A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties.
Compounds that bind to and block the stimulation of PURINERGIC P2 RECEPTORS.
A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system.
This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).
Uridine 5'-(tetrahydrogen triphosphate). A uracil nucleotide containing three phosphate groups esterified to the sugar moiety.
An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.
Cell surface proteins that bind PURINES with high affinity and trigger intracellular changes which influence the behavior of cells. The best characterized classes of purinergic receptors in mammals are the P1 receptors, which prefer ADENOSINE, and the P2 receptors, which prefer ATP or ADP.
Drugs that bind to and block the activation of PURINERGIC RECEPTORS.
Compounds that bind to and stimulate PURINERGIC P2 RECEPTORS.
A subclass of purinergic P2 receptors that signal by means of a ligand-gated ion channel. They are comprised of three P2X subunits which can be identical (homotrimeric form) or dissimilar (heterotrimeric form).
Compounds that bind to and block the stimulation of PURINERGIC P2X RECEPTORS. Included under this heading are antagonists for specific P2X receptor subtypes.

Effects of heptanol on the neurogenic and myogenic contractions of the guinea-pig vas deferens. (1/824)

1. The effects of the putative gap junction uncoupler, 1-heptanol, on the neurogenic and myogenic contractile responses of guinea-pig vas deferens were studied in vitro. 2. Superfusion of 2.0 mM heptanol for 20-30 min produced the following reversible changes in the biphasic neurogenic contractile response (8 trials): (i) suppression of both phases; (ii) delayed development of both the first as well as the second phase, accompanied by complete temporal separation of the two phases; (iii) prominent oscillations of force during the second (noradrenergic) phase only. 3. To eliminate prejunctional effects of heptanol, myogenic contractions were evoked by field stimulation of the vas in the presence of suramin (200 microM) and prazosin (1 microM). Heptanol (2.0 mM) abolished these contractions reversibly. 4. These results show that (i) heptanol inhibits both excitatory junction potential (EJP)-dependent and non EJP-dependent contractions of the vas; (ii) a postjunctional site of action of heptanol, probably intercellular uncoupling of smooth muscle cells, contributes to the inhibition of contraction.  (+info)

Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site. (2/824)

Contraction of skeletal muscle is triggered by the rapid release of Ca2+ from the sarcoplasmic reticulum via the ryanodine receptor/calcium-release channel. The trypanocidal drug suramin is an efficient activator of the ryanodine receptor. Here, we used high-affinity [3H]ryanodine binding to sarcoplasmic reticulum from rabbit skeletal muscle to screen for more potent analogs of suramin. This approach resulted in the identification of NF307, which accelerates the association rate of [3H]ryanodine binding with an EC50 = 91 +/- 7 microM at 0.19 microM calculated free Ca2+. In single-channel recordings with the purified ryanodine receptor, NF307 increased mean open probability at 0.6 microM Ca2+ from 0.020 +/- 0.006 to 0.53 +/- 0.07 with no effect on current amplitude and unitary conductance. Like caffeine, NF307 exerts a very pronounced Ca2+-sensitizing effect (EC50 of Ca2+ shifted approximately 10-fold by saturating NF307 concentrations). Conversely, increasing concentrations of free Ca2+ sensitized the receptor for NF307 (EC50 = 14.6 +/- 3.5 microM at 0.82 microM estimated free Ca2+). The effects of NF307 and caffeine on [3H]ryanodine binding were additive, irrespective of the Ca2+ concentration. In contrast, the effects of calmodulin, which activates and inhibits the ryanodine receptor in the absence and presence of Ca2+, respectively, and of NF307 were mutually antagonistic. If the purified ryanodine receptor was prebound to a calmodulin-Sepharose matrix, 100 microM NF307 and 300 microM suramin eluted the purified ryanodine receptor to an extent that was comparable to the effect of 10 microM calmodulin. We conclude that NF307 and suramin interact directly with a calmodulin binding domain of the ryanodine receptor. Because of its potent calcium-sensitizing effect, NF307 may represent a lead compound in the search of synthetic ryanodine receptor ligands.  (+info)

Regulation of gelatinase B production in corneal cells is independent of autocrine IL-1alpha. (3/824)

PURPOSE: The matrix metalloproteinase gelatinase B is synthesized by cells at the leading edge of the corneal epithelium migrating to heal a wound. Recent data from the authors' laboratory suggest that excessive synthesis contributes to repair defects. The goal of the study reported here was to investigate mechanisms controlling gelatinase B production by corneal epithelial cells. METHODS: Freshly isolated cultures of corneal epithelial cells and early passage stromal fibroblasts from rabbit were used for these studies. RESULTS: In a previous study, it was found that the cytokine interleukin (IL)-1alpha is released into the culture medium of corneal epithelial cells more efficiently when they are plated at low density with limited cell-cell contact than when plated at high density. In this study, we show that production of gelatinase B by these cells is similarly affected by cell plating density. However, it is further demonstrated that these two events are not dependent on one another but occur in parallel: IL-1alpha does not regulate gelatinase B production (synthesis), nor was there evidence that any other secreted autocrine cytokine acts as mediator. Instead, our data suggest that gelatinase B production is downregulated directly by high cell density and indicate a connection to the level of protein kinase C activity. Nevertheless, the anticancer agent suramin, which blocks collagenase synthesis by interfering with autocrine cytokine-receptor interactions, still inhibits synthesis of gelatinase B. CONCLUSIONS: Unlike collagenase synthesis by corneal stromal fibroblasts, production (synthesis) of gelatinase B does not appear to be controlled by secreted autocrine cytokines but can still be inhibited by suramin. Suramin may make an effective therapeutic agent for controlling pathologic overproduction of gelatinase B in corneal ulcers.  (+info)

Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. (4/824)

It is now widely accepted that ATP functions as a signalling substance in the nervous system. The presence of P2 receptors mediating the action of extracellular ATP in brain regions involved in hormonal regulation raises the possibility that a similar role for ATP might also exist in the neuroendocrine system. In this study, the release from the rat isolated neurohypophysis preparation of endogenous ATP, oxytocin and vasopressin (AVP) were measured simultaneously using luciferin-luciferase and RIA techniques. After 70 min preperfusion, electrical field stimulation caused a rapid increase in the amount of ATP in the effluent and the release of AVP and oxytocin also increased stimulation-dependently. Inhibition of voltage-dependent Na+ channels by tetrodotoxin (1 microM) reduced the stimulation-evoked release of AVP and oxytocin; however, the evoked release of ATP remained unaffected. The effect of endogenous ATP on the hormone secretion was tested by suramin (300 microM), the P2 receptor antagonist. Suramin significantly increased the release of AVP, and the release of oxytocin was also enhanced. ATP, when applied to the superfusing medium, decreased the release of AVP, but not that of oxytocin, and its effect was prevented by suramin. ATP (60 nmol), added to the tissues, was readily decomposed to ADP, AMP and adenosine measured by HPLC combined with ultraviolet light detection, and the kinetic parameters of the enzymes responsible for inactivation of ATP (ectoATPase and ecto5'-nucleotidase) were also determined (Km=264+/-2.7 and 334+/-165 microM and vmax=6.7+/-1.1 and 2.54+/-0.24 nmol/min per preparation (n=3) for ectoATPase and ecto5'-nucleotidase respectively). Taken together, our data demonstrate the stimulation-dependent release, P2 receptor-mediated action and extracellular metabolism of endogenous ATP in the posterior lobe of the hypophysis and indicate its role, as a paracrine regulator, in the local control of hormone secretion.  (+info)

Antioxidants improve impaired insulin-mediated glucose uptake and prevent migration and proliferation of cultured rabbit coronary smooth muscle cells induced by high glucose. (5/824)

BACKGROUND: To explore the role of intracellular oxidative stress in high glucose-induced atherogenesis, we examined the effect of probucol and/or alpha-tocopherol on the migration and growth characteristics of cultured rabbit coronary vascular smooth muscle cells (VSMCs). METHODS AND RESULTS: Chronic high-glucose-medium (22. 2 mmol/L) treatment increased platelet-derived growth factor (PDGF)-BB-mediated VSMC migration, [3H]thymidine incorporation, and cell number compared with VSMCs treated with normal-glucose medium (5.6 mmol/L+16.6 mmol/L mannose). Probucol and alpha-tocopherol significantly suppressed high glucose-induced increase in VSMC migration, cell number, and [3H]thymidine incorporation. Probucol and alpha-tocopherol suppressed high glucose-induced elevation of the cytosolic ratio of NADH/NAD+, phospholipase D, and membrane-bound protein kinase C activation. Probucol, alpha-tocopherol, and calphostin C improved the high glucose-induced suppression of insulin-mediated [3H]deoxyglucose uptake. Chronic high-glucose treatment increased the oxidative stress, which was significantly suppressed by probucol, alpha-tocopherol, suramin, and calphostin C. CONCLUSIONS: These findings suggest that probucol and alpha-tocopherol may suppress high glucose-induced VSMC migration and proliferation via suppression of increases in the cytosolic ratio of free NADH/NAD+, phospholipase D, and protein kinase C activation induced by high glucose, which result in reduction in intracellular oxidative stress.  (+info)

Cell surface retention sequence binding protein-1 interacts with the v-sis gene product and platelet-derived growth factor beta-type receptor in simian sarcoma virus-transformed cells. (6/824)

The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.  (+info)

Modulation of ATP-responses at recombinant rP2X4 receptors by extracellular pH and zinc. (7/824)

The modulatory effects of extracellular H+ and Zn2+ were tested against ATP-responses at rat P2X4 (rP2X4) receptors expressed in Xenopus oocytes under voltage-clamp conditions. ATP (0.1-100 microM, at pH 7.5), evoked inward currents via rP2X4 receptors (EC50 value, 4.1+/-0.98 microM; nH, 1.2+/-0.1). ATP potency was reduced 2 fold, at pH 6.5, without altering maximal activity. ATP potency was reduced by a further 4 fold, at pH 5.5, and the maximal activity of ATP was also reduced. Alkaline conditions (pH 8.0) had no effect on ATP-responses. Zn2+ (100 nM - 10 microM) potentiated ATP-responses at the rP2X4 receptor by 2 fold, whereas higher concentrations (30 microM - 1 mM) inhibited ATP-responses. Zn2+ potentiation was due to an increase in ATP potency, whereas its inhibitory action was due to a reduction in ATP efficacy. Zn2+ modulation of ATP-responses was pH-dependent. At pH 6.5, the bell-shaped curve for Zn2+ was shifted to the right by 1 log unit. At pH 5.5, Zn2+ potentiation was abolished and its inhibitory effect reduced considerably. Suramin (50 microM) also potentiated ATP-responses at rP2X4 receptors. Neither H+ (pH 6.5 and 5.5), Zn2+ (10-100 microM) or a combination of both failed to reveal an inhibitory action of suramin at rP2X4 receptors. In conclusion, H+ and Zn2+ exerted opposite effects on the rP2X4 receptor by lowering and raising agonist potency, respectively. H+ (> or = 3 microM) and Zn2+ (> or = 30 microM) also reduces agonist efficacy by lowering the number of rP2X4 receptors available for activation. The striking differences between the modulatory actions of H+ and Zn2+ at rP2X4 and rP2X2 receptors are discussed.  (+info)

Neural modulation of the cyclic electrical and mechanical activity in the rat colonic circular muscle: putative role of ATP and NO. (8/824)

1. The rat colonic circular muscle displays cyclic episodes of myenteric potential oscillations (MPOs), each of them associated with a spontaneous contraction. Nifedipine 1 microM abolished both MPOs and their associated contractions. TTX (1 microM) increased the amplitude and frequency of spontaneous contractions. 2. Electrical field stimulation (EFS) induced a non-adrenergic non-cholinergic (NANC) inhibitory junction potential (IJP), with two phases: an initial fast hyperpolarization (characterized by IJP amplitude) and a sustained hyperpolarization (characterized by IJP duration). 3. Sodium nitroprusside (10 microM) hyperpolarized and abolished spontaneous contractions even in presence of TTX or 1 microM apamin. ATP (100 microM) also hyperpolarized and abolished spontaneous contractions but its effects were decreased by TTX and abolished by apamin. 4. Suramin (100 microM) or apamin reduced the amplitude of the IJPs, but did not affect their duration. Incubation with L-NOARG (1 mM) reduced the duration but not the amplitude of the IJPs. In presence of L-NOARG plus suramin or L-NOARG plus apamin, both duration and amplitude of the IJPs were reduced but a residual IJP could still be recorded. 5. We conclude that the mechanical and electrical cyclic activity of the rat colonic circular muscle is modulated but not originated by the enteric nervous system and involves L-type calcium channel activity. EFS induces release of NANC inhibitory neurotransmitters which hyperpolarize and relax smooth muscle cells. Both ATP and NO are involved in IJP generation: ATP is responsible for the first phase of the IJPs involving activation of apamin-sensitive potassium channels, whereas NO initiates the second phase which is independent of the activation of such channels.  (+info)

Suramin is a medication that has been used for the treatment of African sleeping sickness, which is caused by trypanosomes. It works as a reverse-specific protein kinase CK inhibitor and also blocks the attachment of the parasite to the host cells. Suramin is not absorbed well from the gastrointestinal tract and is administered intravenously.

It should be noted that Suramin is an experimental treatment for other conditions such as cancer, neurodegenerative diseases, viral infections and autoimmune diseases, but it's still under investigation and has not been approved by FDA for those uses.

Purinergic P2 receptor antagonists are pharmaceutical agents that block the activity of P2 receptors, which are a type of cell surface receptor that binds extracellular nucleotides such as ATP and ADP. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and platelet aggregation.

P2 receptors are divided into two main subfamilies: P2X and P2Y. The P2X receptors are ligand-gated ion channels that allow the flow of ions across the cell membrane upon activation, while the P2Y receptors are G protein-coupled receptors that activate intracellular signaling pathways.

Purinergic P2 receptor antagonists are used in clinical medicine to treat various conditions, such as chronic pain, urinary incontinence, and cardiovascular diseases. For example, the P2X3 receptor antagonist gefapixant is being investigated for the treatment of refractory chronic cough, while the P2Y12 receptor antagonists clopidogrel and ticagrelor are used to prevent thrombosis in patients with acute coronary syndrome.

Overall, purinergic P2 receptor antagonists offer a promising therapeutic approach for various diseases by targeting specific receptors involved in pathological processes.

Purinergic P2 receptors are a type of cell surface receptor that bind to purine nucleotides and nucleosides, such as ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and mediate various physiological responses. These receptors are divided into two main families: P2X and P2Y.

P2X receptors are ionotropic receptors, meaning they form ion channels that allow the flow of ions across the cell membrane upon activation. There are seven subtypes of P2X receptors (P2X1-7), each with distinct functional and pharmacological properties.

P2Y receptors, on the other hand, are metabotropic receptors, meaning they activate intracellular signaling pathways through G proteins. There are eight subtypes of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14), each with different G protein coupling specificities and downstream signaling pathways.

Purinergic P2 receptors are widely expressed in various tissues, including the nervous system, cardiovascular system, respiratory system, gastrointestinal tract, and immune system. They play important roles in regulating physiological functions such as neurotransmission, vasodilation, platelet aggregation, smooth muscle contraction, and inflammation. Dysregulation of purinergic P2 receptors has been implicated in various pathological conditions, including pain, ischemia, hypertension, atherosclerosis, and cancer.

Pyridoxal phosphate (PLP) is the active form of vitamin B6 and functions as a cofactor in various enzymatic reactions in the human body. It plays a crucial role in the metabolism of amino acids, carbohydrates, lipids, and neurotransmitters. Pyridoxal phosphate is involved in more than 140 different enzyme-catalyzed reactions, making it one of the most versatile cofactors in human biochemistry.

As a cofactor, pyridoxal phosphate helps enzymes carry out their functions by facilitating chemical transformations in substrates (the molecules on which enzymes act). In particular, PLP is essential for transamination, decarboxylation, racemization, and elimination reactions involving amino acids. These processes are vital for the synthesis and degradation of amino acids, neurotransmitters, hemoglobin, and other crucial molecules in the body.

Pyridoxal phosphate is formed from the conversion of pyridoxal (a form of vitamin B6) by the enzyme pyridoxal kinase, using ATP as a phosphate donor. The human body obtains vitamin B6 through dietary sources such as whole grains, legumes, vegetables, nuts, and animal products like poultry, fish, and pork. It is essential to maintain adequate levels of pyridoxal phosphate for optimal enzymatic function and overall health.

Uridine Triphosphate (UTP) is a nucleotide that plays a crucial role in the synthesis and repair of DNA and RNA. It consists of a nitrogenous base called uracil, a pentose sugar (ribose), and three phosphate groups. UTP is one of the four triphosphates used in the biosynthesis of RNA during transcription, where it donates its uracil base to the growing RNA chain. Additionally, UTP serves as an energy source and a substrate in various biochemical reactions within the cell, including phosphorylation processes and the synthesis of glycogen and other molecules.

Adenosine Triphosphate (ATP) is a high-energy molecule that stores and transports energy within cells. It is the main source of energy for most cellular processes, including muscle contraction, nerve impulse transmission, and protein synthesis. ATP is composed of a base (adenine), a sugar (ribose), and three phosphate groups. The bonds between these phosphate groups contain a significant amount of energy, which can be released when the bond between the second and third phosphate group is broken, resulting in the formation of adenosine diphosphate (ADP) and inorganic phosphate. This process is known as hydrolysis and can be catalyzed by various enzymes to drive a wide range of cellular functions. ATP can also be regenerated from ADP through various metabolic pathways, such as oxidative phosphorylation or substrate-level phosphorylation, allowing for the continuous supply of energy to cells.

Purinergic receptors are a type of cell surface receptor that bind and respond to purines and pyrimidines, which are nucleotides and nucleosides. These receptors are involved in various physiological processes, including neurotransmission, muscle contraction, and inflammation. There are two main types of purinergic receptors: P1 receptors, which are activated by adenosine, and P2 receptors, which are activated by ATP and other nucleotides.

P2 receptors are further divided into two subtypes: P2X and P2Y. P2X receptors are ionotropic receptors that form cation channels upon activation, allowing the flow of ions such as calcium and sodium into the cell. P2Y receptors, on the other hand, are metabotropic receptors that activate G proteins upon activation, leading to the activation or inhibition of various intracellular signaling pathways.

Purinergic receptors have been found to play a role in many diseases and conditions, including neurological disorders, cardiovascular disease, and cancer. They are also being studied as potential targets for drug development.

Purinergic antagonists are a class of drugs that block the action of purinergic receptors, which are specialized proteins found on the surface of cells that respond to purines such as ATP and ADP. These receptors play important roles in various physiological processes, including neurotransmission, inflammation, and cell death.

Purinergic antagonists work by binding to these receptors and preventing them from being activated by purines. This can have a variety of effects depending on the specific receptor that is blocked. For example, some purinergic antagonists are used in the treatment of conditions such as chronic pain, depression, and Parkinson's disease because they block receptors that play a role in these conditions.

It's important to note that while purinergic antagonists can be useful therapeutically, they can also have side effects and potential risks. As with any medication, it's important to use them only under the guidance of a healthcare professional.

Purinergic P2 receptor agonists are substances that bind and activate purinergic P2 receptors, which are a type of cell surface receptor found in many tissues throughout the body. These receptors are activated by extracellular nucleotides, such as ATP (adenosine triphosphate) and ADP (adenosine diphosphate), and play important roles in various physiological processes, including neurotransmission, muscle contraction, and inflammation.

P2 receptors are divided into two main subfamilies: P2X and P2Y. P2X receptors are ligand-gated ion channels that allow the flow of ions across the cell membrane when activated, while P2Y receptors are G protein-coupled receptors that activate intracellular signaling pathways.

Purinergic P2 receptor agonists can be synthetic or naturally occurring compounds that selectively bind to and activate specific subtypes of P2 receptors. They have potential therapeutic applications in various medical conditions, such as pain management, cardiovascular diseases, and neurological disorders. However, their use must be carefully monitored due to the potential for adverse effects, including desensitization of receptors and activation of unwanted signaling pathways.

Purinergic P2X receptors are a type of ligand-gated ion channel that are activated by the binding of extracellular ATP (adenosine triphosphate) and other purinergic agonists. These receptors play important roles in various physiological processes, including neurotransmission, pain perception, and immune response.

P2X receptors are composed of three subunits that form a functional ion channel. There are seven different subunits (P2X1-7) that can assemble to form homo- or heterotrimeric receptor complexes with distinct functional properties.

Upon activation by ATP, P2X receptors undergo conformational changes that allow for the flow of cations, such as calcium (Ca^2+^), sodium (Na^+^), and potassium (K^+^) ions, across the cell membrane. This ion flux can lead to a variety of downstream signaling events, including the activation of second messenger systems and changes in gene expression.

Purinergic P2X receptors have been implicated in a number of pathological conditions, including chronic pain, inflammation, and neurodegenerative diseases. As such, they are an active area of research for the development of novel therapeutic strategies.

Purinergic P2X receptor antagonists are pharmaceutical agents that block the activation of P2X receptors, which are ligand-gated ion channels found in the cell membranes of various cell types, including excitable cells such as neurons and muscle cells. These receptors are activated by extracellular adenosine triphosphate (ATP) and play important roles in a variety of physiological processes, including neurotransmission, pain perception, and inflammation.

P2X receptor antagonists work by binding to the receptor and preventing ATP from activating it, thereby blocking its downstream effects. These drugs have potential therapeutic uses in various medical conditions, such as chronic pain, urinary incontinence, and ischemia-reperfusion injury. However, their development and use are still in the early stages of research, and more studies are needed to fully understand their mechanisms of action and safety profiles.

Suramin has been studied in a mouse model of autism and in a small phase I/II human trial. "Suramin Injection Advanced Patient ... Suramin can also cause loss of appetite and irritability. Suramin causes non-harmful changes in urine during use, specifically ... Suramin is not extensively metabolized and about 80% is eliminated via the kidneys. The molecular formula of suramin is ... "Suramin". Drug Information Portal. U.S. National Library of Medicine. Suramin sodium National Cancer Institute Portal: Medicine ...
Copyright © 2023 Janet Starr Hull, Hullistic Network LLC · Log in. Information on this web site is provided for informational and educational purposes only. The information is a result of years of practice experience by the author. This information is not intended as a substitute for the advice provided by your physician or other healthcare professional or any information contained on or in any product label or packaging. Do not use the information on this web site for diagnosing or treating a health problem or disease, or prescribing medication or other treatment. Always speak with your physician or other healthcare professional before taking any medication or nutritional, herbal or homeopathic supplement, or using any treatment for a health problem. If you have or suspect that you have a medical problem, contact your health care provider immediately. Do not disregard professional medical advice or delay in seeking professional advice because of something you have read on this web site. ...
In this study, we showed that preeclampsia-like syndrome occurred in suramin-given rats. Conclusion: Our findings, which show ... We aimed to produce preeclampsia-like syndrome by suramin administration in rats and to investigate the functional responses in ... Pathological examination of kidneys showed an acute tubular injury after suramin injection. Numbers and weights of fetuses and ... Materials and methods: Pregnant and nonpregnant wistar rats received suramin (100 mg/kg, intraperitoneal) or equal volume of ...
Evaluation of the Performance of an Ophthalmic Thermosensitive Hydrogel Containing Combination of Suramin and Bevacizumab. ... Title:Evaluation of the Performance of an Ophthalmic Thermosensitive Hydrogel Containing Combination of Suramin and Bevacizumab ... Evaluation of the Performance of an Ophthalmic Thermosensitive Hydrogel Containing Combination of Suramin and Bevacizumab, ...
Defining and Leveraging the Mechanism of Action of Suramin for Treatment of Trypanosomiasis (joint with University of Cambridge ...
1 gram of suramin for injection in a 10 mL vial (100 mg/mL solution of suramin sodium) Must be reconstituted with 10 mL Sterile ... Suramin. Suramin is a negatively charged, high-molecular-weight sulfated naphthylamine. It was introduced in the 1920s for the ... Suramin (Supplied to CDC by the World Health Organization; Manufactured by Bayer - Germanin). For the treatment of first-stage ... Suramin generally is considered the drug of choice for first-stage Trypanosoma brucei rhodesiense (East African) infection, ...
Suramin Study: https://pubmed.ncbi.nlm.nih.gov/9239672/ ...
Suramin is an antitrypanosome and an anthelminthic. Its use is restricted because of its intrinsic toxicity and the frequency ... The WHO has recommended that suramin not be used to treat onchocerciasis in individuals who are elderly or infirm or in ...
VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By ... Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that ... The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the ... Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the ...
Minimal systemic absorption of Suramin was found at the highest dose of 150 mg ml(-1). Urinary VEGF was affected by Suramin at ... Intravesical Suramin shows lack of toxicity and low systemic absorption. The results of this phase I trial support expanded ... We administered Suramin intravesically to determine a concentration with low toxicity but with evidence of a pharmacodynamic ... Suramin was assayed using high-performance liquid chromatography, vascular endothelial growth factor (VEGF) using ELISA (enzyme ...
Lewis P. Rowland, in Merritts Textbook of Neurology, defines the terms peripheral neuropathy and polyneuropathy as describing
Suramin inhibits growth and yet promotes insulin-like growth factor II expression in HepG2 cells. Cancer Res. 1993 Feb 01; 53(3 ... Suramin inhibits growth and yet promotes insulin-like growth factor II expression in HepG2 cells. ... Suramin inhibits growth and yet promotes insulin-like growth factor II expression in HepG2 cells. ...
Suramin as an Antidote to Snake Venom? April 17, 2022 Many people are searching for answers to the lingering effects they are ... Pine needles contain many beneficial compounds, including vitamins A and C, shikimic acid, and suramin, a potential antidote to ...
NF449, a sulfated compound produced from the antiparasitic medication suramin, once. Posted bymindunwindart September 4, 2018. ... Leave a comment on NF449, a sulfated compound produced from the antiparasitic medication suramin, once ... NF449, a sulfated compound produced from the antiparasitic medication suramin, once was reported to inhibit infection by ...
Suramin - një agjent i mirënjohur antitripanosomal - u zbulua se ushtron një efekt të fortë frenues në aktivitetin e ADN- ... Si të përdorni Suramin (Rruga e Injeksionit) Përdorimi i duhur. Informacioni mbi ilaçin eshte i siguruar nga: IBM Micromedex ... Suramin: Një frenues i fuqishëm i Transkriptazës të Kundërt të Viruseve të Tumorit ARN … ... Suramin - një agjent i mirënjohur antitripanosomal - u zbulua se ushtron një efekt të fortë frenues në aktivitetin e ADN- ...
Suramin (Injection Route) * Surfaxin - Surfaxin, also known asLucinactant (Intratracheal Route) * Surmontil - Surmontil, also ...
We investigated therapeutic repositioning of suramin to protect against cartilage damage, as suramin may interact with tissue ... To study suramin in vivo, the drug was injected intra-articularly in the papain model of joint damage. Disease severity was ... Conclusion: Suramin prevented loss of articular cartilage in a mouse model of cartilage damage. The effects appear to be ... Suramin treatment resulted in increased glycosaminoglycans. This effect on the ECM was blocked by an anti-TIMP3 antibody. ...
HUGE! Is pine needle tea the answer to covid vaccine shedding? Suramin, shikimic acid and science. ... HUGE! Is pine needle tea the answer to covid vaccine shedding? Suramin, shikimic acid and science ...
Search "pine needle tea suramin" without quotes and it says in all caps, "pine needles DO NOT CONTAIN SURAMIN." ... Suramin is a synthetic drug that was created by Bayer. But the idea here is to get phytochemicals that act the same way as ... Pine needles, suramin and the science. There is PLENTY of existing science proving that pine needle tea is good for you in many ... Suramin and pine needle tea. The best clue that immediately told me that pine needle tea works to stop the effects of ...
Suramin, The Swiss Family Robinson, ABC, 1975.. Sam Downing, McLarens Riders, CBS, 1977. ...
Suramin is also effective in treating the first stages of both T. b. gambiense and T. b. rhodesiense but is recommended to be ... Suramin is used to treat first stage T. b. rhodesiense infection. Melarsoprol, an organoarsenic compound, is the only drug ... Adverse reactions to suramin treatment in patients with T. b. rhodesiense trypanosomiasis are frequent, but usually mild and ... In rare instances, suramin administration results in a hypersensitivity reaction, and, for this reason, a small test dose is ...
Preliminary results show that the drug called suramin, which is already used to treat sleeping sickness in Africa, corrects ... Suramin is an inhibitor of purinergic signalling that has been used to treat African sleeping sickness since shortly after it ... Groundbreaking: Testing of the drug suramin on mice in America has found it can help to correct autism-like symptoms (stock ... Preliminary results show that the drug called suramin, which is already used to treat sleeping sickness in Africa, corrects ...
2014). Suramin inhibits Hsp104 ATPase and disaggregase activity. PLoS ONE. 9(10): e110115. pdf file link (^Corresponding author ...
This response was also blocked by Ca(2+)-free medium and by suramin. Uncoated beads or beads coated with PDGF were ineffective ... Ca(2+)-free medium or suramin abolished this change. Latex beads coated with bFGF induced clustering of synaptic vesicles at ...
suramin a drug used in the treatment of trypanosomiasis.. tacrine a drug used to treat Alzheimers disease. ...
suramin sodium 0.27 g P P01CX03 eflornithine P01CX04 miltefosine 0.15 g O ...
Effects of suramin on polyamine metabolism in B16 murine melanoma cells Amel Gritli Linde, U. Bjorkman, Ulla Delle, L. ... Opposing effects of suramin and DL-alpha-difluoromethylornithine on polyamine metabolism contribute to a synergistic action on ...

No FAQ available that match "suramin"