The articulation between the head of the HUMERUS and the glenoid cavity of the SCAPULA.
Part of the body in humans and primates where the arms connect to the trunk. The shoulder has five joints; ACROMIOCLAVICULAR joint, CORACOCLAVICULAR joint, GLENOHUMERAL joint, scapulathoracic joint, and STERNOCLAVICULAR joint.
Unilateral or bilateral pain of the shoulder. It is often caused by physical activities such as work or sports participation, but may also be pathologic in origin.
Displacement of the HUMERUS from the SCAPULA.
Also called the shoulder blade, it is a flat triangular bone, a pair of which form the back part of the shoulder girdle.
A game played by two or four players with rackets and an elastic ball on a level court divided by a low net.
The sac enclosing a joint. It is composed of an outer fibrous articular capsule and an inner SYNOVIAL MEMBRANE.
Bone in humans and primates extending from the SHOULDER JOINT to the ELBOW JOINT.
'Joint diseases' is a broad term that refers to medical conditions causing inflammation, degeneration, or functional impairment in any part of a joint, including the cartilage, bone, ligament, tendon, or bursa, thereby affecting movement and potentially causing pain, stiffness, deformity, or reduced range of motion.
The distance and direction to which a bone joint can be extended. Range of motion is a function of the condition of the joints, muscles, and connective tissues involved. Joint flexibility can be improved through appropriate MUSCLE STRETCHING EXERCISES.
The musculotendinous sheath formed by the supraspinatus, infraspinatus, subscapularis, and teres minor muscles. These help stabilize the head of the HUMERUS in the glenoid fossa and allow for rotation of the SHOULDER JOINT about its longitudinal axis.
Also known as articulations, these are points of connection between the ends of certain separate bones, or where the borders of other bones are juxtaposed.
A fluid-filled sac lined with SYNOVIAL MEMBRANE that provides a cushion between bones, tendons and/or muscles around a joint.
Rapidly adapting mechanoreceptors found in subcutaneous tissue beneath both hairy and glabrous skin. Pacinian corpuscles contain an afferent nerve fiber surrounded by a capsule with multiple concentric layers. They have large receptive fields and are most sensitive to high-frequency stimuli, such as vibration.
The properties, processes, and behavior of biological systems under the action of mechanical forces.
The rotational force about an axis that is equal to the product of a force times the distance from the axis where the force is applied.
Motion of an object in which either one or more points on a line are fixed. It is also the motion of a particle about a fixed point. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A hinge joint connecting the FOREARM to the ARM.
Compression of the rotator cuff tendons and subacromial bursa between the humeral head and structures that make up the coracoacromial arch and the humeral tuberosities. This condition is associated with subacromial bursitis and rotator cuff (largely supraspinatus) and bicipital tendon inflammation, with or without degenerative changes in the tendon. Pain that is most severe when the arm is abducted in an arc between 40 and 120 degrees, sometimes associated with tears in the rotator cuff, is the chief symptom. (From Jablonski's Dictionary of Syndromes and Eponymic Diseases, 2d ed)
The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior.
A synovial hinge connection formed between the bones of the FEMUR; TIBIA; and PATELLA.
The superior part of the upper extremity between the SHOULDER and the ELBOW.
Fractures of the proximal humerus, including the head, anatomic and surgical necks, and tuberosities.
Partial or total replacement of a joint.
Inflammation or irritation of a bursa, the fibrous sac that acts as a cushion between moving structures of bones, muscles, tendons or skin.
Prostheses used to partially or totally replace a human or animal joint. (from UMDNS, 1999)
Recording of the changes in electric potential of muscle by means of surface or needle electrodes.
The articulation between the head of one phalanx and the base of the one distal to it, in each finger.
The detailed examination of observable activity or behavior associated with the execution or completion of a required function or unit of work.
Lack of stability of a joint or joint prosthesis. Factors involved are intra-articular disease and integrity of extra-articular structures such as joint capsule, ligaments, and muscles.
The gliding joint formed by the outer extremity of the CLAVICLE and the inner margin of the acromion process of the SCAPULA.
The joint that is formed by the inferior articular and malleolar articular surfaces of the TIBIA; the malleolar articular surface of the FIBULA; and the medial malleolar, lateral malleolar, and superior surfaces of the TALUS.
A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.
The joint that is formed by the articulation of the head of FEMUR and the ACETABULUM of the PELVIS.
The joint that is formed by the distal end of the RADIUS, the articular disc of the distal radioulnar joint, and the proximal row of CARPAL BONES; (SCAPHOID BONE; LUNATE BONE; triquetral bone).
The articulations between the various TARSAL BONES. This does not include the ANKLE JOINT which consists of the articulations between the TIBIA; FIBULA; and TALUS.
Endoscopic examination, therapy and surgery of the joint.
Clinical syndrome describing overuse tendon injuries characterized by a combination of PAIN, diffuse or localized swelling, and impaired performance. Distinguishing tendinosis from tendinitis is clinically difficult and can be made only after histopathological examination.
The portion of the upper rounded extremity fitting into the glenoid cavity of the SCAPULA. (from Stedman, 27th ed)
Inflammation of the tissues around a joint. (Dorland, 27th ed)
Methods of delivering drugs into a joint space.
The immovable joint formed by the lateral surfaces of the SACRUM and ILIUM.
A competitive nine-member team sport including softball.
The lateral extension of the spine of the SCAPULA and the highest point of the SHOULDER.
Discomfort or more intense forms of pain that are localized to the cervical region. This term generally refers to pain in the posterior or lateral regions of the neck.
A bone on the ventral side of the shoulder girdle, which in humans is commonly called the collar bone.
A progressive, degenerative joint disease, the most common form of arthritis, especially in older persons. The disease is thought to result not from the aging process but from biochemical changes and biomechanical stresses affecting articular cartilage. In the foreign literature it is often called osteoarthrosis deformans.
The large network of nerve fibers which distributes the innervation of the upper extremity. The brachial plexus extends from the neck into the axilla. In humans, the nerves of the plexus usually originate from the lower cervical and the first thoracic spinal cord segments (C5-C8 and T1), but variations are not uncommon.
Scales, questionnaires, tests, and other methods used to assess pain severity and duration in patients or experimental animals to aid in diagnosis, therapy, and physiological studies.
Harmful and painful condition caused by overuse or overexertion of some part of the musculoskeletal system, often resulting from work-related physical activities. It is characterized by inflammation, pain, or dysfunction of the involved joints, bones, ligaments, and nerves.
A double gliding joint formed by the CLAVICLE, superior and lateral parts of the manubrium sterni at the clavicular notch, and the cartilage of the first rib.
Injuries to the fibrous cords of connective tissue which attach muscles to bones or other structures.
The planned and carefully managed manual movement of the musculoskeletal system, extremities, and spine to produce increased motion. The term is sometimes used to denote a precise sequence of movements of a joint to determine the presence of disease or to reduce a dislocation. In the case of fractures, orthopedic manipulation can produce better position and alignment of the fracture. (From Blauvelt & Nelson, A Manual of Orthopaedic Terminology, 5th ed, p264)
A variety of conditions affecting the anatomic and functional characteristics of the temporomandibular joint. Factors contributing to the complexity of temporomandibular diseases are its relation to dentition and mastication and the symptomatic effects in other areas which account for referred pain to the joint and the difficulties in applying traditional diagnostic procedures to temporomandibular joint pathology where tissue is rarely obtained and x-rays are often inadequate or nonspecific. Common diseases are developmental abnormalities, trauma, subluxation, luxation, arthritis, and neoplasia. (From Thoma's Oral Pathology, 6th ed, pp577-600)
The articulation between a metatarsal bone (METATARSAL BONES) and a phalanx.
Forcible or traumatic tear or break of an organ or other soft part of the body.
The articulations extending from the ANKLE distally to the TOES. These include the ANKLE JOINT; TARSAL JOINTS; METATARSOPHALANGEAL JOINT; and TOE JOINT.
Diseases of the muscles and their associated ligaments and other connective tissue and of the bones and cartilage viewed collectively.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
Implants used in arthroscopic surgery and other orthopedic procedures to attach soft tissue to bone. One end of a suture is tied to soft tissue and the other end to the implant. The anchors are made of a variety of materials including titanium, stainless steel, or absorbable polymers.

Anterior instability of the glenohumeral joint with humeral avulsion of the glenohumeral ligament. A review of 41 cases. (1/1127)

We studied retrospectively a consecutive series of 547 shoulders in 529 patients undergoing operation for instability. In 41, the cause of instability was considered to be lateral avulsion of the capsule, including the inferior glenohumeral ligament, from the neck of the humerus, the HAGL lesion. In 35, the lesion was found at first exploration, whereas in six it was noted at revision of a previous failed procedure. In both groups, the patients were older on average than those with instability from other causes. Of the primary cases, in 33 (94.3%) the cause of the first dislocation was a violent injury; six (17.4%) had evidence of damage to the rotator cuff and/or the subscapularis. Only four (11.4%) had a Bankart lesion. In patients undergoing a primary operation in whom the cause of the first dislocation was a violent injury, who did not have a Bankart lesion and had no suggestion of multidirectional laxity, the incidence of HAGL was 39%.  (+info)

Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. (2/1127)

Stiffness properties of the musculo-skeletal system can be controlled by regulating muscle activation and neural feedback gain. To understand the regulation of multijoint stiffness, we examined the relationship between human arm joint stiffness and muscle activation during static force control in the horizontal plane by means of surface electromyographic (EMG) studies. Subjects were asked to produce a specified force in a specified direction without cocontraction or they were asked to keep different cocontractions while producing or not producing an external force. The stiffness components of shoulder, elbow, and their cross-term and the EMG of six related muscles were measured during the tasks. Assuming that the EMG reflects the corresponding muscle stiffness, the joint stiffness was predicted from the EMG by using a two-link six-muscle arm model and a constrained least-square-error regression method. Using the parameters estimated in this regression, single-joint stiffness (diagonal terms of the joint-stiffness matrix) was decomposed successfully into biarticular and monoarticular muscle components. Although biarticular muscles act on both shoulder and elbow, they were found to covary strongly with elbow monoarticular muscles. The preferred force directions of biarticular muscles were biased to the directions of elbow monoarticular muscles. Namely, the elbow joint is regulated by the simultaneous activation of monoarticular and biarticular muscles, whereas the shoulder joint is regulated dominantly by monoarticular muscles. These results suggest that biarticular muscles are innervated mainly to control the elbow joint during static force-regulation tasks. In addition, muscle regulation mechanisms for static force control tasks were found to be quite different from those during movements previously reported. The elbow single-joint stiffness was always higher than cross-joint stiffness (off-diagonal terms of the matrix) in static tasks while elbow single-joint stiffness is reported to be sometimes as small as cross-joint stiffness during movement. That is, during movements, the elbow monoarticular muscles were occasionally not activated when biarticular muscles were activated. In static tasks, however, monoarticular muscle components in single-joint stiffness were increased considerably whenever biarticular muscle components in single- and cross-joint stiffness increased. These observations suggest that biarticular muscles are not simply coupled with the innervation of elbow monoarticular muscles but also are regulated independently according to the required task. During static force-regulation tasks, covariation between biarticular and elbow monoarticular muscles may be required to increase stability and/or controllability or to distribute effort among the appropriate muscles.  (+info)

Correlation of primate superior colliculus and reticular formation discharge with proximal limb muscle activity. (3/1127)

We studied the discharge of neurons from both the superior colliculus (SC) and the underlying mesencephalic reticular formation (MRF) and its relation to the simultaneously recorded activity of 11 arm muscles. The 242 neurons tested with a center-out reach task yielded 2,586 pairs of neuron/muscle cross-correlations (normalized, such that perfect correlations are +/-1.0). Of these, 43% had peaks with magnitude as large as 0.15, a value that corresponds to the 5% level of significance, and 16% were as large as 0.25. The great majority of peaks in this latter group was positive. The median lag time within this group was 52 ms, indicating that the neuronal discharge tended to precede the correlated muscle activity. We found a small but significantly higher proportion of cells with these relatively strong correlations in the MRF than in the SC. For both areas, these occurred most frequently with muscles of the shoulder girdle and became less frequent for axial as well as for increasingly distal arm musculature. The results support a role for the SC and MRF in guiding the arm during reach movements via the control of proximal limb musculature.  (+info)

The inferior capsular shift operation for instability of the shoulder. Long-term results in 34 shoulders. (4/1127)

We reviewed 26 patients with 34 shoulders treated by the inferior capsular shift operation for inferior and multidirectional instability. The mean follow-up was 8.3 years. In total, 12 shoulders showed voluntary subluxation. Eight operations used an anterior and posterior approach, 11 were by the posterior route, and 15 shoulders had an anterior approach. In 30 shoulders (85%) the outcome was satisfactory and 20 (59%) scored good or excellent results on the Rowe system. Instability had recurred in nine shoulders (26%) from three months to three years after the operation. Six of the 12 shoulders with voluntary subluxation (50%) had recurrence, as against three of the other 22 (14%), a statistically significant difference. The operation is therefore not indicated for voluntary subluxation. The 19 shoulders which had been assessed in 1987 at a mean of 3.5 years after surgery, were also reviewed in 1995 and found to have no significant changes in instability or Rowe score. This shows that the capsular shift appeared to have maintained its tension over an eight-year period. After the use of a posterior approach, 64% of the shoulders showed a posterolateral defect on radiographs of the humerus.  (+info)

Adhesive capsulitis: a sticky issue. (5/1127)

The shoulder is a very complex joint that is crucial to many activities of daily living. Decreased shoulder mobility is a serious clinical finding. A global decrease in shoulder range of motion is called adhesive capsulitis, referring to the actual adherence of the shoulder capsule to the humeral head. Adhesive capsulitis is a syndrome defined as idiopathic restriction of shoulder movement that is usually painful at onset. Secondary causes include alteration of the supporting structures of and around the shoulder, and autoimmune, endocrine or other systemic diseases. The three defined stages of this condition are the painful stage, the adhesive stage and the recovery stage. Although recovery is usually spontaneous, treatment with intra-articular corticosteroids and gentle but persistent physical therapy may provide a better outcome, resulting in little functional compromise.  (+info)

Case report. Recovery of shoulder movement in patients with complete axillary nerve palsy. (6/1127)

Classical anatomical teaching suggests that the deltoid muscle is the main abductor of the shoulder. We present three cases of proven complete paralysis of the deltoid with an almost full range of movement of the shoulder owing to the compensatory action of accessory muscles. The mechanisms by which this occurs are described.  (+info)

Diagnostic classification of shoulder disorders: interobserver agreement and determinants of disagreement. (7/1127)

OBJECTIVES: To assess the interobserver agreement on the diagnostic classification of shoulder disorders, based on history taking and physical examination, and to identify the determinants of diagnostic disagreement. METHODS: Consecutive eligible patients with shoulder pain were recruited in various health care settings in the Netherlands. After history taking, two physiotherapists independently performed a physical examination and subsequently the shoulder complaints were classified into one of six diagnostic categories: capsular syndrome (for example, capsulitis, arthritis), acute bursitis, acromioclavicular syndrome, subacromial syndrome (for example, tendinitis, chronic bursitis), rest group (for example, unclear clinical picture, extrinsic causes) and mixed clinical picture. To quantify the interobserver agreement Cohen's kappa was calculated. Multivariate logistic regression analysis was applied to determine which clinical characteristics were determinants of diagnostic disagreement. RESULTS: The study population consisted of 201 patients with varying severity and duration of complaints. The kappa for the classification of shoulder disorders was 0.45 (95% confidence intervals (CI) 0.37, 0.54). Diagnostic disagreement was associated with bilateral involvement (odds ratio (OR) 1.9; 95% CI 1.0, 3.7), chronic complaints (OR 2.0; 95% CI 1.1, 3.7), and severe pain (OR 2.7; 95% CI 1.3, 5.3). CONCLUSIONS: Only moderate agreement was found on the classification of shoulder disorders, which implies that differentiation between the various categories of shoulder disorders is complicated. Especially patients with high pain severity, chronic complaints and bilateral involvement represent a diagnostic challenge for clinicians. As diagnostic classification is a guide for treatment decisions, unsatisfactory reproducibility might affect treatment outcome. To improve the reproducibility, more insight into the reproducibility of clinical findings and the value of additional diagnostic procedures is needed.  (+info)

Prevention of shoulder subluxation after stroke with electrical stimulation. (8/1127)

BACKGROUND AND PURPOSE: Subluxation is a significant problem in poststroke hemiplegia, resulting in pain and loss of function. Current treatments are not proved and not considered effective. It has been demonstrated that cyclical electrical stimulation of the shoulder muscles can reduce existing subluxation. The purpose of this study was to determine whether electrical stimulation could prevent subluxation in both the short and long terms. METHODS: A prospective, randomized controlled study was used to determine the efficacy of electrical stimulation in preventing shoulder subluxation in patients after cerebrovascular accidents. Forty patients were selected and randomly assigned to a control or treatment group. They had their first assessment within 48 hours of their stroke, and those in the treatment group were immediately put on a regimen of electrical stimulation for 4 weeks. All patients were assessed at 4 weeks after stroke and then again at 12 weeks after stroke. Assessments were made of shoulder subluxation, pain, and motor control. RESULTS: The treatment group had significantly less subluxation and pain after the treatment period, but at the end of the follow-up period there were no significant differences between the 2 groups. CONCLUSIONS: Electrical stimulation can prevent shoulder subluxation, but this effect was not maintained after the withdrawal of treatment.  (+info)

The shoulder joint, also known as the glenohumeral joint, is the most mobile joint in the human body. It is a ball and socket synovial joint that connects the head of the humerus (upper arm bone) to the glenoid cavity of the scapula (shoulder blade). The shoulder joint allows for a wide range of movements including flexion, extension, abduction, adduction, internal rotation, and external rotation. It is surrounded by a group of muscles and tendons known as the rotator cuff that provide stability and enable smooth movement of the joint.

In anatomical terms, the shoulder refers to the complex joint of the human body that connects the upper limb to the trunk. It is formed by the union of three bones: the clavicle (collarbone), scapula (shoulder blade), and humerus (upper arm bone). The shoulder joint is a ball-and-socket type of synovial joint, allowing for a wide range of movements such as flexion, extension, abduction, adduction, internal rotation, and external rotation.

The shoulder complex includes not only the glenohumeral joint but also other structures that contribute to its movement and stability, including:

1. The acromioclavicular (AC) joint: where the clavicle meets the acromion process of the scapula.
2. The coracoclavicular (CC) ligament: connects the coracoid process of the scapula to the clavicle, providing additional stability to the AC joint.
3. The rotator cuff: a group of four muscles (supraspinatus, infraspinatus, teres minor, and subscapularis) that surround and reinforce the shoulder joint, contributing to its stability and range of motion.
4. The biceps tendon: originates from the supraglenoid tubercle of the scapula and passes through the shoulder joint, helping with flexion, supination, and stability.
5. Various ligaments and capsular structures that provide additional support and limit excessive movement in the shoulder joint.

The shoulder is a remarkable joint due to its wide range of motion, but this also makes it susceptible to injuries and disorders such as dislocations, subluxations, sprains, strains, tendinitis, bursitis, and degenerative conditions like osteoarthritis. Proper care, exercise, and maintenance are essential for maintaining shoulder health and function throughout one's life.

Shoulder pain is a condition characterized by discomfort or hurt in the shoulder joint, muscles, tendons, ligaments, or surrounding structures. The shoulder is one of the most mobile joints in the body, and this mobility makes it prone to injury and pain. Shoulder pain can result from various causes, including overuse, trauma, degenerative conditions, or referred pain from other areas of the body.

The shoulder joint is a ball-and-socket joint made up of three bones: the humerus (upper arm bone), scapula (shoulder blade), and clavicle (collarbone). The rotator cuff, a group of four muscles that surround and stabilize the shoulder joint, can also be a source of pain if it becomes inflamed or torn.

Shoulder pain can range from mild to severe, and it may be accompanied by stiffness, swelling, bruising, weakness, numbness, tingling, or reduced mobility in the affected arm. The pain may worsen with movement, lifting objects, or performing certain activities, such as reaching overhead or behind the back.

Medical evaluation is necessary to determine the underlying cause of shoulder pain and develop an appropriate treatment plan. Treatment options may include rest, physical therapy, medication, injections, or surgery, depending on the severity and nature of the condition.

Shoulder dislocation is a medical condition where the head of the humerus (upper arm bone) gets displaced from its normal position in the glenoid fossa of the scapula (shoulder blade). This can occur anteriorly, posteriorly, or inferiorly, with anterior dislocations being the most common. It is usually caused by trauma or forceful movement and can result in pain, swelling, bruising, and limited range of motion in the shoulder joint. Immediate medical attention is required to relocate the joint and prevent further damage.

The scapula, also known as the shoulder blade, is a flat, triangular bone located in the upper back region of the human body. It serves as the site of attachment for various muscles that are involved in movements of the shoulder joint and arm. The scapula has several important features:

1. Three borders (anterior, lateral, and medial)
2. Three angles (superior, inferior, and lateral)
3. Spine of the scapula - a long, horizontal ridge that divides the scapula into two parts: supraspinous fossa (above the spine) and infraspinous fossa (below the spine)
4. Glenoid cavity - a shallow, concave surface on the lateral border that articulates with the humerus to form the shoulder joint
5. Acromion process - a bony projection at the top of the scapula that forms part of the shoulder joint and serves as an attachment point for muscles and ligaments
6. Coracoid process - a hook-like bony projection extending from the anterior border, which provides attachment for muscles and ligaments

Understanding the anatomy and function of the scapula is essential in diagnosing and treating various shoulder and upper back conditions.

I'm sorry for any confusion, but "Tennis" is generally not a term that has a medical definition. It is most commonly known as a sport or game played with rackets and a ball on a court with a net dividing the space in half. If you have any questions about a specific medical condition or term, I'd be happy to help if I can!

A joint capsule is the fibrous sac that encloses a synovial joint, which is a type of joint characterized by the presence of a cavity filled with synovial fluid. The joint capsule provides stability and strength to the joint, while also allowing for a range of motion. It consists of two layers: an outer fibrous layer and an inner synovial membrane. The fibrous layer is made up of dense connective tissue that helps to stabilize the joint, while the synovial membrane produces synovial fluid, which lubricates the joint and reduces friction during movement.

The humerus is the long bone in the upper arm that extends from the shoulder joint (glenohumeral joint) to the elbow joint. It articulates with the glenoid cavity of the scapula to form the shoulder joint and with the radius and ulna bones at the elbow joint. The proximal end of the humerus has a rounded head that provides for movement in multiple planes, making it one of the most mobile joints in the body. The greater and lesser tubercles are bony prominences on the humeral head that serve as attachment sites for muscles that move the shoulder and arm. The narrow shaft of the humerus provides stability and strength for weight-bearing activities, while the distal end forms two articulations: one with the ulna (trochlea) and one with the radius (capitulum). Together, these structures allow for a wide range of motion in the shoulder and elbow joints.

Joint diseases is a broad term that refers to various conditions affecting the joints, including but not limited to:

1. Osteoarthritis (OA): A degenerative joint disease characterized by the breakdown of cartilage and underlying bone, leading to pain, stiffness, and potential loss of function.
2. Rheumatoid Arthritis (RA): An autoimmune disorder causing inflammation in the synovial membrane lining the joints, resulting in swelling, pain, and joint damage if left untreated.
3. Infectious Arthritis: Joint inflammation caused by bacterial, viral, or fungal infections that spread through the bloodstream or directly enter the joint space.
4. Gout: A type of arthritis resulting from the buildup of uric acid crystals in the joints, typically affecting the big toe and characterized by sudden attacks of severe pain, redness, and swelling.
5. Psoriatic Arthritis (PsA): An inflammatory joint disease associated with psoriasis, causing symptoms such as pain, stiffness, and swelling in the joints and surrounding tissues.
6. Juvenile Idiopathic Arthritis (JIA): A group of chronic arthritis conditions affecting children, characterized by joint inflammation, pain, and stiffness.
7. Ankylosing Spondylitis: A form of arthritis primarily affecting the spine, causing inflammation, pain, and potential fusion of spinal vertebrae.
8. Bursitis: Inflammation of the fluid-filled sacs (bursae) that cushion joints, leading to pain and swelling.
9. Tendinitis: Inflammation or degeneration of tendons, which connect muscles to bones, often resulting in pain and stiffness near joints.

These conditions can impact the function and mobility of affected joints, causing discomfort and limiting daily activities. Proper diagnosis and treatment are essential for managing joint diseases and preserving joint health.

Articular Range of Motion (AROM) is a term used in physiotherapy and orthopedics to describe the amount of movement available in a joint, measured in degrees of a circle. It refers to the range through which synovial joints can actively move without causing pain or injury. AROM is assessed by measuring the degree of motion achieved by active muscle contraction, as opposed to passive range of motion (PROM), where the movement is generated by an external force.

Assessment of AROM is important in evaluating a patient's functional ability and progress, planning treatment interventions, and determining return to normal activities or sports participation. It is also used to identify any restrictions in joint mobility that may be due to injury, disease, or surgery, and to monitor the effectiveness of rehabilitation programs.

The rotator cuff is a group of four muscles and their tendons that attach to the shoulder blade (scapula) and help stabilize and move the shoulder joint. These muscles are the supraspinatus, infraspinatus, teres minor, and subscapularis. The rotator cuff helps to keep the head of the humerus (upper arm bone) centered in the glenoid fossa (shoulder socket), providing stability during shoulder movements. It also allows for rotation and elevation of the arm. Rotator cuff injuries or conditions, such as tears or tendinitis, can cause pain and limit shoulder function.

A joint is the location at which two or more bones make contact. They are constructed to allow movement and provide support and stability to the body during motion. Joints can be classified in several ways, including structure, function, and the type of tissue that forms them. The three main types of joints based on structure are fibrous (or fixed), cartilaginous, and synovial (or diarthrosis). Fibrous joints do not have a cavity and have limited movement, while cartilaginous joints allow for some movement and are connected by cartilage. Synovial joints, the most common and most movable type, have a space between the articular surfaces containing synovial fluid, which reduces friction and wear. Examples of synovial joints include hinge, pivot, ball-and-socket, saddle, and condyloid joints.

A bursa is a small fluid-filled sac that provides a cushion between bones and other moving parts, such as muscles, tendons, or skin. A synovial bursa is a type of bursa that contains synovial fluid, which is produced by the synovial membrane that lines the inside of the bursa. Synovial bursae are found in various locations throughout the body, particularly near joints that experience a lot of movement or friction. They help to reduce wear and tear on the bones and other tissues, and can become inflamed or irritated due to overuse, injury, or infection, leading to a condition called bursitis.

Pacinian corpuscles, also known as Pacinian lamellar corpuscles or Vater-Pacini corpuscles, are specialized types of tactile sensory receptors found in the deeper layers of the skin (dermis and subcutaneous tissue) and some other organs such as joints, muscles, and lungs. They are primarily responsible for detecting vibrations and deep pressure changes.

These corpuscles have an onion-like structure with 20 to 100 concentric lamellae (flattened sacs) enclosing a nerve fiber ending. The nerve ending is surrounded by a fluid-filled space, which allows it to detect even minute mechanical deformations caused by vibrations or pressure changes. Pacinian corpuscles respond quickly to stimuli but also adapt rapidly, making them less sensitive to sustained stimulation and more responsive to sudden changes in the environment.

Named after Italian anatomist Filippo Pacini, who first described these structures in 1835, Pacinian corpuscles play a crucial role in our sense of touch, enabling us to perceive various textures, vibrations, and pressures.

Biomechanics is the application of mechanical laws to living structures and systems, particularly in the field of medicine and healthcare. A biomechanical phenomenon refers to a observable event or occurrence that involves the interaction of biological tissues or systems with mechanical forces. These phenomena can be studied at various levels, from the molecular and cellular level to the tissue, organ, and whole-body level.

Examples of biomechanical phenomena include:

1. The way that bones and muscles work together to produce movement (known as joint kinematics).
2. The mechanical behavior of biological tissues such as bone, cartilage, tendons, and ligaments under various loads and stresses.
3. The response of cells and tissues to mechanical stimuli, such as the way that bone tissue adapts to changes in loading conditions (known as Wolff's law).
4. The biomechanics of injury and disease processes, such as the mechanisms of joint injury or the development of osteoarthritis.
5. The use of mechanical devices and interventions to treat medical conditions, such as orthopedic implants or assistive devices for mobility impairments.

Understanding biomechanical phenomena is essential for developing effective treatments and prevention strategies for a wide range of medical conditions, from musculoskeletal injuries to neurological disorders.

"Torque" is not a term that has a specific medical definition. It is a physical concept used in the fields of physics and engineering, referring to a twisting force that causes rotation around an axis. However, in certain medical contexts, such as in discussions of spinal or joint biomechanics, the term "torque" may be used to describe a rotational force applied to a body part. But generally speaking, "torque" is not a term commonly used in medical terminology.

In the context of medicine, particularly in anatomy and physiology, "rotation" refers to the movement of a body part around its own axis or the long axis of another structure. This type of motion is three-dimensional and can occur in various planes. A common example of rotation is the movement of the forearm bones (radius and ulna) around each other during pronation and supination, which allows the hand to be turned palm up or down. Another example is the rotation of the head during mastication (chewing), where the mandible moves in a circular motion around the temporomandibular joint.

The elbow joint, also known as the cubitus joint, is a hinge joint that connects the humerus bone of the upper arm to the radius and ulna bones of the forearm. It allows for flexion and extension movements of the forearm, as well as some degree of rotation. The main articulation occurs between the trochlea of the humerus and the trochlear notch of the ulna, while the radial head of the radius also contributes to the joint's stability and motion. Ligaments, muscles, and tendons surround and support the elbow joint, providing strength and protection during movement.

Shoulder Impingement Syndrome is a common cause of shoulder pain, characterized by pinching or compression of the rotator cuff tendons and/or bursa between the humeral head and the acromion process of the scapula. This often results from abnormal contact between these structures due to various factors such as:

1. Bony abnormalities (e.g., bone spurs)
2. Tendon inflammation or thickening
3. Poor biomechanics during shoulder movements
4. Muscle imbalances and weakness, particularly in the rotator cuff and scapular stabilizers
5. Aging and degenerative changes

The syndrome is typically classified into two types: primary (or structural) impingement, which involves bony abnormalities; and secondary impingement, which is related to functional or muscular imbalances. Symptoms often include pain, especially during overhead activities, weakness, and limited range of motion in the shoulder. Diagnosis typically involves a combination of physical examination, patient history, and imaging studies such as X-rays or MRI scans. Treatment may involve activity modification, physical therapy, nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroid injections, and, in some cases, surgical intervention.

In the context of medicine and healthcare, "movement" refers to the act or process of changing physical location or position. It involves the contraction and relaxation of muscles, which allows for the joints to move and the body to be in motion. Movement can also refer to the ability of a patient to move a specific body part or limb, which is assessed during physical examinations. Additionally, "movement" can describe the progression or spread of a disease within the body.

The knee joint, also known as the tibiofemoral joint, is the largest and one of the most complex joints in the human body. It is a synovial joint that connects the thighbone (femur) to the shinbone (tibia). The patella (kneecap), which is a sesamoid bone, is located in front of the knee joint and helps in the extension of the leg.

The knee joint is made up of three articulations: the femorotibial joint between the femur and tibia, the femoropatellar joint between the femur and patella, and the tibiofibular joint between the tibia and fibula. These articulations are surrounded by a fibrous capsule that encloses the synovial membrane, which secretes synovial fluid to lubricate the joint.

The knee joint is stabilized by several ligaments, including the medial and lateral collateral ligaments, which provide stability to the sides of the joint, and the anterior and posterior cruciate ligaments, which prevent excessive forward and backward movement of the tibia relative to the femur. The menisci, which are C-shaped fibrocartilaginous structures located between the femoral condyles and tibial plateaus, also help to stabilize the joint by absorbing shock and distributing weight evenly across the articular surfaces.

The knee joint allows for flexion, extension, and a small amount of rotation, making it essential for activities such as walking, running, jumping, and sitting.

In medical terms, the arm refers to the upper limb of the human body, extending from the shoulder to the wrist. It is composed of three major bones: the humerus in the upper arm, and the radius and ulna in the lower arm. The arm contains several joints, including the shoulder joint, elbow joint, and wrist joint, which allow for a wide range of motion. The arm also contains muscles, blood vessels, nerves, and other soft tissues that are essential for normal function.

A shoulder fracture refers to a break in one or more bones that make up the shoulder joint, which includes the humerus (upper arm bone), scapula (shoulder blade), and clavicle (collarbone). These types of fractures can occur due to various reasons such as high-energy trauma, falls, or degenerative conditions. Symptoms may include severe pain, swelling, bruising, limited range of motion, deformity, and in some cases, numbness or tingling sensations. Treatment options depend on the severity and location of the fracture but can include immobilization with a sling or brace, surgery, or physical therapy.

Arthroplasty, replacement, is a surgical procedure where a damaged or diseased joint surface is removed and replaced with an artificial implant or device. The goal of this surgery is to relieve pain, restore function, and improve the quality of life for patients who have severe joint damage due to arthritis or other conditions.

During the procedure, the surgeon removes the damaged cartilage and bone from the joint and replaces them with a metal, plastic, or ceramic component that replicates the shape and function of the natural joint surface. The most common types of joint replacement surgery are hip replacement, knee replacement, and shoulder replacement.

The success rate of joint replacement surgery is generally high, with many patients experiencing significant pain relief and improved mobility. However, as with any surgical procedure, there are risks involved, including infection, blood clots, implant loosening or failure, and nerve damage. Therefore, it's essential to discuss the potential benefits and risks of joint replacement surgery with a healthcare provider before making a decision.

Bursitis is the inflammation or irritation of the bursa, a small fluid-filled sac that provides a cushion between bones and muscles, tendons, or skin around a joint. The bursae help to reduce friction and provide smooth movement of the joints. Bursitis can occur in any joint but is most common in the shoulder, elbow, hip, knee, and heel.

The inflammation of the bursa can result from various factors, including repetitive motions, injury or trauma to the joint, bacterial infection, or underlying health conditions such as rheumatoid arthritis or gout. The symptoms of bursitis include pain and tenderness in the affected area, swelling, warmth, and redness. Treatment for bursitis typically involves resting and immobilizing the affected joint, applying ice to reduce swelling, taking anti-inflammatory medications, and undergoing physical therapy exercises to improve strength and flexibility. In severe cases, corticosteroid injections or surgery may be necessary to alleviate symptoms and promote healing.

A joint prosthesis, also known as an artificial joint or a replacement joint, is a surgical implant used to replace all or part of a damaged or diseased joint. The most common types of joint prostheses are total hip replacements and total knee replacements. These prostheses typically consist of a combination of metal, plastic, and ceramic components that are designed to replicate the movement and function of a natural joint.

Joint prostheses are usually recommended for patients who have severe joint pain or mobility issues that cannot be adequately managed with other treatments such as physical therapy, medication, or lifestyle changes. The goal of joint replacement surgery is to relieve pain, improve joint function, and enhance the patient's quality of life.

Joint prostheses are typically made from materials such as titanium, cobalt-chrome alloys, stainless steel, polyethylene plastic, and ceramics. The choice of material depends on a variety of factors, including the patient's age, activity level, weight, and overall health.

While joint replacement surgery is generally safe and effective, there are risks associated with any surgical procedure, including infection, blood clots, implant loosening or failure, and nerve damage. Patients who undergo joint replacement surgery typically require several weeks of rehabilitation and physical therapy to regain strength and mobility in the affected joint.

Electromyography (EMG) is a medical diagnostic procedure that measures the electrical activity of skeletal muscles during contraction and at rest. It involves inserting a thin needle electrode into the muscle to record the electrical signals generated by the muscle fibers. These signals are then displayed on an oscilloscope and may be heard through a speaker.

EMG can help diagnose various neuromuscular disorders, such as muscle weakness, numbness, or pain, and can distinguish between muscle and nerve disorders. It is often used in conjunction with other diagnostic tests, such as nerve conduction studies, to provide a comprehensive evaluation of the nervous system.

EMG is typically performed by a neurologist or a physiatrist, and the procedure may cause some discomfort or pain, although this is usually minimal. The results of an EMG can help guide treatment decisions and monitor the progression of neuromuscular conditions over time.

A finger joint, also known as an articulation, is the point where two bones in a finger connect and allow for movement. The majority of finger joints are classified as hinge joints, permitting flexion and extension movements. These joints consist of several components:

1. Articular cartilage: Smooth tissue that covers the ends of the bones, enabling smooth movement and protecting the bones from friction.
2. Joint capsule: A fibrous sac enclosing the joint, providing stability and producing synovial fluid for lubrication.
3. Synovial membrane: Lines the inner surface of the joint capsule and produces synovial fluid to lubricate the joint.
4. Volar plate (palmar ligament): A strong band of tissue located on the palm side of the joint, preventing excessive extension and maintaining alignment.
5. Collateral ligaments: Two bands of tissue located on each side of the joint, providing lateral stability and limiting radial and ulnar deviation.
6. Flexor tendons: Tendons that attach to the bones on the palmar side of the finger joints, facilitating flexion movements.
7. Extensor tendons: Tendons that attach to the bones on the dorsal side of the finger joints, enabling extension movements.

Finger joints are essential for hand function and enable activities such as grasping, holding, writing, and manipulating objects.

'Task Performance and Analysis' is not a commonly used medical term, but it can be found in the field of rehabilitation medicine and ergonomics. It refers to the process of evaluating and understanding how a specific task is performed, in order to identify any physical or cognitive demands placed on an individual during the performance of that task. This information can then be used to inform the design of interventions, such as workplace modifications or rehabilitation programs, aimed at improving task performance or reducing the risk of injury.

In a medical context, task performance and analysis may be used in the assessment and treatment of individuals with disabilities or injuries, to help them return to work or other activities of daily living. The analysis involves breaking down the task into its component parts, observing and measuring the physical and cognitive demands of each part, and evaluating the individual's ability to perform those demands. Based on this analysis, recommendations may be made for modifications to the task or the environment, training or education, or assistive devices that can help the individual perform the task more safely and efficiently.

Overall, task performance and analysis is a valuable tool in promoting safe and effective task performance, reducing the risk of injury, and improving functional outcomes for individuals with disabilities or injuries.

Joint instability is a condition characterized by the loss of normal joint function and increased risk of joint injury due to impaired integrity of the supporting structures, such as ligaments, muscles, or cartilage. This can result in excessive movement or laxity within the joint, leading to decreased stability and increased susceptibility to dislocations or subluxations. Joint instability may cause pain, swelling, and limited range of motion, and it can significantly impact a person's mobility and quality of life. It is often caused by trauma, degenerative conditions, or congenital abnormalities and may require medical intervention, such as physical therapy, bracing, or surgery, to restore joint stability.

The acromioclavicular (AC) joint is the joint located between the acromion process of the scapula (shoulder blade) and the clavicle (collarbone). It allows for a small amount of movement between these two bones and participates in shoulder motion. Injuries to this joint, such as AC joint separations or sprains, are common and can occur due to falls, direct blows, or repetitive motions that cause the ligaments that support the AC joint to become stretched or torn.

The ankle joint, also known as the talocrural joint, is the articulation between the bones of the lower leg (tibia and fibula) and the talus bone in the foot. It is a synovial hinge joint that allows for dorsiflexion and plantarflexion movements, which are essential for walking, running, and jumping. The ankle joint is reinforced by strong ligaments on both sides to provide stability during these movements.

Skeletal muscle, also known as striated or voluntary muscle, is a type of muscle that is attached to bones by tendons or aponeuroses and functions to produce movements and support the posture of the body. It is composed of long, multinucleated fibers that are arranged in parallel bundles and are characterized by alternating light and dark bands, giving them a striped appearance under a microscope. Skeletal muscle is under voluntary control, meaning that it is consciously activated through signals from the nervous system. It is responsible for activities such as walking, running, jumping, and lifting objects.

The hip joint, also known as the coxal joint, is a ball-and-socket type synovial joint that connects the femur (thigh bone) to the pelvis. The "ball" is the head of the femur, while the "socket" is the acetabulum, a concave surface on the pelvic bone.

The hip joint is surrounded by a strong fibrous capsule and is reinforced by several ligaments, including the iliofemoral, ischiofemoral, and pubofemoral ligaments. The joint allows for flexion, extension, abduction, adduction, medial and lateral rotation, and circumduction movements, making it one of the most mobile joints in the body.

The hip joint is also supported by various muscles, including the gluteus maximus, gluteus medius, gluteus minimus, iliopsoas, and other hip flexors and extensors. These muscles provide stability and strength to the joint, allowing for weight-bearing activities such as walking, running, and jumping.

The wrist joint, also known as the radiocarpal joint, is a condyloid joint that connects the distal end of the radius bone in the forearm to the proximal row of carpal bones in the hand (scaphoid, lunate, and triquetral bones). It allows for flexion, extension, radial deviation, and ulnar deviation movements of the hand. The wrist joint is surrounded by a capsule and reinforced by several ligaments that provide stability and strength to the joint.

The tarsal joints are a series of articulations in the foot that involve the bones of the hindfoot and midfoot. There are three main tarsal joints:

1. Talocrural joint (also known as the ankle joint): This is the joint between the talus bone of the lower leg and the tibia and fibula bones of the lower leg, as well as the calcaneus bone of the foot. It allows for dorsiflexion and plantarflexion movements of the foot.
2. Subtalar joint: This is the joint between the talus bone and the calcaneus bone. It allows for inversion and eversion movements of the foot.
3. Tarsometatarsal joints (also known as the Lisfranc joint): These are the joints between the tarsal bones of the midfoot and the metatarsal bones of the forefoot. They allow for flexion, extension, abduction, and adduction movements of the foot.

These joints play an important role in the stability and mobility of the foot, allowing for various movements during activities such as walking, running, and jumping.

Arthroscopy is a minimally invasive surgical procedure where an orthopedic surgeon uses an arthroscope (a thin tube with a light and camera on the end) to diagnose and treat problems inside a joint. The surgeon makes a small incision, inserts the arthroscope into the joint, and then uses the attached camera to view the inside of the joint on a monitor. They can then insert other small instruments through additional incisions to repair or remove damaged tissue.

Arthroscopy is most commonly used for joints such as the knee, shoulder, hip, ankle, and wrist. It offers several advantages over traditional open surgery, including smaller incisions, less pain and bleeding, faster recovery time, and reduced risk of infection. The procedure can be used to diagnose and treat a wide range of conditions, including torn ligaments or cartilage, inflamed synovial tissue, loose bone or cartilage fragments, and joint damage caused by arthritis.

Tendinopathy is a general term referring to the degeneration or dysrepair of a tendon, which can result in pain and impaired function. It was previously referred to as tendinitis or tendinosis, but tendinopathy is now preferred because it describes various pathological conditions within the tendon, rather than a specific diagnosis.

Tendinopathy often develops due to overuse, repetitive strain, or age-related wear and tear. The condition typically involves collagen breakdown in the tendon, along with an increase in disorganized tenocytes (tendon cells) and vascular changes. This process can lead to thickening of the tendon, loss of elasticity, and the formation of calcium deposits or nodules.

Commonly affected tendons include the Achilles tendon, patellar tendon, rotator cuff tendons in the shoulder, and the extensor carpi radialis brevis tendon in the elbow (also known as tennis elbow). Treatment for tendinopathy often includes rest, physical therapy, exercise, pain management, and occasionally, surgical intervention.

The humeral head is the rounded, articular surface at the proximal end of the humerus bone in the human body. It forms the upper part of the shoulder joint and articulates with the glenoid fossa of the scapula to form the glenohumeral joint, allowing for a wide range of motion in the arm. The humeral head is covered with cartilage that helps to provide a smooth, lubricated surface for movement and shock absorption.

Periarthritis is not a widely recognized medical term in current use. However, it is generally understood to refer to inflammation of the tissues around a joint, including the tendons, ligaments, and surrounding muscles. It can often be mistaken for other conditions such as bursitis or arthritis.

In some contexts, "periarthritis" may be used interchangeably with "shoulder periarthritis" or "frozen shoulder," which refers to a specific condition characterized by stiffness and pain in the shoulder joint due to inflammation of the surrounding tissues. However, this usage is not universally accepted, and many medical professionals prefer to use more precise terminology.

Intra-articular injections refer to the administration of medication directly into a joint space. This route of administration is used for treating various joint conditions such as inflammation, pain, and arthritis. Commonly injected medications include corticosteroids, local anesthetics, and viscosupplementation agents. The procedure is usually performed using imaging guidance, like ultrasound or fluoroscopy, to ensure accurate placement of the medication within the joint.

The sacroiliac (SI) joint is the joint that connects the iliac bone (part of the pelvis) and the sacrum (the triangular bone at the base of the spine). There are two sacroiliac joints, one on each side of the spine. The primary function of these joints is to absorb shock between the upper body and lower body and distribute the weight of the upper body to the lower body. They also provide a small amount of movement to allow for flexibility when walking or running. The SI joints are supported and stabilized by strong ligaments, muscles, and bones.

I apologize for any confusion, but "baseball" is not a medical term. It is a sport that involves two teams of nine players each trying to score runs by hitting a ball with a bat and running around four bases on a field. If you have any questions about medical terminology or concepts, I would be happy to help clarify those for you.

The acromion is a part of the shoulder blade (scapula). It is the bony process that forms the highest point of the shoulder and articulates with the clavicle (collarbone) to form the acromioclavicular joint. The acromion serves as an attachment site for several muscles and ligaments in the shoulder region.

Neck pain is discomfort or soreness in the neck region, which can extend from the base of the skull to the upper part of the shoulder blades, caused by injury, irritation, or inflammation of the muscles, ligaments, or nerves in the cervical spine. The pain may worsen with movement and can be accompanied by stiffness, numbness, tingling, or weakness in the neck, arms, or hands. In some cases, headaches can also occur as a result of neck pain.

The clavicle, also known as the collarbone, is a long, slender bone that lies horizontally between the breastbone (sternum) and the shoulder blade (scapula). It is part of the shoulder girdle and plays a crucial role in supporting the upper limb. The clavicle has two ends: the medial end, which articulates with the sternum, and the lateral end, which articulates with the acromion process of the scapula. It is a common site of fracture due to its superficial location and susceptibility to direct trauma.

Osteoarthritis (OA) is a type of joint disease that is characterized by the breakdown and eventual loss of cartilage - the tissue that cushions the ends of bones where they meet in the joints. This breakdown can cause the bones to rub against each other, causing pain, stiffness, and loss of mobility. OA can occur in any joint, but it most commonly affects the hands, knees, hips, and spine. It is often associated with aging and can be caused or worsened by obesity, injury, or overuse.

The medical definition of osteoarthritis is: "a degenerative, non-inflammatory joint disease characterized by the loss of articular cartilage, bone remodeling, and the formation of osteophytes (bone spurs). It is often associated with pain, stiffness, and decreased range of motion in the affected joint."

The brachial plexus is a network of nerves that originates from the spinal cord in the neck region and supplies motor and sensory innervation to the upper limb. It is formed by the ventral rami (branches) of the lower four cervical nerves (C5-C8) and the first thoracic nerve (T1). In some cases, contributions from C4 and T2 may also be included.

The brachial plexus nerves exit the intervertebral foramen, pass through the neck, and travel down the upper chest before branching out to form major peripheral nerves of the upper limb. These include the axillary, radial, musculocutaneous, median, and ulnar nerves, which further innervate specific muscles and sensory areas in the arm, forearm, and hand.

Damage to the brachial plexus can result in various neurological deficits, such as weakness or paralysis of the upper limb, numbness, or loss of sensation in the affected area, depending on the severity and location of the injury.

Pain measurement, in a medical context, refers to the quantification or evaluation of the intensity and/or unpleasantness of a patient's subjective pain experience. This is typically accomplished through the use of standardized self-report measures such as numerical rating scales (NRS), visual analog scales (VAS), or categorical scales (mild, moderate, severe). In some cases, physiological measures like heart rate, blood pressure, and facial expressions may also be used to supplement self-reported pain ratings. The goal of pain measurement is to help healthcare providers better understand the nature and severity of a patient's pain in order to develop an effective treatment plan.

Cumulative Trauma Disorders (CTDs) are a group of conditions that result from repeated exposure to biomechanical stressors, often related to work activities. These disorders can affect the muscles, tendons, nerves, and joints, leading to symptoms such as pain, numbness, tingling, weakness, and reduced range of motion.

CTDs are also known as repetitive strain injuries (RSIs) or overuse injuries. They occur when there is a mismatch between the demands placed on the body and its ability to recover from those demands. Over time, this imbalance can lead to tissue damage and inflammation, resulting in chronic pain and functional limitations.

Examples of CTDs include carpal tunnel syndrome, tendonitis, epicondylitis (tennis elbow), rotator cuff injuries, and trigger finger. Prevention strategies for CTDs include proper ergonomics, workstation design, body mechanics, taking regular breaks to stretch and rest, and performing exercises to strengthen and condition the affected muscles and joints.

The sternoclavicular joint is the joint where the clavicle (collarbone) meets the sternum (breastbone). It is the only joint that connects the upper limb to the trunk of the body. This joint allows for movement in multiple directions, including elevation and depression of the shoulder, as well as some degree of protraction and retraction. The sternoclavicular joint is supported by several ligaments, which provide stability and strength to the joint.

Tendon injuries, also known as tendinopathies, refer to the damage or injury of tendons, which are strong bands of tissue that connect muscles to bones. Tendon injuries typically occur due to overuse or repetitive motion, causing micro-tears in the tendon fibers. The most common types of tendon injuries include tendinitis, which is inflammation of the tendon, and tendinosis, which is degeneration of the tendon's collagen.

Tendon injuries can cause pain, swelling, stiffness, and limited mobility in the affected area. The severity of the injury can vary from mild discomfort to severe pain that makes it difficult to move the affected joint. Treatment for tendon injuries may include rest, ice, compression, elevation (RICE) therapy, physical therapy, medication, or in some cases, surgery. Preventing tendon injuries involves warming up properly before exercise, using proper form and technique during physical activity, gradually increasing the intensity and duration of workouts, and taking regular breaks to rest and recover.

Orthopedic manipulation is a hands-on technique that is used by healthcare professionals, such as orthopedic doctors, chiropractors, and physical therapists, to diagnose and treat muscle and joint disorders. This manual procedure involves moving the joints or soft tissues in a specific direction and amplitude with the aim of improving joint mobility, reducing pain, relieving muscle tension, and enhancing overall function.

Orthopedic manipulation can be performed on various parts of the body, including the spine, extremities, and cranial structures. It is often used as a complementary treatment alongside other therapeutic interventions, such as exercise, medication, or surgery, to manage a wide range of musculoskeletal conditions, including but not limited to:

* Back pain and stiffness
* Neck pain and stiffness
* Joint pain and inflammation
* Muscle spasms and tension
* Headaches and migraines
* Disc disorders
* Sprains and strains
* Postural dysfunctions

It is important to note that orthopedic manipulation should only be performed by trained and licensed healthcare professionals, as improper techniques can lead to injury or further damage. Patients should consult with their healthcare provider to determine if orthopedic manipulation is an appropriate treatment option for their specific condition.

Temporomandibular Joint Disorders (TMD) refer to a group of conditions that cause pain and dysfunction in the temporomandibular joint (TMJ) and the muscles that control jaw movement. The TMJ is the hinge joint that connects the lower jaw (mandible) to the skull (temporal bone) in front of the ear. It allows for movements required for activities such as eating, speaking, and yawning.

TMD can result from various causes, including:

1. Muscle tension or spasm due to clenching or grinding teeth (bruxism), stress, or jaw misalignment
2. Dislocation or injury of the TMJ disc, which is a small piece of cartilage that acts as a cushion between the bones in the joint
3. Arthritis or other degenerative conditions affecting the TMJ
4. Bite problems (malocclusion) leading to abnormal stress on the TMJ and its surrounding muscles
5. Stress, which can exacerbate existing TMD symptoms by causing muscle tension

Symptoms of Temporomandibular Joint Disorders may include:
- Pain or tenderness in the jaw, face, neck, or shoulders
- Limited jaw movement or locking of the jaw
- Clicking, popping, or grating sounds when moving the jaw
- Headaches, earaches, or dizziness
- Difficulty chewing or biting
- Swelling on the side of the face

Treatment for TMD varies depending on the severity and cause of the condition. It may include self-care measures (like eating soft foods, avoiding extreme jaw movements, and applying heat or cold packs), physical therapy, medications (such as muscle relaxants, pain relievers, or anti-inflammatory drugs), dental work (including bite adjustments or orthodontic treatment), or even surgery in severe cases.

The metatarsophalangeal (MTP) joint is the joint in the foot where the metatarsal bones of the foot (the long bones behind the toes) connect with the proximal phalanges of the toes. It's a synovial joint, which means it's surrounded by a capsule containing synovial fluid to allow for smooth movement. The MTP joint is responsible for allowing the flexion and extension movements of the toes, and is important for maintaining balance and pushing off during walking and running. Issues with the MTP joint can lead to conditions such as hallux valgus (bunions) or hammertoe.

A rupture, in medical terms, refers to the breaking or tearing of an organ, tissue, or structure in the body. This can occur due to various reasons such as trauma, injury, increased pressure, or degeneration. A ruptured organ or structure can lead to serious complications, including internal bleeding, infection, and even death, if not treated promptly and appropriately. Examples of ruptures include a ruptured appendix, ruptured eardrum, or a ruptured disc in the spine.

"Foot joints" is a general term that refers to the various articulations or connections between the bones in the foot. There are several joints in the foot, including:

1. The ankle joint (tibiotalar joint): This is the joint between the tibia and fibula bones of the lower leg and the talus bone of the foot.
2. The subtalar joint (talocalcaneal joint): This is the joint between the talus bone and the calcaneus (heel) bone.
3. The calcaneocuboid joint: This is the joint between the calcaneus bone and the cuboid bone, which is one of the bones in the midfoot.
4. The tarsometatarsal joints (Lisfranc joint): These are the joints that connect the tarsal bones in the midfoot to the metatarsal bones in the forefoot.
5. The metatarsophalangeal joints: These are the joints between the metatarsal bones and the phalanges (toes) in the forefoot.
6. The interphalangeal joints: These are the joints between the phalanges within each toe.

Each of these foot joints plays a specific role in supporting the foot, absorbing shock, and allowing for movement and flexibility during walking and other activities.

Musculoskeletal diseases are a group of medical conditions that affect the bones, joints, muscles, tendons, ligaments, and nerves. These diseases can cause pain, stiffness, limited mobility, and decreased function in the affected areas of the body. They include a wide range of conditions such as:

1. Osteoarthritis: A degenerative joint disease characterized by the breakdown of cartilage in joints, leading to pain, stiffness, and loss of mobility.
2. Rheumatoid arthritis: An autoimmune disorder that causes inflammation in the lining of the joints, resulting in swelling, pain, and bone erosion.
3. Gout: A form of arthritis caused by the buildup of uric acid crystals in the joints, leading to severe pain, redness, and swelling.
4. Osteoporosis: A condition characterized by weakened bones that are more susceptible to fractures due to decreased bone density.
5. Fibromyalgia: A disorder that causes widespread muscle pain, fatigue, and tenderness in specific areas of the body.
6. Spinal disorders: Conditions affecting the spine, such as herniated discs, spinal stenosis, or degenerative disc disease, which can cause back pain, numbness, tingling, or weakness.
7. Soft tissue injuries: Damage to muscles, tendons, and ligaments, often caused by overuse, strain, or trauma.
8. Infections: Bone and joint infections (septic arthritis or osteomyelitis) can cause pain, swelling, and fever.
9. Tumors: Benign or malignant growths in bones, muscles, or soft tissues can lead to pain, swelling, and limited mobility.
10. Genetic disorders: Certain genetic conditions, such as Marfan syndrome or Ehlers-Danlos syndrome, can affect the musculoskeletal system and cause various symptoms.

Treatment for musculoskeletal diseases varies depending on the specific condition but may include medications, physical therapy, exercise, surgery, or a combination of these approaches.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

A suture anchor is a medical device used in surgical procedures, particularly in orthopedic and cardiovascular surgeries. It is typically made of biocompatible materials such as metal (titanium or absorbable steel) or polymer (absorbable or non-absorbable). The suture anchor serves to attach a suture to bone securely, providing a stable fixation point for soft tissue reattachment or repair.

Suture anchors come in various shapes and sizes, including screws, hooks, or buttons, designed to fit specific surgical needs. Surgeons insert the anchor into a predrilled hole in the bone, and then pass the suture through the eyelet or loop of the anchor. Once the anchor is securely in place, the surgeon can tie the suture to attach tendons, ligaments, or other soft tissues to the bone.

The use of suture anchors has revolutionized many surgical procedures by providing a more reliable and less invasive method for reattaching soft tissues to bones compared to traditional methods such as drill holes and staples.

No FAQ available that match "shoulder joint"

No images available that match "shoulder joint"