A hydrated form of silicon dioxide. It is commonly used in the manufacture of TOOTHPASTES and as a stationary phase for CHROMATOGRAPHY.
Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The common name for the phylum of microscopic unicellular STRAMENOPILES. Most are aquatic, being found in fresh, brackish, and salt water. Diatoms are noted for the symmetry and sculpturing of their siliceous cell walls. They account for 40% of PHYTOPLANKTON, but not all diatoms are planktonic.
Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts.
Transparent, tasteless crystals found in nature as agate, amethyst, chalcedony, cristobalite, flint, sand, QUARTZ, and tridymite. The compound is insoluble in water or acids except hydrofluoric acid.
Fractionation of a vaporized sample as a consequence of partition between a mobile gaseous phase and a stationary phase held in a column. Two types are gas-solid chromatography, where the fixed phase is a solid, and gas-liquid, in which the stationary phase is a nonvolatile liquid supported on an inert solid matrix.
A trace element that constitutes about 27.6% of the earth's crust in the form of SILICON DIOXIDE. It does not occur free in nature. Silicon has the atomic symbol Si, atomic number 14, and atomic weight [28.084; 28.086].
Neutral glycosphingolipids that contain a monosaccharide, normally glucose or galactose, in 1-ortho-beta-glycosidic linkage with the primary alcohol of an N-acyl sphingoid (ceramide). In plants the monosaccharide is normally glucose and the sphingoid usually phytosphingosine. In animals, the monosaccharide is usually galactose, though this may vary with the tissue and the sphingoid is usually sphingosine or dihydrosphingosine. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1st ed)
Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage)
The phylum of sponges which are sessile, suspension-feeding, multicellular animals that utilize flagellated cells called choanocytes to circulate water. Most are hermaphroditic. They are probably an early evolutionary side branch that gave rise to no other group of animals. Except for about 150 freshwater species, sponges are marine animals. They are a source of ALKALOIDS; STEROLS; and other complex molecules useful in medicine and biological research.
Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage)
A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997)
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Any compound that contains a constituent sugar, in which the hydroxyl group attached to the first carbon is substituted by an alcoholic, phenolic, or other group. They are named specifically for the sugar contained, such as glucoside (glucose), pentoside (pentose), fructoside (fructose), etc. Upon hydrolysis, a sugar and nonsugar component (aglycone) are formed. (From Dorland, 28th ed; From Miall's Dictionary of Chemistry, 5th ed)
A series of steps taken in order to conduct research.
A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
The composition, conformation, and properties of atoms and molecules, and their reaction and interaction processes.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system.
An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers.

Polycationic peptides from diatom biosilica that direct silica nanosphere formation. (1/110)

Diatom cell walls are regarded as a paradigm for controlled production of nanostructured silica, but the mechanisms allowing biosilicification to proceed at ambient temperature at high rates have remained enigmatic. A set of polycationic peptides (called silaffins) isolated from diatom cell walls were shown to generate networks of silica nanospheres within seconds when added to a solution of silicic acid. Silaffins contain covalently modified lysine-lysine elements. The first lysine bears a polyamine consisting of 6 to 11 repeats of the N-methyl-propylamine unit. The second lysine was identified as epsilon-N,N-dimethyl-lysine. These modifications drastically influence the silica-precipitating activity of silaffins.  (+info)

Review article: alginate-raft formulations in the treatment of heartburn and acid reflux. (2/110)

Alginate-based raft-forming formulations have been marketed word-wide for over 30 years under various brand names, including Gaviscon. They are used for the symptomatic treatment of heartburn and oesophagitis, and appear to act by a unique mechanism which differs from that of traditional antacids. In the presence of gastric acid, alginates precipitate, forming a gel. Alginate-based raft-forming formulations usually contain sodium or potassium bicarbonate; in the presence of gastric acid, the bicarbonate is converted to carbon dioxide which becomes entrapped within the gel precipitate, converting it into a foam which floats on the surface of the gastric contents, much like a raft on water. Both in vitro and in vivo studies have demonstrated that alginate-based rafts can entrap carbon dioxide, as well as antacid components contained in some formulations, thus providing a relatively pH-neutral barrier. Several studies have demonstrated that the alginate raft can preferentially move into the oesophagus in place, or ahead, of acidic gastric contents during episodes of gastro-oesophageal reflux; some studies further suggest that the raft can act as a physical barrier to reduce reflux episodes. Although some alginate-based formulations also contain antacid components which can provide significant acid neutralization capacity, the efficacy of these formulations to reduce heartburn symptoms does not appear to be totally dependent on the neutralization of bulk gastric contents. The strength of the alginate raft is dependant on several factors, including the amount of carbon dioxide generated and entrapped in the raft, the molecular properties of the alginate, and the presence of aluminium or calcium in the antacid components of the formulation. Raft formation occurs rapidly, often within a few seconds of dosing; hence alginate-containing antacids are comparable to traditional antacids for speed of onset of relief. Since the raft can be retained in the stomach for several hours, alginate-based raft-forming formulations can additionally provide longer-lasting relief than that of traditional antacids. Indeed, clinical studies have shown Gaviscon is superior to placebo, and equal to or significantly better than traditional antacids for relieving heartburn symptoms. Alginate-based, raft-forming formulations have been used to treat reflux symptoms in infants and children, and in the management of heartburn and reflux during pregnancy. While Gaviscon is effective when used alone, it is compatible with, and does not interfere with the activity of antisecretory agents such as cimetidine. Even with the introduction of new antisecretory and promotility agents, alginate-rafting formulations will continue to have a role in the treatment of heartburn and reflux symptoms. Their unique non-systemic mechanism of action provides rapid and long-duration relief of heartburn and acid reflux symptoms.  (+info)

Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. (3/110)

Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.  (+info)

A novel fluorescent silica tracer for biological silicification studies. (4/110)

BACKGROUND: Biological silica production has drawn intense attention and several molecules involved in biosilicification have been identified. Cellular mechanisms, however, remain unknown mainly due to the lack of probes required for obtaining information on live specimens. RESULTS: The fluorescence spectra of the compound 2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)methoxy)phenyl)oxazole (PDMPO) are affected by the presence of >3.2 mM silicic acid. Increase in intensity and shift in the fluorescence coincide with the polymerization of Si. The unique PDMPO-silica fluorescence is explored here to visualize Si deposition in living diatoms. The fluorophore is selectively incorporated and co-deposited with Si into the newly synthesized frustules (the outer silica shells) showing an intense green fluorescence. CONCLUSIONS: We suggest that a fluorescence shift is due to an interaction between PDMPO and polymeric silicic acid. PDMPO is an excellent probe for imaging newly deposited silica in living cells and has also a potential for a wide range of applications in various Si-related disciplines, including biology of living organisms as diatoms, sponges, and higher plants, clinical research (e.g. lung fibrosis and cancer, bone development, artificial bone implantation), and chemistry and physics of materials research.  (+info)

Aluminum-dependent regulation of intracellular silicon in the aquatic invertebrate Lymnaea stagnalis. (5/110)

Silicon is essential for some plants, diatoms, and sponges but, in higher animals, its endogenous regulation has not been demonstrated. Silicate ions may be natural ligands for aluminum and here we show that, in the freshwater snail (Lymnaea stagnalis), intracellular silicon seems specifically up-regulated in response to sublethal aluminum exposure. X-ray microanalysis showed that exposure of snails to low levels of aluminum led to its accumulation in lysosomal granules, accompanied by marked up-regulation of silicon. Increased lysosomal levels of silicon were a specific response to aluminum because cadmium and zinc had no such effect. Furthermore, intra-lysosomal sulfur from metallothionein and other sulfur-containing ligands was increased after exposure to cadmium and zinc but not aluminum. To ensure that these findings indicated a specific in vivo response, and not ex vivo formation of hydroxy-aluminosilicates (HAS) from added aluminum (555 microg/liter) and water-borne silicon (43 microg/liter), two further studies were undertaken. In a ligand competition assay the lability of aluminum (527 microg/liter) was completely unaffected by the presence of silicon (46 microg/liter), suggesting the absence of HAS. In addition, exogenous silicon (6.5 mg/liter), added to the water column to promote formation of HAS, caused a decrease in lysosomal aluminum accumulation, showing that uptake of HAS would not explain the loading of aluminum into lysosomal granules. These findings, and arguments on the stability, lability, and kinetics of aluminum-silicate interactions, suggest that a silicon-specific mechanism exists for the in vivo detoxification of aluminum, which provides regulatory evidence of silicon in a multicellular organism.  (+info)

A phase separation model for the nanopatterning of diatom biosilica. (6/110)

Diatoms are encased in an intricately patterned wall that consists of amorphous silica. Species-specific fabrication of this ornate biomineral enables taxonomists to identify thousands of diatom species. The molecular mechanisms that control this nanofabrication and generate the diversity of patterns is not well understood. A simple model is described, in which repeated phase separation events during wall biogenesis are assumed to produce self-similar silica patterns in smaller and smaller scales. On the basis of this single assumption, the apparently complex patterns found in the valves of the diatom genus Coscinodiscus can be predicted. Microscopic analysis of valves in statu nascendi from three different Coscinodiscus species supports the conclusions derived from the model.  (+info)

Simple procedure for the removal of nonspecific inhibitors of rubella virus hemagglutination. (7/110)

The adsorption of serum lipoproteins onto an insoluble matrix of colloidal silicic acid results in the removal of nonspecific inhibitors of rubella virus hemagglutinin. The procedure can be performed in 15 min at room temperature. Comparative studies using both the dextran sulfate-CaCl2 and heparin-MnCl2 methods for removal of inhibitors demonstrated that the colloidal silicic acid procedure yielded identical hemagglutination inhibition titers. In addition, it is technically feasible to read titers below 1:8.  (+info)

Pantoprazole maintenance therapy prevents relapse of erosive oesophagitis. (8/110)

OBJECTIVES: To compare the safety and efficacy of pantoprazole with ranitidine for the maintenance of endoscopically documented healed (grade 0 or 1) erosive oesophagitis. METHODS: Patients (371) were randomly assigned to receive pantoprazole 10, 20 or 40 mg or ranitidine 150 mg. Endoscopies were performed after 1, 3, 6 and 12 months or when symptoms suggesting relapse (grade = 2) developed. Gastric biopsies were obtained at baseline and on at least one postbaseline visit. Symptom-free days and Gelusil use were assessed. RESULTS: Pantoprazole was significantly (P < 0.001) more effective in maintaining erosive oesophagitis healing. After 12 months, 33%, 40%, 68% and 82% of patients remained healed for the ranitidine and pantoprazole 10, 20 and 40 mg groups, respectively. Daytime and night-time heartburn were eliminated in > 90% of days for the pantoprazole 40 mg group. Gelusil use was significantly lower with pantoprazole 20 and 40 mg than with ranitidine (P < 0.02) during the first 9 months. CONCLUSIONS: Twelve months of maintenance therapy with pantoprazole (10-40 mg once daily) was superior to ranitidine (150 mg twice daily) in maintaining erosive oesophagitis healing. Pantoprazole 40 mg provided the most consistent efficacy and was well tolerated.  (+info)

I'm sorry for any confusion, but "Silicic Acid" is not a recognized medical term. Silicic acid, also known as orthosilicic acid, is a compound that contains silicon and oxygen in a ratio of 1:2 (Si(OH)4). It's commonly found in water, soil, and various plants.

In the context of health and medicine, silica or silicic acid supplements are sometimes used for their potential benefits to bone health, collagen production, and hair and nail growth. However, more research is needed to fully understand these effects and their optimal usage.

If you have any questions related to a specific medical condition or treatment, I would recommend consulting with a healthcare professional.

Thin-layer chromatography (TLC) is a type of chromatography used to separate, identify, and quantify the components of a mixture. In TLC, the sample is applied as a small spot onto a thin layer of adsorbent material, such as silica gel or alumina, which is coated on a flat, rigid support like a glass plate. The plate is then placed in a developing chamber containing a mobile phase, typically a mixture of solvents.

As the mobile phase moves up the plate by capillary action, it interacts with the stationary phase and the components of the sample. Different components of the mixture travel at different rates due to their varying interactions with the stationary and mobile phases, resulting in distinct spots on the plate. The distance each component travels can be measured and compared to known standards to identify and quantify the components of the mixture.

TLC is a simple, rapid, and cost-effective technique that is widely used in various fields, including forensics, pharmaceuticals, and research laboratories. It allows for the separation and analysis of complex mixtures with high resolution and sensitivity, making it an essential tool in many analytical applications.

Diatoms are a major group of microscopic algae (single-celled organisms) that are widely distributed in both marine and freshwater environments. They are an important part of the aquatic food chain, serving as primary producers that convert sunlight and nutrients into organic matter through photosynthesis.

Diatoms have unique cell walls made of biogenic silica, which gives them a glass-like appearance. These cell walls often have intricate patterns and structures, making diatoms an important group in the study of nanotechnology and materials science. Additionally, diatomaceous earth, a sedimentary rock formed from fossilized diatom shells, has various industrial uses such as filtration, abrasives, and insecticides.

Diatoms are also significant in the Earth's carbon cycle, contributing to the sequestration of atmospheric carbon dioxide through their photosynthetic activities. They play a crucial role in the ocean's biological pump, which helps regulate the global climate by transporting carbon from the surface ocean to the deep sea.

Chromatography is a technique used in analytical chemistry for the separation, identification, and quantification of the components of a mixture. It is based on the differential distribution of the components of a mixture between a stationary phase and a mobile phase. The stationary phase can be a solid or liquid, while the mobile phase is a gas, liquid, or supercritical fluid that moves through the stationary phase carrying the sample components.

The interaction between the sample components and the stationary and mobile phases determines how quickly each component will move through the system. Components that interact more strongly with the stationary phase will move more slowly than those that interact more strongly with the mobile phase. This difference in migration rates allows for the separation of the components, which can then be detected and quantified.

There are many different types of chromatography, including paper chromatography, thin-layer chromatography (TLC), gas chromatography (GC), liquid chromatography (LC), and high-performance liquid chromatography (HPLC). Each type has its own strengths and weaknesses, and is best suited for specific applications.

In summary, chromatography is a powerful analytical technique used to separate, identify, and quantify the components of a mixture based on their differential distribution between a stationary phase and a mobile phase.

Silicon dioxide is not a medical term, but a chemical compound with the formula SiO2. It's commonly known as quartz or sand and is not something that would typically have a medical definition. However, in some cases, silicon dioxide can be used in pharmaceutical preparations as an excipient (an inactive substance that serves as a vehicle or medium for a drug) or as a food additive, often as an anti-caking agent.

In these contexts, it's important to note that silicon dioxide is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration (FDA). However, exposure to very high levels of respirable silica dust, such as in certain industrial settings, can increase the risk of lung disease, including silicosis.

Chromatography, gas (GC) is a type of chromatographic technique used to separate, identify, and analyze volatile compounds or vapors. In this method, the sample mixture is vaporized and carried through a column packed with a stationary phase by an inert gas (carrier gas). The components of the mixture get separated based on their partitioning between the mobile and stationary phases due to differences in their adsorption/desorption rates or solubility.

The separated components elute at different times, depending on their interaction with the stationary phase, which can be detected and quantified by various detection systems like flame ionization detector (FID), thermal conductivity detector (TCD), electron capture detector (ECD), or mass spectrometer (MS). Gas chromatography is widely used in fields such as chemistry, biochemistry, environmental science, forensics, and food analysis.

I'm sorry for any confusion, but "Silicon" does not have a specific medical definition. Silicon is a chemical element with the symbol Si and atomic number 14. It is a metalloid, which means it has properties of both metals and nonmetals. In the human body, silicon is not considered an essential nutrient, although it is found in trace amounts in various tissues. Some research suggests that silicon might play a role in collagen synthesis and bone health, but more studies are needed to confirm these findings and establish recommended intake levels.

Cerebrosides are a type of sphingolipid, which are lipids that contain sphingosine. They are major components of the outer layer of cell membranes and are particularly abundant in the nervous system. Cerebrosides are composed of a ceramide molecule (a fatty acid attached to sphingosine) and a sugar molecule, usually either glucose or galactose.

Glycosphingolipids that contain a ceramide with a single sugar residue are called cerebrosides. Those that contain more complex oligosaccharide chains are called gangliosides. Cerebrosides play important roles in cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism of cerebrosides can lead to various genetic disorders, such as Gaucher's disease, Krabbe disease, and Fabry disease. These conditions are characterized by the accumulation of cerebrosides or their breakdown products in various tissues, leading to progressive damage and dysfunction.

Glycolipids are a type of lipid (fat) molecule that contain one or more sugar molecules attached to them. They are important components of cell membranes, where they play a role in cell recognition and signaling. Glycolipids are also found on the surface of some viruses and bacteria, where they can be recognized by the immune system as foreign invaders.

There are several different types of glycolipids, including cerebrosides, gangliosides, and globosides. These molecules differ in the number and type of sugar molecules they contain, as well as the structure of their lipid tails. Glycolipids are synthesized in the endoplasmic reticulum and Golgi apparatus of cells, and they are transported to the cell membrane through vesicles.

Abnormalities in glycolipid metabolism or structure have been implicated in a number of diseases, including certain types of cancer, neurological disorders, and autoimmune diseases. For example, mutations in genes involved in the synthesis of glycolipids can lead to conditions such as Tay-Sachs disease and Gaucher's disease, which are characterized by the accumulation of abnormal glycolipids in cells.

Porifera, also known as sponges, is a phylum of multicellular aquatic organisms characterized by having pores in their bodies. These pores allow water to circulate through the body, bringing in food and oxygen while expelling waste products. Sponges do not have true tissues or organs; instead, they are composed of specialized cells that perform specific functions. They are generally sessile (non-mobile) and live attached to rocks, coral reefs, or other underwater structures. Some species can be quite large, while others are microscopic in size. Sponges have a long fossil record dating back over 500 million years and play important roles in marine ecosystems as filter feeders and habitat providers for many other marine organisms.

Glycosphingolipids are a type of complex lipid molecule found in animal cell membranes, particularly in the outer leaflet of the plasma membrane. They consist of a hydrophobic ceramide backbone, which is composed of sphingosine and fatty acids, linked to one or more hydrophilic sugar residues, such as glucose or galactose.

Glycosphingolipids can be further classified into two main groups: neutral glycosphingolipids (which include cerebrosides and gangliosides) and acidic glycosphingolipids (which are primarily gangliosides). Glycosphingolipids play important roles in various cellular processes, including cell recognition, signal transduction, and cell adhesion.

Abnormalities in the metabolism or structure of glycosphingolipids have been implicated in several diseases, such as lysosomal storage disorders (e.g., Gaucher's disease, Fabry's disease) and certain types of cancer (e.g., ganglioside-expressing neuroblastoma).

Gangliosides are a type of complex lipid molecule known as sialic acid-containing glycosphingolipids. They are predominantly found in the outer leaflet of the cell membrane, particularly in the nervous system. Gangliosides play crucial roles in various biological processes, including cell recognition, signal transduction, and cell adhesion. They are especially abundant in the ganglia (nerve cell clusters) of the peripheral and central nervous systems, hence their name.

Gangliosides consist of a hydrophobic ceramide portion and a hydrophilic oligosaccharide chain that contains one or more sialic acid residues. The composition and structure of these oligosaccharide chains can vary significantly among different gangliosides, leading to the classification of various subtypes, such as GM1, GD1a, GD1b, GT1b, and GQ1b.

Abnormalities in ganglioside metabolism or expression have been implicated in several neurological disorders, including Parkinson's disease, Alzheimer's disease, and various lysosomal storage diseases like Tay-Sachs and Gaucher's diseases. Additionally, certain bacterial toxins, such as botulinum neurotoxin and tetanus toxin, target gangliosides to gain entry into neuronal cells, causing their toxic effects.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Glycosides are organic compounds that consist of a glycone (a sugar component) linked to a non-sugar component, known as an aglycone, via a glycosidic bond. They can be found in various plants, microorganisms, and some animals. Depending on the nature of the aglycone, glycosides can be classified into different types, such as anthraquinone glycosides, cardiac glycosides, and saponin glycosides.

These compounds have diverse biological activities and pharmacological effects. For instance:

* Cardiac glycosides, like digoxin and digitoxin, are used in the treatment of heart failure and certain cardiac arrhythmias due to their positive inotropic (contractility-enhancing) and negative chronotropic (heart rate-slowing) effects on the heart.
* Saponin glycosides have potent detergent properties and can cause hemolysis (rupture of red blood cells). They are used in various industries, including cosmetics and food processing, and have potential applications in drug delivery systems.
* Some glycosides, like amygdalin found in apricot kernels and bitter almonds, can release cyanide upon hydrolysis, making them potentially toxic.

It is important to note that while some glycosides have therapeutic uses, others can be harmful or even lethal if ingested or otherwise introduced into the body in large quantities.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

Phospholipids are a major class of lipids that consist of a hydrophilic (water-attracting) head and two hydrophobic (water-repelling) tails. The head is composed of a phosphate group, which is often bound to an organic molecule such as choline, ethanolamine, serine or inositol. The tails are made up of two fatty acid chains.

Phospholipids are a key component of cell membranes and play a crucial role in maintaining the structural integrity and function of the cell. They form a lipid bilayer, with the hydrophilic heads facing outwards and the hydrophobic tails facing inwards, creating a barrier that separates the interior of the cell from the outside environment.

Phospholipids are also involved in various cellular processes such as signal transduction, intracellular trafficking, and protein function regulation. Additionally, they serve as emulsifiers in the digestive system, helping to break down fats in the diet.

Mass spectrometry (MS) is an analytical technique used to identify and quantify the chemical components of a mixture or compound. It works by ionizing the sample, generating charged molecules or fragments, and then measuring their mass-to-charge ratio in a vacuum. The resulting mass spectrum provides information about the molecular weight and structure of the analytes, allowing for identification and characterization.

In simpler terms, mass spectrometry is a method used to determine what chemicals are present in a sample and in what quantities, by converting the chemicals into ions, measuring their masses, and generating a spectrum that shows the relative abundances of each ion type.

No FAQ available that match "silicic acid"

No images available that match "silicic acid"