A plant species of the genus STEPHANIA, family MENISPERMACEAE, that contains tetrandrine and bisbenzylisoquinoline alkaloids.
A plant genus of the family MENISPERMACEAE. Members contain cycleanine.
ISOQUINOLINES with a benzyl substituent.
Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed)
Chinese herbal or plant extracts which are used as drugs to treat diseases or promote general well-being. The concept does not include synthesized compounds manufactured in China.
Dibenzoquinolines derived in plants from (S)-reticuline (BENZYLISOQUINOLINES).
A plant species of the Astragalus genus which is source of Huang qi preparation used in TRADITIONAL CHINESE MEDICINE.

Anti-hyperglycemic effect of fangchinoline isolated from Stephania tetrandra Radix in streptozotocin-diabetic mice. (1/6)

Kampo medicine, Stephania tetrandra Radix (Stephania) in Boi-ogi-to increases the blood insulin level and falls the blood glucose level in streptozotocin (STZ)-diabetic ddY mice. These actions of Stephania are potentiated by Astragalus membranaceus Bunge Radix (Astragali) in Boi-ogi-to (Liu et al., J. Traditional Med., 17, 253-260, 2000). In the present study, actions of bis-benzylisoquinoline alkaloids isolated from Stephania were investigated in the hyperglycemia of STZ-diabetic mice. A main bis-benzylisoquinoline alkaloid, fangchinoline (0.3-3 mg/kg) significantly fell the blood glucose level of the diabetic mice in a dose-dependent manner. The effect of fangchinoline was 3.9-fold greater than that of water extract of Stephania. However, another main compound, tetrandrine (1-100 mg/kg) did not have any effect. The water extract of Astragali did not affect singly but potentiated the anti-hyperglycemic action of fangchinoline (0.3 mg/kg). Out of used compounds (1 mg/kg) isolated from Stephania, fangchinoline, fangchinoline 2'-N-alpha-oxide and 2'-N-norfangchinoline, which are substituted with 7-hydroxy side chain for 7-O-methyl side chain, decreased to near 50% of high blood glucose level. In addition, tetrandrine 2'-N-beta-oxide, tetrandrine 2'-N-alpha-oxide, tetrandrine 2-N-beta-oxide, fangchinoline 2'-N-alpha-oxide, which are added to 2- or 2'-N-oxide side chain, also decreased to near 50% of the high blood glucose level. In conclusion, fangchinoline but not tetrandrine from Stephania shows the anti-hyperglycemic action in the STZ-diabetic mice. The demethylation of 7-O-position and/or addition of 2- or 2'-N-oxide side chain in bis-benzylisoquinoline compounds in Stephania have a role for the induction of the anti-hyperglycemic actions.  (+info)

Inhibitory effects of Stephania tetrandra S. Moore on free radical-induced lysis of rat red blood cells. (2/6)

Crude preparations of Stephania tetrandra S. MOORE (ST), a traditional herbal medicine, have been used safely for arthritis and silicosis in China. In this study, we demonstrated that ST in vitro protects red blood cells from 2,2-azo-bis (2-amidinopropane) dihydrochloride (AAPH)-induced hemolysis. The inhibitory effect was dose-dependent at concentrations of 10 to 1000 microg/ml. Moreover, tests were carried out to identify the main ingredient of ST that exerts a scavenging effect on free-radicals. Three representative alkaloids, tetrandrine, fangchinoline, and cyclanoline, isolated from ST, were found to have inhibitory activities against AAPH-induced lysis of red blood cells (RBC). Furthermore, the ingestion of 200 mg of ST extract was associated with a significant increase in free-radical scavenging effect of plasma in rats. These results suggest that ST as antioxidant inhibits AAPH-induced hemolysis of RBC both in vitro and in vivo.  (+info)

Combined effects of fangchinoline from Stephania tetrandra Radix and formononetin and calycosin from Astragalus membranaceus Radix on hyperglycemia and hypoinsulinemia in streptozotocin-diabetic mice. (3/6)

The anti-hyperglycemic action of Stephania tetrandra Radix (Stephania) is potentiated by Astragalus membranaceus BUNGE Radix (Astragali) in streptozotocin (STZ)-diabetic ddY mice (Tsutsumi et al., Biol. Pharm. Bull., 26, 313 (2003)). Fangchinoline (0.3-3 mg/kg), a main constituent of Stephania, decreased the high level of blood glucose and increased the low level of blood insulin in STZ-diabetic mice. Here, we investigated the combined effects of fangchinoline with isoflavone or isoflavonoid components (formononetin, calycosin and ononin) of Astragali on the hyperglycemia and hypoinsulinemia of STZ-diabetic mice. Formononetin, calycosin and ononin (0.03-0.1 mg/kg) alone did not affect the blood glucose or blood insulin level of the diabetic mice. Formononetin and calycosin (0.03-0.1 mg/kg) potentiated the anti-hyperglycemic action of fangchinoline (0.3 mg/kg), but ononin did not. Formononetin (0.1 mg/kg) facilitated the fangchinoline-induced insulin release, and calycosin (0.1 mg/kg) also facilitated it, though without statistical significance. In conclusion, the combined effect of fangchinoline with formononetin and calycosin on hyperglycemia in the diabetic mice accounted well for the therapeutic effect of the combination of Stephania with Astragali in Boi-ogi-to. The anti-hyperglycemic action of formononetin appeared to be due to its potentiating action on insulin release. Our strategy for studying combinations of crude drugs and their components in Kampo medicine has uncovered new potentiating effects of formononetin and calycosin on the anti-hyperglycemic action of fangchinoline in STZ-diabetic mice.  (+info)

Fangchinoline inhibits breast adenocarcinoma proliferation by inducing apoptosis. (4/6)

Radix Stephaniae tetrandrae, which contains tetrandrine (Tet) and fangchinoline, is traditionally used as an analgesic, antirheumatic, and antihypertensive drug in China. In this study, we investigated its effect on breast cancer cell proliferation and its potential mechanism of action in vitro. Treatment of cells with fangchinoline significantly inhibited MDA-MB-231 cell proliferation in a concentration- and time-dependent manner. To define the mechanism underlying the antiproliferative effects of fangchinoline, we studied its effects on critical molecular events known to regulate the apoptotic machinery. Specifically, we addressed the potential of fangchinoline to induce apoptosis of breast cancer cells. Fangchinoline induced internucleosomal DNA fragmentation, chromatin condensation, activation of caspases-3, -8, and -9, and cleavage of poly(ADP ribose) polymerase, as well as enhanced mitochondrial cytochrome c release. Furthermore, fangchinoline increased the expression of the proapoptotic protein B cell lymphoma-2 associated X (Bax) and decreased the expression of the antiapoptotic protein B cell lymphoma-2 (Bcl-2). In addition, the proliferation-inhibitory effect of fangchinoline was associated with decreased levels of phosphorylated Akt. Our results indicate that fangchinoline can inhibit breast cancer cell proliferation by inducing apoptosis via the mitochondrial apoptotic pathway and decreasing phosphorylated Akt. Thus fangchinoline may be a novel agent that can potentially be developed clinically to target human malignancies.  (+info)

Autophagy-related gene 7 (ATG7) and reactive oxygen species/extracellular signal-regulated kinase regulate tetrandrine-induced autophagy in human hepatocellular carcinoma. (5/6)

 (+info)

Simultaneous determination of structurally diverse compounds in different Fangchi species by UHPLC-DAD and UHPLC-ESI-MS/MS. (6/6)

 (+info)

Stephania tetrandra is not a medical condition or term, but rather a botanical name for a plant species also known as Han Fang Ji or Fangji in traditional Chinese medicine. The roots of this plant are used in herbal remedies to treat various health issues, particularly focusing on its anti-inflammatory and analgesic properties. It is often prescribed for conditions like joint pain, arthritis, and allergies. However, it's essential to consult with healthcare professionals before starting any herbal treatments, as they can interact with other medications or have potential side effects.

"Stephania" is a genus of plants belonging to the family Menispermaceae. There is no established medical definition for "Stephania" in the context of human health or medicine. However, certain species of Stephania have been used in traditional medicine in various parts of the world. For example, Stephania tetrandra has been used in Chinese medicine for its potential anti-inflammatory and diuretic properties. It contains several alkaloids that may have pharmacological effects, such as tetrandrine and fangchinoline. However, it's important to note that the use of Stephania species in traditional medicine doesn't necessarily equate to proven medical benefits or safety, and further scientific research is needed to establish their therapeutic value and potential risks.

Benzylisoquinolines are a type of naturally occurring organic compounds found in various plants. These compounds are derived from the combination of a benzyl group and an isoquinoline ring, hence the name "benzylisoquinolines." They are known to have diverse biological activities, including anti-inflammatory, antispasmodic, and antimicrobial properties. Some well-known examples of benzylisoquinoline alkaloids include papaverine, found in the opium poppy, and berberine, found in various medicinal plants such as goldenseal and barberry. These compounds have been used in traditional medicine for centuries and continue to be studied for their potential therapeutic uses.

Alkaloids are a type of naturally occurring organic compounds that contain mostly basic nitrogen atoms. They are often found in plants, and are known for their complex ring structures and diverse pharmacological activities. Many alkaloids have been used in medicine for their analgesic, anti-inflammatory, and therapeutic properties. Examples of alkaloids include morphine, quinine, nicotine, and caffeine.

Chinese herbal drugs, also known as traditional Chinese medicine (TCM), refer to a system of medicine that has been practiced in China for thousands of years. It is based on the belief that the body's vital energy, called Qi, must be balanced and flowing freely for good health. TCM uses various techniques such as herbal therapy, acupuncture, dietary therapy, and exercise to restore balance and promote healing.

Chinese herbal drugs are usually prescribed in the form of teas, powders, pills, or tinctures and may contain one or a combination of herbs. The herbs used in Chinese medicine are typically derived from plants, minerals, or animal products. Some commonly used Chinese herbs include ginseng, astragalus, licorice root, and cinnamon bark.

It is important to note that the use of Chinese herbal drugs should be under the guidance of a qualified practitioner, as some herbs can interact with prescription medications or have side effects. Additionally, the quality and safety of Chinese herbal products can vary widely depending on the source and manufacturing process.

Aporphine is a type of chemical compound called alkaloids, which are found in certain plants. Aporphines have a specific chemical structure and can have various pharmacological effects. They have been studied for their potential medicinal properties, including anti-inflammatory, antispasmodic, and antiasthmatic activities. Some aporphine alkaloids have also been found to have psychoactive effects and are used in traditional medicine in some cultures. However, more research is needed to fully understand the therapeutic potential and safety of aporphines.

Astragalus membranaceus is a plant species native to China, Mongolia, and Korea. In traditional Chinese medicine, the root of this plant is known as "Huang Qi" and has been used for centuries for its immunostimulant and adaptogenic properties.

The active components of Astragalus membranaceus include polysaccharides, saponins, flavonoids, and trace elements. Modern research suggests that this herb may have potential health benefits in various areas, such as:

1. Boosting the immune system: Astragalus membranaceus has been shown to stimulate the production and activity of immune cells, including natural killer (NK) cells, T-cells, and B-cells. This may help enhance the body's ability to fight off infections and diseases.
2. Anti-inflammatory effects: The plant contains anti-inflammatory compounds that may help reduce inflammation and alleviate symptoms associated with conditions like arthritis, asthma, and inflammatory bowel disease.
3. Cardiovascular health: Astragalus membranaceus has been found to have cardioprotective effects, such as improving heart function, reducing oxidative stress, and lowering blood pressure in some studies.
4. Antioxidant properties: The herb contains antioxidants that may help protect cells from damage caused by free radicals, which can contribute to aging and chronic diseases.
5. Neuroprotection: Some research suggests that Astragalus membranaceus may have neuroprotective effects, potentially helping to prevent or treat neurodegenerative disorders like Alzheimer's disease and Parkinson's disease.
6. Diabetes management: Preliminary studies indicate that this herb might help regulate blood sugar levels and improve insulin sensitivity in people with diabetes.

It is essential to consult a healthcare professional before starting any new supplement, including Astragalus membranaceus, especially if you have pre-existing medical conditions or are taking medications.

No FAQ available that match "stephania tetrandra"

No images available that match "stephania tetrandra"