identify genetic variations or changes (mutations) in the DNA sequence of a gene. This type of analysis can be used to diagnose genetic disorders, predict the risk of developing certain diseases, determine the most effective treatment for cancer, or assess the likelihood of passing on an inherited condition to offspring.

The test involves extracting DNA from a patient's sample (such as blood, saliva, or tissue), amplifying specific regions of interest using polymerase chain reaction (PCR), and then sequencing those regions to determine the precise order of nucleotide bases in the DNA molecule. The resulting sequence is then compared to reference sequences to identify any variations or mutations that may be present.

DNA Mutational Analysis can detect a wide range of genetic changes, including single-nucleotide polymorphisms (SNPs), insertions, deletions, duplications, and rearrangements. The test is often used in conjunction with other diagnostic tests and clinical evaluations to provide a comprehensive assessment of a patient's genetic profile.

It is important to note that not all mutations are pathogenic or associated with disease, and the interpretation of DNA Mutational Analysis results requires careful consideration of the patient's medical history, family history, and other relevant factors.

DNA Sequence Analysis is the systematic determination of the order of nucleotides in a DNA molecule. It is a critical component of modern molecular biology, genetics, and genetic engineering. The process involves determining the exact order of the four nucleotide bases - adenine (A), guanine (G), cytosine (C), and thymine (T) - in a DNA molecule or fragment. This information is used in various applications such as identifying gene mutations, studying evolutionary relationships, developing molecular markers for breeding, and diagnosing genetic diseases.

The process of DNA Sequence Analysis typically involves several steps, including DNA extraction, PCR amplification (if necessary), purification, sequencing reaction, and electrophoresis. The resulting data is then analyzed using specialized software to determine the exact sequence of nucleotides.

In recent years, high-throughput DNA sequencing technologies have revolutionized the field of genomics, enabling the rapid and cost-effective sequencing of entire genomes. This has led to an explosion of genomic data and new insights into the genetic basis of many diseases and traits.

Globins are a group of proteins that contain a heme prosthetic group, which binds and transports oxygen in the blood. The most well-known globin is hemoglobin, which is found in red blood cells and is responsible for carrying oxygen from the lungs to the body's tissues. Other members of the globin family include myoglobin, which is found in muscle tissue and stores oxygen, and neuroglobin and cytoglobin, which are found in the brain and other organs and may have roles in protecting against oxidative stress and hypoxia (low oxygen levels). Globins share a similar structure, with a folded protein surrounding a central heme group. Mutations in globin genes can lead to various diseases, such as sickle cell anemia and thalassemia.

Southern blotting is a type of membrane-based blotting technique that is used in molecular biology to detect and locate specific DNA sequences within a DNA sample. This technique is named after its inventor, Edward M. Southern.

In Southern blotting, the DNA sample is first digested with one or more restriction enzymes, which cut the DNA at specific recognition sites. The resulting DNA fragments are then separated based on their size by gel electrophoresis. After separation, the DNA fragments are denatured to convert them into single-stranded DNA and transferred onto a nitrocellulose or nylon membrane.

Once the DNA has been transferred to the membrane, it is hybridized with a labeled probe that is complementary to the sequence of interest. The probe can be labeled with radioactive isotopes, fluorescent dyes, or chemiluminescent compounds. After hybridization, the membrane is washed to remove any unbound probe and then exposed to X-ray film (in the case of radioactive probes) or scanned (in the case of non-radioactive probes) to detect the location of the labeled probe on the membrane.

The position of the labeled probe on the membrane corresponds to the location of the specific DNA sequence within the original DNA sample. Southern blotting is a powerful tool for identifying and characterizing specific DNA sequences, such as those associated with genetic diseases or gene regulation.

DNA primers are short single-stranded DNA molecules that serve as a starting point for DNA synthesis. They are typically used in laboratory techniques such as the polymerase chain reaction (PCR) and DNA sequencing. The primer binds to a complementary sequence on the DNA template through base pairing, providing a free 3'-hydroxyl group for the DNA polymerase enzyme to add nucleotides and synthesize a new strand of DNA. This allows for specific and targeted amplification or analysis of a particular region of interest within a larger DNA molecule.

Complementary DNA (cDNA) is a type of DNA that is synthesized from a single-stranded RNA molecule through the process of reverse transcription. In this process, the enzyme reverse transcriptase uses an RNA molecule as a template to synthesize a complementary DNA strand. The resulting cDNA is therefore complementary to the original RNA molecule and is a copy of its coding sequence, but it does not contain non-coding regions such as introns that are present in genomic DNA.

Complementary DNA is often used in molecular biology research to study gene expression, protein function, and other genetic phenomena. For example, cDNA can be used to create cDNA libraries, which are collections of cloned cDNA fragments that represent the expressed genes in a particular cell type or tissue. These libraries can then be screened for specific genes or gene products of interest. Additionally, cDNA can be used to produce recombinant proteins in heterologous expression systems, allowing researchers to study the structure and function of proteins that may be difficult to express or purify from their native sources.

The cell nucleus is a membrane-bound organelle found in the eukaryotic cells (cells with a true nucleus). It contains most of the cell's genetic material, organized as DNA molecules in complex with proteins, RNA molecules, and histones to form chromosomes.

The primary function of the cell nucleus is to regulate and control the activities of the cell, including growth, metabolism, protein synthesis, and reproduction. It also plays a crucial role in the process of mitosis (cell division) by separating and protecting the genetic material during this process. The nuclear membrane, or nuclear envelope, surrounding the nucleus is composed of two lipid bilayers with numerous pores that allow for the selective transport of molecules between the nucleoplasm (nucleus interior) and the cytoplasm (cell exterior).

The cell nucleus is a vital structure in eukaryotic cells, and its dysfunction can lead to various diseases, including cancer and genetic disorders.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

'Tumor cells, cultured' refers to the process of removing cancerous cells from a tumor and growing them in controlled laboratory conditions. This is typically done by isolating the tumor cells from a patient's tissue sample, then placing them in a nutrient-rich environment that promotes their growth and multiplication.

The resulting cultured tumor cells can be used for various research purposes, including the study of cancer biology, drug development, and toxicity testing. They provide a valuable tool for researchers to better understand the behavior and characteristics of cancer cells outside of the human body, which can lead to the development of more effective cancer treatments.

It is important to note that cultured tumor cells may not always behave exactly the same way as they do in the human body, so findings from cell culture studies must be validated through further research, such as animal models or clinical trials.

Chromatin is the complex of DNA, RNA, and proteins that make up the chromosomes in the nucleus of a cell. It is responsible for packaging the long DNA molecules into a more compact form that fits within the nucleus. Chromatin is made up of repeating units called nucleosomes, which consist of a histone protein octamer wrapped tightly by DNA. The structure of chromatin can be altered through chemical modifications to the histone proteins and DNA, which can influence gene expression and other cellular processes.

Sequence homology, amino acid, refers to the similarity in the order of amino acids in a protein or a portion of a protein between two or more species. This similarity can be used to infer evolutionary relationships and functional similarities between proteins. The higher the degree of sequence homology, the more likely it is that the proteins are related and have similar functions. Sequence homology can be determined through various methods such as pairwise alignment or multiple sequence alignment, which compare the sequences and calculate a score based on the number and type of matching amino acids.

Fungal proteins are a type of protein that is specifically produced and present in fungi, which are a group of eukaryotic organisms that include microorganisms such as yeasts and molds. These proteins play various roles in the growth, development, and survival of fungi. They can be involved in the structure and function of fungal cells, metabolism, pathogenesis, and other cellular processes. Some fungal proteins can also have important implications for human health, both in terms of their potential use as therapeutic targets and as allergens or toxins that can cause disease.

Fungal proteins can be classified into different categories based on their functions, such as enzymes, structural proteins, signaling proteins, and toxins. Enzymes are proteins that catalyze chemical reactions in fungal cells, while structural proteins provide support and protection for the cell. Signaling proteins are involved in communication between cells and regulation of various cellular processes, and toxins are proteins that can cause harm to other organisms, including humans.

Understanding the structure and function of fungal proteins is important for developing new treatments for fungal infections, as well as for understanding the basic biology of fungi. Research on fungal proteins has led to the development of several antifungal drugs that target specific fungal enzymes or other proteins, providing effective treatment options for a range of fungal diseases. Additionally, further study of fungal proteins may reveal new targets for drug development and help improve our ability to diagnose and treat fungal infections.

RNA Polymerase III is a type of enzyme that carries out the transcription of DNA into RNA, specifically functioning in the synthesis of small, stable RNAs. These RNAs include 5S rRNA, transfer RNAs (tRNAs), and other small nuclear RNAs (snRNAs). The enzyme recognizes specific promoter sequences in DNA and catalyzes the formation of phosphodiester bonds between ribonucleotides to create a complementary RNA strand. RNA Polymerase III is essential for protein synthesis and cell survival, and its activity is tightly regulated within the cell.

Gene expression regulation, enzymologic refers to the biochemical processes and mechanisms that control the transcription and translation of specific genes into functional proteins or enzymes. This regulation is achieved through various enzymatic activities that can either activate or repress gene expression at different levels, such as chromatin remodeling, transcription factor activation, mRNA processing, and protein degradation.

Enzymologic regulation of gene expression involves the action of specific enzymes that catalyze chemical reactions involved in these processes. For example, histone-modifying enzymes can alter the structure of chromatin to make genes more or less accessible for transcription, while RNA polymerase and its associated factors are responsible for transcribing DNA into mRNA. Additionally, various enzymes are involved in post-transcriptional modifications of mRNA, such as splicing, capping, and tailing, which can affect the stability and translation of the transcript.

Overall, the enzymologic regulation of gene expression is a complex and dynamic process that allows cells to respond to changes in their environment and maintain proper physiological function.

"Response elements" is a term used in molecular biology, particularly in the study of gene regulation. Response elements are specific DNA sequences that can bind to transcription factors, which are proteins that regulate gene expression. When a transcription factor binds to a response element, it can either activate or repress the transcription of the nearby gene.

Response elements are often found in the promoter region of genes and are typically short, conserved sequences that can be recognized by specific transcription factors. The binding of a transcription factor to a response element can lead to changes in chromatin structure, recruitment of co-activators or co-repressors, and ultimately, the regulation of gene expression.

Response elements are important for many biological processes, including development, differentiation, and response to environmental stimuli such as hormones, growth factors, and stress. The specificity of transcription factor binding to response elements allows for precise control of gene expression in response to changing conditions within the cell or organism.

TATA-binding protein associated factors (TAFs) are a group of proteins that associate with the TATA-binding protein (TBP) to form the basal transcription complex, which is involved in the initiation of gene transcription. In eukaryotes, TBP is a general transcription factor that recognizes and binds to the TATA box, a conserved DNA sequence found in the promoter regions of many genes. TAFs interact with TBP and other proteins to form the multi-subunit complex known as TFIID (transcription factor II D).

TAFs can be classified into two categories: TAF1 subunits and TAF2 subunits. The TAF1 subunits are characterized by a conserved histone fold motif, which is also found in the core histones of nucleosomes. These TAF1 subunits play a role in stabilizing the interaction between TBP and DNA, as well as recruiting additional transcription factors to the promoter. The TAF2 subunits, on the other hand, do not contain the histone fold motif and are involved in mediating interactions with other proteins and regulatory elements.

Together, TBP and TAFs help to position the RNA polymerase II enzyme at the start site of transcription and facilitate the assembly of the pre-initiation complex (PIC), which includes additional general transcription factors and mediator proteins. The PIC then initiates the synthesis of mRNA, allowing for the expression of specific genes.

In summary, TATA-binding protein associated factors are a group of proteins that associate with TBP to form the basal transcription complex, which plays a crucial role in the initiation of gene transcription by recruiting RNA polymerase II and other general transcription factors to the promoter region.

Recombinant DNA is a term used in molecular biology to describe DNA that has been created by combining genetic material from more than one source. This is typically done through the use of laboratory techniques such as molecular cloning, in which fragments of DNA are inserted into vectors (such as plasmids or viruses) and then introduced into a host organism where they can replicate and produce many copies of the recombinant DNA molecule.

Recombinant DNA technology has numerous applications in research, medicine, and industry, including the production of recombinant proteins for use as therapeutics, the creation of genetically modified organisms (GMOs) for agricultural or industrial purposes, and the development of new tools for genetic analysis and manipulation.

It's important to note that while recombinant DNA technology has many potential benefits, it also raises ethical and safety concerns, and its use is subject to regulation and oversight in many countries.

I'm sorry for any confusion, but "Sp3 Transcription Factor" is not a recognized medical term. However, I can provide you with a scientific explanation:

Sp3 is a type of transcription factor that binds to specific DNA sequences and helps regulate gene expression in cells. Sp3 stands for Specificity Protein 3, which belongs to the Sp (Specificity protein) family of transcription factors. These proteins play crucial roles during development and differentiation of various tissues.

Transcription factors like Sp3 have modular structures, consisting of several functional domains that enable them to perform their regulatory functions:

1. DNA-binding domain (DBD): This region recognizes and binds to specific DNA sequences, usually located in the promoter or enhancer regions of target genes. The DBD of Sp3 proteins is a zinc finger domain, which contains multiple tandem repeats that fold into a structure that interacts with the DNA.

2. Transcriptional regulatory domain (TRD): This region can either activate or repress gene transcription depending on the context and interacting partners. The TRD of Sp3 proteins has an inhibitory effect on transcription, but it can be overcome by other activating co-factors.

3. Nuclear localization signal (NLS): This domain targets the protein to the nucleus, where it can perform its regulatory functions.

4. Protein-protein interaction domains: These regions allow Sp3 proteins to interact with other transcription factors and co-regulators, forming complexes that modulate gene expression.

In summary, Sp3 is a transcription factor that binds to specific DNA sequences and regulates the expression of target genes by either activating or repressing their transcription. It plays essential roles in various cellular processes during development and tissue differentiation.

Base composition in genetics refers to the relative proportion of the four nucleotide bases (adenine, thymine, guanine, and cytosine) in a DNA or RNA molecule. In DNA, adenine pairs with thymine, and guanine pairs with cytosine, so the base composition is often expressed in terms of the ratio of adenine + thymine (A-T) to guanine + cytosine (G-C). This ratio can vary between species and even between different regions of the same genome. The base composition can provide important clues about the function, evolution, and structure of genetic material.

Upstream stimulatory factors (USF) are a group of transcription factors that bind to the promoter or enhancer regions of genes and regulate their expression. They are called "upstream" because they bind to the DNA upstream of the gene's transcription start site. USFs are widely expressed in many tissues and play important roles in various cellular processes, including cell growth, differentiation, and metabolism.

There are two main members of the USF family, USF-1 and USF-2, which are encoded by separate genes but share a high degree of sequence similarity. Both USF proteins contain a conserved basic helix-loop-helix (bHLH) domain that mediates DNA binding and a conserved adjacent leucine zipper motif that facilitates protein dimerization. USFs can form homodimers or heterodimers with each other, as well as with other bHLH proteins, to regulate gene expression.

USFs have been shown to bind to and activate the transcription of a wide range of genes involved in various cellular processes, such as glycolysis, gluconeogenesis, lipid metabolism, and DNA repair. Dysregulation of USF activity has been implicated in several human diseases, including cancer, diabetes, and neurodegenerative disorders. Therefore, understanding the mechanisms of USF-mediated gene regulation may provide insights into the pathophysiology of these diseases and lead to the development of novel therapeutic strategies.

Mutagenesis is the process by which the genetic material (DNA or RNA) of an organism is changed in a way that can alter its phenotype, or observable traits. These changes, known as mutations, can be caused by various factors such as chemicals, radiation, or viruses. Some mutations may have no effect on the organism, while others can cause harm, including diseases and cancer. Mutagenesis is a crucial area of study in genetics and molecular biology, with implications for understanding evolution, genetic disorders, and the development of new medical treatments.

The YY1 transcription factor, also known as Yin Yang 1, is a protein that plays a crucial role in the regulation of gene expression. It functions as a transcriptional repressor or activator, depending on the context and target gene. YY1 can bind to DNA at specific sites, known as YY1-binding sites, and it interacts with various other proteins to form complexes that modulate the activity of RNA polymerase II, which is responsible for transcribing protein-coding genes.

YY1 has been implicated in a wide range of biological processes, including embryonic development, cell growth, differentiation, and DNA damage response. Mutations or dysregulation of YY1 have been associated with various human diseases, such as cancer, neurodevelopmental disorders, and heart disease.

Adenoviruses, Human: A group of viruses that commonly cause respiratory illnesses, such as bronchitis, pneumonia, and croup, in humans. They can also cause conjunctivitis (pink eye), cystitis (bladder infection), and gastroenteritis (stomach and intestinal infection).

Human adenoviruses are non-enveloped, double-stranded DNA viruses that belong to the family Adenoviridae. There are more than 50 different types of human adenoviruses, which can be classified into seven species (A-G). Different types of adenoviruses tend to cause specific illnesses, such as respiratory or gastrointestinal infections.

Human adenoviruses are highly contagious and can spread through close personal contact, respiratory droplets, or contaminated surfaces. They can also be transmitted through contaminated water sources. Some people may become carriers of the virus and experience no symptoms but still spread the virus to others.

Most human adenovirus infections are mild and resolve on their own within a few days to a week. However, some types of adenoviruses can cause severe illness, particularly in people with weakened immune systems, such as infants, young children, older adults, and individuals with HIV/AIDS or organ transplants.

There are no specific antiviral treatments for human adenovirus infections, but supportive care, such as hydration, rest, and fever reduction, can help manage symptoms. Preventive measures include practicing good hygiene, such as washing hands frequently, avoiding close contact with sick individuals, and not sharing personal items like towels or utensils.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene product, such as a protein or RNA molecule. This process involves several steps: transcription, RNA processing, and translation. During transcription, the genetic information in DNA is copied into a complementary RNA molecule, known as messenger RNA (mRNA). The mRNA then undergoes RNA processing, which includes adding a cap and tail to the mRNA and splicing out non-coding regions called introns. The resulting mature mRNA is then translated into a protein on ribosomes in the cytoplasm through the process of translation.

The regulation of gene expression is a complex and highly controlled process that allows cells to respond to changes in their environment, such as growth factors, hormones, and stress signals. This regulation can occur at various stages of gene expression, including transcriptional activation or repression, RNA processing, mRNA stability, and translation. Dysregulation of gene expression has been implicated in many diseases, including cancer, genetic disorders, and neurological conditions.

Beta-galactosidase is an enzyme that catalyzes the hydrolysis of beta-galactosides into monosaccharides. It is found in various organisms, including bacteria, yeast, and mammals. In humans, it plays a role in the breakdown and absorption of certain complex carbohydrates, such as lactose, in the small intestine. Deficiency of this enzyme in humans can lead to a disorder called lactose intolerance. In scientific research, beta-galactosidase is often used as a marker for gene expression and protein localization studies.

The HIV Long Terminal Repeat (LTR) is a regulatory region of the human immunodeficiency virus (HIV) genome that contains important sequences necessary for the transcription and replication of the virus. The LTR is divided into several functional regions, including the U3, R, and U5 regions.

The U3 region contains various transcription factor binding sites that regulate the initiation of viral transcription. The R region contains a promoter element that helps to recruit the enzyme RNA polymerase II for the transcription process. The U5 region contains signals required for the proper processing and termination of viral RNA transcription.

The LTR plays a crucial role in the life cycle of HIV, as it is involved in the integration of the viral genome into the host cell's DNA, allowing the virus to persist and replicate within the infected cell. Understanding the function and regulation of the HIV LTR has been an important area of research in the development of HIV therapies and potential vaccines.

A nucleosome is a basic unit of DNA packaging in eukaryotic cells, consisting of a segment of DNA coiled around an octamer of histone proteins. This structure forms a repeating pattern along the length of the DNA molecule, with each nucleosome resembling a "bead on a string" when viewed under an electron microscope. The histone octamer is composed of two each of the histones H2A, H2B, H3, and H4, and the DNA wraps around it approximately 1.65 times. Nucleosomes play a crucial role in compacting the large DNA molecule within the nucleus and regulating access to the DNA for processes such as transcription, replication, and repair.

Northern blotting is a laboratory technique used in molecular biology to detect and analyze specific RNA molecules (such as mRNA) in a mixture of total RNA extracted from cells or tissues. This technique is called "Northern" blotting because it is analogous to the Southern blotting method, which is used for DNA detection.

The Northern blotting procedure involves several steps:

1. Electrophoresis: The total RNA mixture is first separated based on size by running it through an agarose gel using electrical current. This separates the RNA molecules according to their length, with smaller RNA fragments migrating faster than larger ones.

2. Transfer: After electrophoresis, the RNA bands are denatured (made single-stranded) and transferred from the gel onto a nitrocellulose or nylon membrane using a technique called capillary transfer or vacuum blotting. This step ensures that the order and relative positions of the RNA fragments are preserved on the membrane, similar to how they appear in the gel.

3. Cross-linking: The RNA is then chemically cross-linked to the membrane using UV light or heat treatment, which helps to immobilize the RNA onto the membrane and prevent it from washing off during subsequent steps.

4. Prehybridization: Before adding the labeled probe, the membrane is prehybridized in a solution containing blocking agents (such as salmon sperm DNA or yeast tRNA) to minimize non-specific binding of the probe to the membrane.

5. Hybridization: A labeled nucleic acid probe, specific to the RNA of interest, is added to the prehybridization solution and allowed to hybridize (form base pairs) with its complementary RNA sequence on the membrane. The probe can be either a DNA or an RNA molecule, and it is typically labeled with a radioactive isotope (such as ³²P) or a non-radioactive label (such as digoxigenin).

6. Washing: After hybridization, the membrane is washed to remove unbound probe and reduce background noise. The washing conditions (temperature, salt concentration, and detergent concentration) are optimized based on the stringency required for specific hybridization.

7. Detection: The presence of the labeled probe is then detected using an appropriate method, depending on the type of label used. For radioactive probes, this typically involves exposing the membrane to X-ray film or a phosphorimager screen and analyzing the resulting image. For non-radioactive probes, detection can be performed using colorimetric, chemiluminescent, or fluorescent methods.

8. Data analysis: The intensity of the signal is quantified and compared to controls (such as housekeeping genes) to determine the relative expression level of the RNA of interest. This information can be used for various purposes, such as identifying differentially expressed genes in response to a specific treatment or comparing gene expression levels across different samples or conditions.

Genetic models are theoretical frameworks used in genetics to describe and explain the inheritance patterns and genetic architecture of traits, diseases, or phenomena. These models are based on mathematical equations and statistical methods that incorporate information about gene frequencies, modes of inheritance, and the effects of environmental factors. They can be used to predict the probability of certain genetic outcomes, to understand the genetic basis of complex traits, and to inform medical management and treatment decisions.

There are several types of genetic models, including:

1. Mendelian models: These models describe the inheritance patterns of simple genetic traits that follow Mendel's laws of segregation and independent assortment. Examples include autosomal dominant, autosomal recessive, and X-linked inheritance.
2. Complex trait models: These models describe the inheritance patterns of complex traits that are influenced by multiple genes and environmental factors. Examples include heart disease, diabetes, and cancer.
3. Population genetics models: These models describe the distribution and frequency of genetic variants within populations over time. They can be used to study evolutionary processes, such as natural selection and genetic drift.
4. Quantitative genetics models: These models describe the relationship between genetic variation and phenotypic variation in continuous traits, such as height or IQ. They can be used to estimate heritability and to identify quantitative trait loci (QTLs) that contribute to trait variation.
5. Statistical genetics models: These models use statistical methods to analyze genetic data and infer the presence of genetic associations or linkage. They can be used to identify genetic risk factors for diseases or traits.

Overall, genetic models are essential tools in genetics research and medical genetics, as they allow researchers to make predictions about genetic outcomes, test hypotheses about the genetic basis of traits and diseases, and develop strategies for prevention, diagnosis, and treatment.

"Drosophila" is a genus of small flies, also known as fruit flies. The most common species used in scientific research is "Drosophila melanogaster," which has been a valuable model organism for many areas of biological and medical research, including genetics, developmental biology, neurobiology, and aging.

The use of Drosophila as a model organism has led to numerous important discoveries in genetics and molecular biology, such as the identification of genes that are associated with human diseases like cancer, Parkinson's disease, and obesity. The short reproductive cycle, large number of offspring, and ease of genetic manipulation make Drosophila a powerful tool for studying complex biological processes.

A genetic template refers to the sequence of DNA or RNA that contains the instructions for the development and function of an organism or any of its components. These templates provide the code for the synthesis of proteins and other functional molecules, and determine many of the inherited traits and characteristics of an individual. In this sense, genetic templates serve as the blueprint for life and are passed down from one generation to the next through the process of reproduction.

In molecular biology, the term "template" is used to describe the strand of DNA or RNA that serves as a guide or pattern for the synthesis of a complementary strand during processes such as transcription and replication. During transcription, the template strand of DNA is transcribed into a complementary RNA molecule, while during replication, each parental DNA strand serves as a template for the synthesis of a new complementary strand.

In genetic engineering and synthetic biology, genetic templates can be manipulated and modified to introduce new functions or alter existing ones in organisms. This is achieved through techniques such as gene editing, where specific sequences in the genetic template are targeted and altered using tools like CRISPR-Cas9. Overall, genetic templates play a crucial role in shaping the structure, function, and evolution of all living organisms.

Polymerase Chain Reaction (PCR) is a laboratory technique used to amplify specific regions of DNA. It enables the production of thousands to millions of copies of a particular DNA sequence in a rapid and efficient manner, making it an essential tool in various fields such as molecular biology, medical diagnostics, forensic science, and research.

The PCR process involves repeated cycles of heating and cooling to separate the DNA strands, allow primers (short sequences of single-stranded DNA) to attach to the target regions, and extend these primers using an enzyme called Taq polymerase, resulting in the exponential amplification of the desired DNA segment.

In a medical context, PCR is often used for detecting and quantifying specific pathogens (viruses, bacteria, fungi, or parasites) in clinical samples, identifying genetic mutations or polymorphisms associated with diseases, monitoring disease progression, and evaluating treatment effectiveness.

High Mobility Group Box 1 (HMGB1) protein is a non-histone chromosomal protein that is widely expressed in various cell types, including immune cells and nucleated cells. It plays a crucial role in the maintenance of nucleosome structure and stability, regulation of gene transcription, and DNA replication and repair. HMGB1 can be actively secreted by activated immune cells or passively released from necrotic or damaged cells. Once outside the cell, it functions as a damage-associated molecular pattern (DAMP) molecule that binds to various receptors, such as Toll-like receptors and the receptor for advanced glycation end products (RAGE), on immune cells, leading to the activation of inflammatory responses and the induction of innate and adaptive immunity. HMGB1 has been implicated in various physiological and pathological processes, including inflammation, infection, autoimmunity, cancer, and neurological disorders.

Adenoviridae is a family of viruses that includes many species that can cause various types of illnesses in humans and animals. These viruses are non-enveloped, meaning they do not have a lipid membrane, and have an icosahedral symmetry with a diameter of approximately 70-90 nanometers.

The genome of Adenoviridae is composed of double-stranded DNA, which contains linear chromosomes ranging from 26 to 45 kilobases in length. The family is divided into five genera: Mastadenovirus, Aviadenovirus, Atadenovirus, Siadenovirus, and Ichtadenovirus.

Human adenoviruses are classified under the genus Mastadenovirus and can cause a wide range of illnesses, including respiratory infections, conjunctivitis, gastroenteritis, and upper respiratory tract infections. Some serotypes have also been associated with more severe diseases such as hemorrhagic cystitis, hepatitis, and meningoencephalitis.

Adenoviruses are highly contagious and can be transmitted through respiratory droplets, fecal-oral route, or by contact with contaminated surfaces. They can also be spread through contaminated water sources. Infections caused by adenoviruses are usually self-limiting, but severe cases may require hospitalization and supportive care.

Erythroid-specific DNA-binding factors are transcription factors that bind to specific sequences of DNA and help regulate the expression of genes that are involved in the development and differentiation of erythroid cells, which are cells that mature to become red blood cells. These transcription factors play a crucial role in the production of hemoglobin, the protein in red blood cells that carries oxygen throughout the body. Examples of erythroid-specific DNA-binding factors include GATA-1 and KLF1.

Viral proteins are the proteins that are encoded by the viral genome and are essential for the viral life cycle. These proteins can be structural or non-structural and play various roles in the virus's replication, infection, and assembly process. Structural proteins make up the physical structure of the virus, including the capsid (the protein shell that surrounds the viral genome) and any envelope proteins (that may be present on enveloped viruses). Non-structural proteins are involved in the replication of the viral genome and modulation of the host cell environment to favor viral replication. Overall, a thorough understanding of viral proteins is crucial for developing antiviral therapies and vaccines.

Nuclear Factor I (NFI) transcription factors are a family of transcriptional regulatory proteins that bind to specific DNA sequences and play crucial roles in the regulation of gene expression. They are involved in various biological processes, including cell growth, differentiation, and development. NFI transcription factors recognize and bind to the consensus sequence TTGGC(N)5GCCAA, where N represents any nucleotide. In humans, there are four known members of the NFI family (NFIA, NFIB, NFIC, and NFIX), each with distinct expression patterns and functions. These factors can act as both activators and repressors of transcription, depending on the context and interacting proteins.

Nucleic acid hybridization is a process in molecular biology where two single-stranded nucleic acids (DNA, RNA) with complementary sequences pair together to form a double-stranded molecule through hydrogen bonding. The strands can be from the same type of nucleic acid or different types (i.e., DNA-RNA or DNA-cDNA). This process is commonly used in various laboratory techniques, such as Southern blotting, Northern blotting, polymerase chain reaction (PCR), and microarray analysis, to detect, isolate, and analyze specific nucleic acid sequences. The hybridization temperature and conditions are critical to ensure the specificity of the interaction between the two strands.

Histones are highly alkaline proteins found in the chromatin of eukaryotic cells. They are rich in basic amino acid residues, such as arginine and lysine, which give them their positive charge. Histones play a crucial role in packaging DNA into a more compact structure within the nucleus by forming a complex with it called a nucleosome. Each nucleosome contains about 146 base pairs of DNA wrapped around an octamer of eight histone proteins (two each of H2A, H2B, H3, and H4). The N-terminal tails of these histones are subject to various post-translational modifications, such as methylation, acetylation, and phosphorylation, which can influence chromatin structure and gene expression. Histone variants also exist, which can contribute to the regulation of specific genes and other nuclear processes.

Simian Virus 40 (SV40) is a polyomavirus that is found in both monkeys and humans. It is a DNA virus that has been extensively studied in laboratory settings due to its ability to transform cells and cause tumors in animals. In fact, SV40 was discovered as a contaminant of poliovirus vaccines that were prepared using rhesus monkey kidney cells in the 1950s and 1960s.

SV40 is not typically associated with human disease, but there has been some concern that exposure to the virus through contaminated vaccines or other means could increase the risk of certain types of cancer, such as mesothelioma and brain tumors. However, most studies have failed to find a consistent link between SV40 infection and cancer in humans.

The medical community generally agrees that SV40 is not a significant public health threat, but researchers continue to study the virus to better understand its biology and potential impact on human health.

Transcription is initiated at the TATA box in TATA-containing genes. The TATA box is the binding site of the TATA-binding ... The bacterial homolog of the TATA box is called the Pribnow box which has a shorter consensus sequence. The TATA box is ... binds to the TATA box at its TATA-binding protein (TBP) subunit. TBP binds to the minor groove of the TATA box via a region of ... The boxing in of sequences sheds light on the origin of the term "box". The TATA box was first identified in 1978 as a ...
... is a protein that in humans is encoded by the TBPL2 gene. The TBPL2 protein is also known as ... "Entrez Gene: TATA-box binding protein like 2". Retrieved 2018-01-31. Persengiev SP, Zhu X, Dixit BL, Maston GA, Kittler EL, ... Similar to TBP, TBPL2 can bind to the TATA box. It interacts with other general transcription factors such as TFIIA and TFIIB ... a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed". Proceedings of the National Academy of ...
... "c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein". Mol. Cell. ... The TATA-binding protein (TBP) is a general transcription factor that binds specifically to a DNA sequence called the TATA box ... However, it is estimated that only 10-20% of human promoters have TATA boxes - the majority of human promoters are TATA-less ... Interestingly, transcription initiates within a narrow region at around 30 bp downstream of TATA box on TATA-containing ...
TATA box). In addition, a general three-periodic fifth-order Markov model of coding regions is used as opposed to models of ...
"Tata Elxsi Bags Awards". Box Office India. 2 April 2013. Archived from the original on 23 September 2015. Retrieved 15 June ... It was a major commercial success, grossing ₹1.88 billion (US$24 million) at the box office. Barfi! has received various awards ... "Top Ten Worldwide Grossers 2012". Box Office India. 17 January 2013. Archived from the original on 20 January 2013. Retrieved ...
"Tata Elxsi Bags Awards". Box Office India. 2 April 2013. Archived from the original on 23 September 2015. Retrieved 15 June ... "Lifetime Worldwide". Box Office India. Archived from the original on 21 October 2013. Retrieved 26 October 2010. Sen, Raja (9 ...
"Tata Elxsi Bags Awards". Box Office India. 2 April 2013. Archived from the original on 23 September 2015. Retrieved 15 June ...
"Tata Elxsi Bags Awards". Box Office India. 2 April 2013. Archived from the original on 23 September 2015. Retrieved 15 June ... It grossed ₹1.05 billion (US$13 million) at the box-office against a budget of ₹150 million (US$1.9 million). Mary Kom has ... Malvania, Urvi (6 September 2014). "Mary Kom packs a punch at box office Film on way to make profit in the first weekend". ... The film follows Kom's journey of becoming a boxer to her victory at the 2008 World Boxing Championships in Ningbo, China. ...
"Tata Elxsi Bags Awards". Box Office India. 2 April 2013. Archived from the original on 23 September 2015. Retrieved 15 June ... Produced on a budget of ₹180 million (US$2.3 million), Fashion was released on 29 October 2008 to critical acclaim and box- ... Malani, Gaurav (26 November 2008). "Top 5 Films at the Box Office". The Times of India. Retrieved 2 June 2013. "December gives ...
"Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA- ... Two sequences, the TATA box and Inr, caused small but significant increases in expression (45% and 28% increases, respectively ... Promoter DNA sequences may include different elements such as CpG islands (present in about 70% of promoters), a TATA box ( ... Eukaryotic RNA-polymerase-II-dependent promoters can contain a TATA box (consensus sequence TATAAA), which is recognized by the ...
Goldberg-Hogness box See TATA box. Golgi apparatus gRNA See guide RNA. guanine (G) A purine nucleobase used as one of the four ... CCAAT box A highly conserved regulatory DNA sequence located approximately 75 base pairs upstream (i.e. -75) of the site of the ...
The Pribnow box has a function similar to the TATA box that occurs in promoters in eukaryotes and archaea: it is recognized and ... TATA box Pribnow, David (March 1975). "Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter". PNAS. 72 ... The Pribnow box (also known as the Pribnow-Schaller box) is a sequence of TATAAT of six nucleotides (thymine, adenine, thymine ... "Pribnow box" is used in episode 13 of Neon Genesis Evangelion, in reference to the chamber holding simulation Evangelions for ...
It does not contain a TATA box. SKIDA1 is regulated by microRNAs. miR-93 binds to the SKIDA1 3'-UTR. Multiple microRNAs are ...
He loves boxing. Van is Tata's AI robot. Half of his body is gray with an "X" eye, and the other half is white with an "O" eye ... Tata was created by V. He is a curious crown prince from Planet BT who spreads love across the universe. He has supernatural ...
Crystal structure of TFIID TATA-box binding protein. Nature 360, pp. 40-46 Xie, X.-L., Kokubo, T., Cohen, S., Mirza, U.A., ... including its DNA binding subunit TATA-box binding subunit. He also developed the now popular His-tag expression system, which ... Highly conserved core domain and unique N-terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature ...
"Tata Sky unveils plans for 4K set top box". July 5, 2014. "CEA Updates Characteristics for Ultra High-Definition Displays". ... Indian satellite pay TV provider Tata Sky launched UHD service and UHD Set Top Box on 9 January 2015. The service is 4K at 50 ... The Cricket World Cup 2015 was telecast live in 4K for free to those who own Tata Sky's UHD 4K STB. In May 2015, France ... In August 2016, Sky announced that 4K broadcasts would begin via their new Sky Q 2TB box. The opening match of the 2016-17 ...
While a DPE was found in many promoters that do not contain a TATA box, there are also promoters that contain both a TATA box ... "Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA- ... This promoter, too, does not contain a TATA box. DPE has also been reported to play role in primitive Eukaryote Entamoeba ... It has been shown that the DPE is about as widely used as the TATA box in D. melanogaster. ...
Kohle C, Mohrle B, Munzel PA, Schwab M, Wernet D, Badary OA, Bock KW (2003). "Frequent co-occurrence of the TATA box mutation ... UGT1A1 is associated with a TATA box promoter region; this region most commonly contains the genetic sequence A(TA)6TAA; this ... Gilbert syndrome can arise without TATA box promoter polymorphic variants; in some populations, particularly healthy Southeast ...
The promoter region lacks a distinct TATA box sequence. The gene is expressed principally on erythrocytes, monocytes, ...
H.; Hahn, Steven; Sigler, Paul B. (1993). "Crystal structure of a yeast TBP/TATA-box complex". Nature. 365 (6446): 512-20. ...
The binding of the TATA box with TATA binding protein initiates the formation of a transcription factor complex. This is ... The TATA box is present in all genes that are transcribed by RNA polymerase II, which is most eukaryotic genes. ... The primary promoter element in eukaryotes is the TATA box. Other promoter elements found in eukaryotic 5′ flanking regions ... The CAAT box is a crucial element of the 5′ flanking region of eukaryotic genomes. A specific transcription factor called CAAT- ...
TATA-box binding protein associated factor 7 like is a protein that in humans is encoded by the TAF7L gene. This gene is ... "Entrez Gene: TATA-box binding protein associated factor 7 like". Retrieved 2018-03-03. Stouffs K, Willems A, Lissens W, ... similar to a mouse gene that encodes a TATA box binding protein-associated factor, and shows testis-specific expression. The ...
The Indica platform spawned a number of variants, including the Tata Indigo three-box saloon which includes the shorter Indigo ... Cars portal India portal Tata Indigo Tata Motors Tata Bolt Rover CityRover Tata Zest "Tata group , Tata Motors , Media releases ... "Tata group , Tata Motors , Media reports , Tata to introduce BS IV variant of Indica soon". Archived from the original on 12 ... The Tata Indica (from "Indian Car") was a B-segment car launched by the Indian manufacturer Tata Motors in 1998. It was the ...
Cvekl A, Kashanchi F, Brady JN, Piatigorsky J (June 1999). "Pax-6 interactions with TATA-box-binding protein and retinoblastoma ... "Direct interaction of p53 with the Y-box binding protein, YB-1: a mechanism for regulation of human gene expression". Oncogene ... "Wild-type p53 binds to the TATA-binding protein and represses transcription". Proceedings of the National Academy of Sciences ...
Further analysis found a second TATA box 558 bp upstream of SER3. A bioinformatic scan identified this same TATA box element in ... TATA-binding protein and RNA Polymerase II were still bound to the SER3 DNA in such a way that should have caused active ...
... s are transcribed by RNAP II[citation needed]. Class II genes have a promoter that may contain a TATA box. Basal ...
The POLD1 promoter is G/C-rich and has no TATA box. The transcription of this GC box-containing promoter is regulated by Sp1 ... refinement of the homology boxes". Gene. 134 (2): 191-200. doi:10.1016/0378-1119(93)90093-i. PMID 8262377. Lee MY, Tan CK, So ...
"TAF15 TATA-box binding protein associated factor 15 [Homo sapiens (Human)] - Gene - NCBI". Rubin, Brian P.; Lazar, Alexander J. ...
7.1 The recognition typically occurs as a consensus sequence like the TATA box. A gene can have more than one promoter, ...
... also termed the TATA-box binding protein associated factor 15, Npl3, RBP56, TAF2N, or TAFII68 gene) located at band 12 on the ... "TAF15 TATA-box binding protein associated factor 15 [Homo sapiens (Human)] - Gene - NCBI". Hoell JI, Larsson E, Runge S, ...
Transcription is initiated at the TATA box in TATA-containing genes. The TATA box is the binding site of the TATA-binding ... The bacterial homolog of the TATA box is called the Pribnow box which has a shorter consensus sequence. The TATA box is ... binds to the TATA box at its TATA-binding protein (TBP) subunit. TBP binds to the minor groove of the TATA box via a region of ... The boxing in of sequences sheds light on the origin of the term "box". The TATA box was first identified in 1978 as a ...
3TATA-box binding proteinTranscription initiation factor IIA large chain ...
This blind box is made to look like a candy package but it i ... Tata shaped pieces. Collect all 12 figures + 2 mystery variants ... This super unique blind box series comes with 5 figures styled after yummy candy! Each package contains 5 mystery colors ... Plush Blind Boxes Gashapon Capsules Candy & Snacks Collectible Figures Travel Books Squishies Puzzles & Games Pets ... This blind box is made to look like a candy package but it is not edible. ...
Protein target information for TATA-box binding protein associated factor 4 (Norway rat). Find diseases associated with this ...
Goldstein-Hogness box, INSDC_qualifier:TATA_box, TATA box, INSDC_feature:regulatory. ... RNA_polymerase_III_TATA_box (SO:0001662). In the image below graph nodes link to the appropriate terms. Clicking the image ...
PT Sentosa Tata Multi Sarana memahami hal ini, dan sebagai solusinya, kami menawarkan karton box daur ulang yang terbuat dari ... Di PT Sentosa Tata Multi Sarana, kami memastikan bahwa sumber bahan baku yang digunakan dalam produksi karton box daur ulang ... Dengan memilih karton box daur ulang dari PT Sentosa Tata Multi Sarana, Anda tidak hanya mendapatkan kemasan yang ramah ... Pilihan Material Ramah Lingkungan: Karton Box Daur Ulang di Pabrik Kardus PT Sentosa Tata Multi Sarana. Posted on July 2, 2023 ...
MÓJ TATA 2) MNIE KOCHA 3) OPIEKUJE SIĘ MNĄ 4) BAWI SIĘ ZE MNĄ 5) TATA MI POMAGA 6) KOCHAM CIĘ TATO ... 1) MÓJ TATA 2) MNIE KOCHA 3) OPIEKUJE SIĘ MNĄ 4) BAWI SIĘ ZE MNĄ 5) TATA MI POMAGA 6) KOCHAM CIĘ TATO ... Open the box is an open-ended template. It does not generate scores for a leaderboard. ...
Made by Ta.Ta. (5) MAGAZINE (1) magnetic (2) Maison and Objet 2015 (1) market (1) mirrors (2) Montessori (2) MOODBOARD (3) mums ... Rocking box by Egle Kirdulyte is an easy transferable storage for childrens toys, which consists of two half-round pieces and ... Rocking box (By Egle Kirdulyte) è una scatola riponi giocattoli facile da spostare, realizzata con due metà speculari e che ...
GENUINE/ORIGINAL MOUNTING PLATE GEAR BOX-287058902615
Tata Tigor Ev Specifications - Price, Mileage, Charging And Battery Capacity. by Shahnawaz Alam May 14, 2022. ...
Remote Compatible with all Tata Sky DTH Settop Box Remote Control 😊 Buy with Smile and Trust:1 Month Replacement Guarantee. 📦 ... Remote Compatible with all Tata Sky DTH / Setup Box. Remote Compatible with all Tata Sky DTH / Setup Box ... Decrease quantity for Remote Compatible with all Tata Sky DTH / Setup Box Increase quantity for Remote Compatible with all Tata ... Remote Compatible with all Tata Sky DTH Settop Box Remote Control. 😊 Buy with Smile and Trust:. 1 Month Replacement Guarantee. ...
The company has also terminated online booking cashback offers on all set-box boxes. ... Tags: Tata SkyTata Sky HD ConnectionTata Sky New ConnectionTata Sky SD Connection ... Tata Sky increases set-top box prices by up to 27%. The company has also terminated online booking cashback offers on all set- ... Free Box under Dhamaka Offer also ended. In August 2021, the Dhamaka offer was launched by Tata Sky under which new HD and ...
World Media Box also the go-to destination for gadget reviews. An in-depth review of smartphones, cameras, TVs, speakers, ... Tag: Netflix Is Now Available on Tata Play. Services Tech News Technology ... Fuelling the OTT Revolution: Netflix Is Now Available on Tata Play. February 26, 2022 ...
You can exchange Videocon, Tata Sky, Dish TV, and Airtel. There are plenty of Exchange Offers at Amazon. ... Airtel Set Top Box Exchange Offer. Exchange your set top box at Amazon. You can exchange Videocon, Tata Sky, Dish TV, and ... Tata Sky entered into an agreement with French firm Technicolor to supply 4K set-top boxes from early 2015. ... Tata Sky was Incorporated in 2006 It is a joint venture between the Tata Group and The Walt Disney Company (21st Century Fox). ...
... टाटा स्काई इंडिया में डीटीएच सेवा देने वाले सर्वश्रेष्ट कंपनियों में से एक है ... Tata Sky डीटीएच ऑपरेटर ने फिलहाल Tata Sky HD, Tata Sky SD, Tata Sky 4K, Tata Sky HD + और Tata Sky Binge + सहित पांच मॉडल के सेट ... How to Record TV Show on Tata Sky HD+ Set Top Box. Tata Sky HD+ सेट टॉप बॉक्स में आप अपने मन पसंद टीवी शो को रिकॉर्डिंग कर सकते ... Tata Play 3 Days Loan Number. Tata Sky HD + और Tata Sky Binge + सेट टॉप बॉक्स में पहले से ही STB लगे रहेंगे इसमें अलग से ...
Here are the ways by which you can refresh your Tata Sky account... ... If you want to Refresh Tata Sky Set Top box and DTH account. ... Refresh Tata Sky Set Top Box. Tata Sky Set Top Box Refresh is ... Refresh Tata Sky after Recharge, Tata Play account refresh number, How to Refresh Tata Play (aka Tata Sky) Set Top Box, How to ... Refresh Tata Sky Set Top Box and DTH Account. There are many ways by which you can refresh your Tata Sky Set Top Box easily. ...
Tata Indicom goals Public Generation, releases Twitter towards Text messages. / dil mil mobilny / By kelvin ...
Buy Kama Ayurveda Day Skin Secrets Gift Box online in India at best prices on Tata CliQ Palette. Shop now for best offers, no ...
Tata Sky Guide. My Tata Sky Customer Care Number Tata Sky Dealership Tata Sky Recharge Plans Tata Sky No Signal Problem Tata ... Tata Sky Recharge Plans Tata Sky Make My Pack Channel List Tata Sky Sports Package Recharge Tata Sky Packages Change Best Tata ... Tata Sky Channel List 2018 My Tata Sky Customer Care Jio DTH Customer Care Jio DTH Channel List Jio DTH Login Jio Set Top boxes ... Tag: tata sky everywhere tv. Tata Sky App for PC Free Download Watch Free Live Tv Any Where ! Watching TV all day long is one ...
The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. This process requires the ... in complex with TATA box binding protein and reveals a non-canonical function beyond nuclear transport that modulates TBP- ... Structural convergence endows nuclear transport receptor Kap114p with a transcriptional repressor function toward TATA-binding ... Structural convergence endows nuclear transport receptor Kap114p with a transcriptional repressor function toward TATA-binding ...
Smart Set Top Box for TV & OTT Apps in one place for FREE. its the new tata play binge+ Dhamaka offer that ... Tata Play Binge+ Dhamaka Offer - Smart Set Top Box for TV & OTT Apps in one place for FREE. its the new tata play binge+ ... Tata Play Binge+ Dhamaka Offer - FREE Smart Set Top Box for TV & OTT Apps. February 6, 2023. by Arjun Dhibar ... Tata Play Binge+ Dhamaka Offer - Smart Set Top Box for TV & OTT Apps at one place for FREE. 1. First Of All, Visit the link ...
Tata Play. *Tata Play hd set top box allows you to enjoy full hd experience through its exceptional picture quality and digital ... Home / Tata Play / Tata Play HD Set Top Box with 4000 in 4000 Dhamaka Offer. ... TATA PLAY HD Set Top Box with Hindi Super Value 6 Months Pack. ₹2429. ₹2129. Add to cart ... TATA PLAY HD Set Top Box Gujarati Hindi Super Value Pack. ₹1858. ₹1558. Add to cart ...
TATA-box-binding protein: K. Transcription initiation factor TFIID subunit 3: L. Transcription initiation factor TFIID subunit ...
Buy Tata sky New connection with Excellent offers, Surprising Discounts, Best Deals. To Know More visit Onlinedthservice.com. ... Buy Tata Sky DTH Set Top Box, ... Buy Tata Play SD Set Top Box With 1 Mont.... ₹2,390.00. ₹ ...
Tata Cliq. Tata Sky HD Box with One Month Hindi Lite Pack is available in . ... The lowest price of Tata Sky HD Box with One Month Hindi Lite Pack is 1,700 as on December 3, 2023 Available at Flipkart, ... Tata Sky HD Box with One Month Hindi Lite Pack Price in India - ... Popular Tata Sky Set Top Boxes. *. Tata Sky HD Box with One ... The lowest price of Tata Sky HD Box with One Month Hindi Lite Pack is in , which is less than the cost of Tata Sky HD Box with ...
We offer Tata Sky HD, SD, 4k and PVR Package at affordable price. ... DTHGuru provide New Tata sky dth connection offer with the 1- ... Tata Play Annual Offer. Tata Play @ Cash on Delivery. One Year Free Recharge Plan, Complete HD connection Available Call for ... DthGuru.com is Indias one of the Largest platform which provide Tata Sky Connection under Cash on Delivery Mode. We are one ...
Set of 6 online in India at best prices on Tata CliQ Palette. Shop now for best offers, no hassle returns & free shipping above ...
Zühlke C, Bürk K. Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. Cerebellum. 2007;6(4): ... Zühlke, C & Bürk, K 2007, Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein, Cerebellum, ... Zühlke, C., & Bürk, K. (2007). Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. ... Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein. In: Cerebellum. 2007 ; Vol. 6, No. 4. pp ...
TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase ... TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase ... TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs ...
Tata Sky Original Universal (Works with All Tv) NOT A RECORDING REMOTE Tata Sky Set-top Box (Black). 0 out of 5 ... Tata Sky Original Universal (Works with All Tv) NOT A RECORDING REMOTE Tata Sky Set-top Box (Black). Showing the single result ... HomeProducts tagged "Tata Sky Original Universal (Works with All Tv) NOT A RECORDING REMOTE Tata Sky Set-top Box (Black)". ... Tata Sky Original Universal (Works with All Tv) NOT A RECORDING REMOTE Tata Sky Set-top Box (Black). ...
  • The TATA box is the binding site of the TATA-binding protein (TBP) and other transcription factors in some eukaryotic genes. (wikipedia.org)
  • The TATA-binding protein (TBP) could also be targeted by viruses as a means of viral transcription. (wikipedia.org)
  • The TATA box was found in protein coding genes transcribed by RNA polymerase II. (wikipedia.org)
  • This sequence was originally called Box A, which is now known to be the sequence that interacts with the homologue of the archaeal TATA-binding protein (TBP). (wikipedia.org)
  • The archaea protein exhibits a greater symmetry in its primary sequence and in the distribution of electrostatic charge, which is important because the higher symmetry lowers the protein's ability to bind the TATA box in a polar manner. (wikipedia.org)
  • TATA-binding protein (TBP) can be recruited in two ways, by SAGA, a cofactor for RNA polymerase II, or by TFIID. (wikipedia.org)
  • The transcription factor TATA-box binding protein (TBP) modulates gene expression in nuclei. (sinica.edu.tw)
  • The team led by Dr. Kuo-Chiang Hsia (Institute of Molecular Biology, Academia Sinica) and Dr. Wei-Yi Chen (Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University) presents a cryo-EM structure of Kap114p, one of the Kap-βs, in complex with TATA box binding protein and reveals a non-canonical function beyond nuclear transport that modulates TBP-dependent transcription. (sinica.edu.tw)
  • Zühlke, C & Bürk, K 2007, ' Spinocerebellar ataxia type 17 is caused by mutations in the TATA-box binding protein ', Cerebellum , vol. 6, no. 4, pp. 300-307. (uni-luebeck.de)
  • TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. (expasy.org)
  • 47904) TATA-box binding family protein CP001857 CDS Arcpr_0059 47991. (go.jp)
  • A homeodomain protein that interacts with TATA-BOX BINDING PROTEIN. (bvsalud.org)
  • Tata Sky डीटीएच ऑपरेटर ने फिलहाल Tata Sky HD, Tata Sky SD, Tata Sky 4K, Tata Sky HD + और Tata Sky Binge + सहित पांच मॉडल के सेट-टॉप-बॉक्स में विडियो रिकॉर्डिंग की सुविधा उपलब्ध करायी है. (hintwebs.com)
  • Tata Sky HD + और Tata Sky Binge + सेट टॉप बॉक्स में पहले से ही STB लगे रहेंगे इसमें अलग से Recording STB लगाने की जरुरत नहीं है. (hintwebs.com)
  • Mumbai: Tata Play has added three new OTT platforms-Planet Marathi, Namma Flix, and Chaupal-to its Tata Play Binge offering. (indiantelevision.com)
  • The service can be accessed via the Tata Play Binge mobile app or Tata Play Binge+ Android set-top-box (STB). (indiantelevision.com)
  • This will significantly boost content discovery and exploration for Indian consumers, making Tata Play Binge the one-stop solution for all OTT entertainment. (indiantelevision.com)
  • We are very excited to partner with Tata Play Binge to reach a wider audience base. (indiantelevision.com)
  • Our vast content library of retro movies and the latest ones will now be available to the Tata Play Binge audience. (indiantelevision.com)
  • Content from all these platforms is available to the viewers of Tata Play Binge through a single subscription and single user interface. (indiantelevision.com)
  • In August 2021, the Dhamaka offer was launched by Tata Sky under which new HD and Binge+ customers recharging with Rs 4,000 and Rs 6,000 respectively would get 100% cashback in their newly activated Tata Sky account. (dreamdth.com)
  • 2021 Tata Play Limited. (tataplay.com)
  • Tata Sky is one of India's popular content distribution platform providing Pay TV and OTT services. (cashfry.in)
  • DthGuru.com is India's one of the Largest platform which provide Tata Sky Connection under Cash on Delivery Mode. (dthguru.com)
  • Incorporated in 2001 and with services launched since 2006, Tata Play is India's leading content distribution platform providing Pay TV and OTT services. (tataplay.com)
  • When promoters use the SAGA/TATA box complex to recruit RNA polymerase II, they are more highly regulated and display higher expression levels than promoters using the TFIID/TBP mode of recruitment. (wikipedia.org)
  • Phylogenetic analysis showed that ETHBV clustered within the genus Avihepadnavirus , forming a new clade ( Figure , panel A). The organization of the ETHBV genome was similar to other avian HBVs because all 3 overlapping ORFs (polymerase, nucleocapsid [preC/C] and presurface [preS/S] antigen) and several essential sequence motifs (e.g., the epsilon element, TATA boxes, and direct repeat sites DR1 and DR2) were identified ( Technical Appendix Figure 1). (cdc.gov)
  • The company has also terminated online booking cashback offers on all set-box boxes. (dreamdth.com)
  • Apart from the aforementioned increase in cost of new connections, the company has also terminated online booking cashback offers on all set-top boxes. (dreamdth.com)
  • Tata Play's chief commercial and content officer Pallavi Puri, said, "Carrying forward Tata Play Binge's objective of bringing the best of entertainment to viewers, we are proud to partner with Namma Flix, Planet Marathi, and Chaupal. (indiantelevision.com)
  • We are confident we will be able to merge our strength in content with Tata Play's prowess in distribution to create a robust viewer community. (indiantelevision.com)
  • Based on the sequence and mechanism of TATA box initiation, mutations such as insertions, deletions, and point mutations to this consensus sequence can result in phenotypic changes. (wikipedia.org)
  • Tata Sky has its official application for both Android and iOS users by which users can refresh their accounts. (dailytechbyte.com)
  • For her master's thesis she conducted research in affiliation with the Tata Institute of Social Sciences in Mumbai and studied young women's perceptions of public safety in Mumbai, regarding the risk of sexual harassment. (lu.se)
  • Dr Swati Banerjee is an Associate Professor at the Centre for Livelihoods and Social Innovation, School of Social Work, Tata Institute of Social Sciences, Mumbai, India. (lu.se)
  • The TATA box was first identified in 1978 as a component of eukaryotic promoters. (wikipedia.org)
  • The TATA box was the first eukaryotic core promoter motif to be identified in 1978 by American biochemist David Hogness while he and his graduate student, Michael Goldberg were on sabbatical at the University of Basel in Switzerland. (wikipedia.org)
  • Even though the TATA box is present in many eukaryotic promoters, it is not contained in the majority of promoters. (wikipedia.org)
  • In bacteria, promoter regions may contain a Pribnow box, which serves an analogous purpose to the eukaryotic TATA box. (wikipedia.org)
  • it's the new tata play binge+ Dhamaka offer that is live now and get purchase new Rs.6000 plans and get amazing benefits for free now. (tricksrecharge.com)
  • When there is an absence of the TATA box and TBP is not present, the downstream promoter element (DPE) in cooperation with the initiator element (Inr) bind to the transcription factor II D (TFIID), initiating transcription in TATA-less promoters. (wikipedia.org)
  • The bacterial homolog of the TATA box is called the Pribnow box which has a shorter consensus sequence. (wikipedia.org)
  • Pay ₹6000 and get the entire amount added back into your Tata Play Account to watch your favourite channels. (tricksrecharge.com)
  • This offering provides the best of both worlds on one Set Top Box ₹6,000 Get the entire amount added back into your Tata Play Account after activation. (tricksrecharge.com)
  • Make a one-time payment of ₹6000 & get the entire ₹6000 paid back to your Tata Play account on Activation. (tricksrecharge.com)
  • Tata Play Binge+ Set Top Box lets subscribers watch both live TV and OTT content (when connected to internet) on one device, without switching between multiple HDMI ports. (tricksrecharge.com)
  • Tata Play hd set top box allows you to enjoy full hd experience through its exceptional picture quality and digital sound. (onlinedthoffers.com)
  • You can now customize or make your pack based on the channels that are available and this is what is referred to as truchoice packages by Tata Play. (onlinedthoffers.com)
  • Tata Play mobile application allows you to browse the entire tv schedules from the mobile and schedule the program that you need to watch. (onlinedthoffers.com)
  • Tata Play hd set top box offers you services through its channels like actve english, actve games, actve kids, actve learning, actve darshan, actve cooking and actve stories. (onlinedthoffers.com)
  • With Tata Play, you can enjoy the best of entertainment in digital clarity coupled with maximum channels. (onlinedthoffers.com)
  • You can use this set top box on normal (HD) TV any pack free subscription through Tata Play customer care. (onlinedthoffers.com)
  • Delivery and installation will be done by an authorized Tata Play technician. (onlinedthoffers.com)
  • The product is under 1 year Tata Play warranty. (onlinedthoffers.com)
  • Tata Play SD & HD Original Universa. (dthbroadband.com)
  • Tata Play® HD New Connection Special On. (dthbroadband.com)
  • Tata Play® Near Me Festival Offer- Tata. (dthbroadband.com)
  • Buy Tata Play SD Set Top Box With 1 Mont. (dthbroadband.com)
  • Buy Tata Play HD Connection With 1 Month. (dthbroadband.com)
  • Book Tata Play HD Connection With 1 Mont. (dthbroadband.com)
  • Tata Play New Connection With 1 Month- T. (dthbroadband.com)
  • Tata Play New Connection -Tata Play Onli. (dthbroadband.com)
  • Tata Play® HD New Connection With 1 Mon. (dthbroadband.com)
  • Disney Hungama Kids Pack is a Tata Play (formerly Tata Sky) Pack that has a total of 4 channels. (tataplay.com)
  • Subscribe to Disney Hungama Kids Pack at just ₹ 14.16 per month on Tata Play. (tataplay.com)
  • Not a Tata Play customer? (tataplay.com)
  • Got a product or service that you would like to advertise on Tata Play? (tataplay.com)
  • Learn more about advertising options on Tata Play landing channel. (tataplay.com)
  • TATA and TATA PLAY are trademarks of Tata Sons Private Limited. (tataplay.com)
  • Used under License by Tata Play Limited (Formerly known as Tata Sky Limited). (tataplay.com)
  • We are hopeful that the partnership with Tata Play will further boost Chaupal's engagement and help its content traverse all barriers of region and language. (indiantelevision.com)
  • In the 1980s, while investigating nucleotide sequences in mouse genome loci, the Hogness box sequence was found and "boxed in" at the -31 position. (wikipedia.org)
  • They first discovered the TATA sequence while analyzing 5' DNA promoter sequences in Drosophila, mammalian, and viral genes. (wikipedia.org)
  • Recharge Tata Sky, Dish Tv, D2H or Airtel with Amazon Pay wallet and Save Money. (cashfry.in)
  • Further, a single S-cdA lesion in the TATA box reduces gene expression. (nist.gov)
  • We are giving here below the best Tata Sky Recharge Offers at Amazon. (cashfry.in)
  • One study found less than 30% of 1031 potential promoter regions contain a putative TATA box motif in humans. (wikipedia.org)
  • It was termed the "TATA box" as it contains a consensus sequence characterized by repeating T and A base pairs. (wikipedia.org)
  • When consensus nucleotides and alternative ones were compared, homologous regions were "boxed" by the researchers. (wikipedia.org)
  • Compatible for Tata Sky DTH Settop Box remote control. (faritha.com)
  • This is a Best Genuine Quality Aftermarket Replacement Remote from brand Generic & Not Original Tata Sky Remote. (jkdishinfo.in)
  • Crystal structure of the T(-26) Adenovirus major late promoter TATA box variant bound to wild-type TBP (Arabidopsis thaliana TBP isoform 2). (expasy.org)
  • In molecular biology, the TATA box (also called the Goldberg-Hogness box) is a sequence of DNA found in the core promoter region of genes in archaea and eukaryotes. (wikipedia.org)
  • Transcription is initiated at the TATA box in TATA-containing genes. (wikipedia.org)
  • The TATA box is also found in 40% of the core promoters of genes that code for the actin cytoskeleton and contractile apparatus in cells. (wikipedia.org)
  • Reprime la TRANSCRIPCIÓN GENÉTICA de los GENES diana y desempeña una función fundamental en la ODONTOGÉNESIS. (bvsalud.org)
  • The standard definition (SD) box which was being sold for Rs 1,499 has got a 13.3% price hike and now costs Rs 1,699 while the high definition (HD) box received a 26.7% price hike from Rs 1,499 to Rs 1,899. (dreamdth.com)
  • Price of Tata Sky HD Box with One Month Hindi Lite Pack in the above table is in Indian Rupee. (pricedekho.com)
  • How to Refresh Tata Sky Set Top Box and DTH Account easily? (dailytechbyte.com)
  • This usually happens when you recharge an inactive account or if your set-top box was off while recharging. (dailytechbyte.com)
  • So, if you are also facing these types of errors on your Tata Sky Set Top Box, you just need to refresh your account and it will solve the problem you are facing in your account. (dailytechbyte.com)
  • Tata Sky Set Top Box Refresh is very important when you recharge your inactive account. (dailytechbyte.com)
  • So, when you refresh your Tata Sky DTH account, all the channels you have subscribed to will appear in your account. (dailytechbyte.com)
  • Below we have listed all the ways to refresh the Tata Sky DTH account. (dailytechbyte.com)
  • You can refresh your account using WhatsApp if you have the same WhatsApp number which is linked or registered with Tata Sky. (dailytechbyte.com)
  • Done, your Tata Sky account will be refreshed successfully. (dailytechbyte.com)
  • How can I refresh my Tata Sky account? (dailytechbyte.com)
  • The DTH service provider Tata Sky on Thursday, revised the cost for new SD, HD connections and increased their prices by up to Rs 400. (dreamdth.com)
  • To do so, users need to send a pre-determined SMS to the Tata Sky service number. (dailytechbyte.com)
  • Tata Sky offers customized packages, channel options, Interactive services on the platform. (cashfry.in)
  • The TATA box is considered a non-coding DNA sequence (also known as a cis-regulatory element). (wikipedia.org)
  • Some Thai lawmakers have sought to ban boxing for those under the age of 12, but a draft bill failed to reach parliament and would likely have faced resistance because of the popularity of child fights and the revenue they generate. (metro.us)
  • Tata Sky is a popular content distribution platform owned by Tata Sons. (dailytechbyte.com)
  • This set top box is 3d compatible. (onlinedthoffers.com)
  • Compatible with: TataSky Set Top Box Remote Control HD & SD (Also Works with Universal All TV - Pairing Required) Color-Black 100% Best Quality Replacement remote for Tata Sky SD / HD DTH Set Top Box (Pairing Required to Sync TV Functions) Long Distance Ultra wide angle Range. (jkdishinfo.in)
  • Most Tata Sky users recharge their accounts every month. (dailytechbyte.com)
  • Hi, I got the New Tata Sky Installed at my home on 15 the Oct 2009 for Rs 5999/- by using the Credit Card for payment.As i knew that by making a Rs 5999/- using Credit Card the first month subscription was free. (consumercomplaints.in)
  • Hardware includes Set-top-box, Viewing Card (VC), Out Door Unit, Antenna and a 10-metre wire, provided at no extra cost. (onlinedthoffers.com)
  • There are many ways by which you can refresh your Tata Sky Set Top Box easily. (dailytechbyte.com)
  • What is the Tata Sky refresh number? (dailytechbyte.com)
  • How can I refresh my Tata Sky online? (dailytechbyte.com)
  • There are two methods by which you can refresh your Tata Sky online, through WhatsApp and through the official application of Tata Sky. (dailytechbyte.com)
  • Call +91-90405-90405 from your Tata Sky registered mobile number. (dailytechbyte.com)

No images available that match "tata box"