Achievement of full sexual capacity in animals and in humans.
A period in the human life in which the development of the hypothalamic-pituitary-gonadal system takes place and reaches full maturity. The onset of synchronized endocrine events in puberty lead to the capacity for reproduction (FERTILITY), development of secondary SEX CHARACTERISTICS, and other changes seen in ADOLESCENT DEVELOPMENT.
The active production and accumulation of VITELLINS (egg yolk proteins) in the non-mammalian OOCYTES from circulating precursors, VITELLOGENINS. Vitellogenesis usually begins after the first MEIOSIS and is regulated by estrogenic hormones.
The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS.
The lack of development of SEXUAL MATURATION in boys and girls at a chronological age that is 2.5 standard deviations above the mean age at onset of PUBERTY in a population. Delayed puberty can be classified by defects in the hypothalamic LHRH pulse generator, the PITUITARY GLAND, or the GONADS. These patients will undergo spontaneous but delayed puberty whereas patients with SEXUAL INFANTILISM will not.
Anguilla is not a term with a widely accepted medical definition; however, it is the scientific name for the freshwater eel species, and if used in a medical context, it may refer to a rare condition called Anguillula nephria, which is an intestinal infection caused by a roundworm.
The total process by which organisms produce offspring. (Stedman, 25th ed)
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity.
Serotonin derivative proposed as potentiator for hypnotics and sedatives.
A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND.
A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL.
The measurement of an organ in volume, mass, or heaviness.
The processes of anatomical and physiological changes related to sexual or reproductive functions during the life span of a human or an animal, from FERTILIZATION to DEATH. These include SEX DETERMINATION PROCESSES; SEX DIFFERENTIATION; SEXUAL MATURATION; and changes during AGING.
Pheromones that elicit sexual attraction or mating behavior usually in members of the opposite sex in the same species.
Drugs used to increase fertility or to treat infertility.
The male reproductive organs. They are divided into the external organs (PENIS; SCROTUM;and URETHRA) and the internal organs (TESTIS; EPIDIDYMIS; VAS DEFERENS; SEMINAL VESICLES; EJACULATORY DUCTS; PROSTATE; and BULBOURETHRAL GLANDS).
A subfamily of MURIDAE found nearly world-wide and consisting of about 20 genera. Voles, lemmings, and muskrats are members.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
A subclass of group I phospholipases A2 that includes enzymes isolated from PANCREATIC JUICE. Members of this group have specificity for PHOSPHOLIPASE A2 RECEPTORS.
The first MENSTRUAL CYCLE marked by the initiation of MENSTRUATION.
Hormones that stimulate gonadal functions such as GAMETOGENESIS and sex steroid hormone production in the OVARY and the TESTIS. Major gonadotropins are glycoproteins produced primarily by the adenohypophysis (GONADOTROPINS, PITUITARY) and the placenta (CHORIONIC GONADOTROPIN). In some species, pituitary PROLACTIN and PLACENTAL LACTOGEN exert some luteotropic activities.
Intercellular signaling peptides that were originally characterized by their ability to suppress NEOPLASM METASTASIS. Kisspeptins have since been found to play an important role in the neuroendocrine regulation of REPRODUCTION.
An organochlorine insecticide that is carcinogenic.
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time.
A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM.
Hormones secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR) that stimulate gonadal functions in both males and females. They include FOLLICLE STIMULATING HORMONE that stimulates germ cell maturation (OOGENESIS; SPERMATOGENESIS), and LUTEINIZING HORMONE that stimulates the production of sex steroids (ESTROGENS; PROGESTERONE; ANDROGENS).
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity.
Establishment of the age of an individual by examination of their skeletal structure.
Sexual activities of animals.
A genus of hamsters characterized by small size, very short tail, and short, broad feet with hairy soles.
A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids.
The time period of daily exposure that an organism receives from daylight or artificial light. It is believed that photoperiodic responses may affect the control of energy balance and thermoregulation.
An order of fish with eight families and numerous species of both egg-laying and livebearing fish. Families include Cyprinodontidae (egg-laying KILLIFISHES;), FUNDULIDAEl; (topminnows), Goodeidae (Mexican livebearers), Jenynsiidae (jenynsiids), Poeciliidae (livebearers), Profundulidae (Middle American killifishes), Aplocheilidae, and Rivulidae (rivulines). In the family Poeciliidae, the guppy and molly belong to the genus POECILIA.
The gamete-producing glands, OVARY or TESTIS.
The period in the ESTROUS CYCLE associated with maximum sexual receptivity and fertility in non-primate female mammals.
Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE.
The capacity to conceive or to induce conception. It may refer to either the male or female.
Phospholipoglycoproteins produced in the fat body of egg-laying animals such as non-mammalian VERTEBRATES; ARTHROPODS; and others. Vitellogenins are secreted into the HEMOLYMPH, and taken into the OOCYTES by receptor-mediated ENDOCYTOSIS to form the major yolk proteins, VITELLINS. Vitellogenin production is under the regulation of steroid hormones, such as ESTRADIOL and JUVENILE HORMONES in insects.
Gradual increase in the number, the size, and the complexity of cells of an individual. Growth generally results in increase in ORGAN WEIGHT; BODY WEIGHT; and BODY HEIGHT.
The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian).
The convoluted tubules in the TESTIS where sperm are produced (SPERMATOGENESIS) and conveyed to the RETE TESTIS. Spermatogenic tubules are composed of developing germ cells and the supporting SERTOLI CELLS.
The maturing process of SPERMATOZOA after leaving the testicular SEMINIFEROUS TUBULES. Maturation in SPERM MOTILITY and FERTILITY takes place in the EPIDIDYMIS as the sperm migrate from caput epididymis to cauda epididymis.
Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced.
Divisions of the year according to some regularly recurrent phenomena usually astronomical or climatic. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
The alpha chain of pituitary glycoprotein hormones (THYROTROPIN; FOLLICLE STIMULATING HORMONE; LUTEINIZING HORMONE) and the placental CHORIONIC GONADOTROPIN. Within a species, the alpha subunits of these four hormones are identical; the distinct functional characteristics of these glycoprotein hormones are determined by the unique beta subunits. Both subunits, the non-covalently bound heterodimers, are required for full biologic activity.
A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES.
Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact.
The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
A saclike, glandular diverticulum on each ductus deferens in male vertebrates. It is united with the excretory duct and serves for temporary storage of semen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A commercially important species of SALMON in the family SALMONIDAE, order SALMONIFORMES, which occurs in the North Atlantic.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
Condition resulting from deficient gonadal functions, such as GAMETOGENESIS and the production of GONADAL STEROID HORMONES. It is characterized by delay in GROWTH, germ cell maturation, and development of secondary sex characteristics. Hypogonadism can be due to a deficiency of GONADOTROPINS (hypogonadotropic hypogonadism) or due to primary gonadal failure (hypergonadotropic hypogonadism).
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors.
Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction.
Refers to animals in the period of time just after birth.
A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate.
Periodic movements of animals in response to seasonal changes or reproductive instinct. Hormonal changes are the trigger in at least some animals. Most migrations are made for reasons of climatic change, feeding, or breeding.
The surgical removal of one or both testicles.
That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range.
Surgical removal or artificial destruction of gonads.
The physical characteristics of the body, including the mode of performance of functions, the activity of metabolic processes, the manner and degree of reactions to stimuli, and power of resistance to the attack of pathogenic organisms.
The surgical removal of one or both ovaries.
The discharge of an OVUM from a rupturing follicle in the OVARY.
Elements of limited time intervals, contributing to particular results or situations.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Liquid by-product of excretion produced in the kidneys, temporarily stored in the bladder until discharge through the URETHRA.
The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM).
The distance from the sole to the crown of the head with body standing on a flat surface and fully extended.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.
Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE.
The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS.
A 16-kDa peptide hormone secreted from WHITE ADIPOCYTES. Leptin serves as a feedback signal from fat cells to the CENTRAL NERVOUS SYSTEM in regulation of food intake, energy balance, and fat storage.
The hollow thick-walled muscular organ in the female PELVIS. It consists of the fundus (the body) which is the site of EMBRYO IMPLANTATION and FETAL DEVELOPMENT. Beyond the isthmus at the perineal end of fundus, is CERVIX UTERI (the neck) opening into VAGINA. Beyond the isthmi at the upper abdominal end of fundus, are the FALLOPIAN TUBES.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION).
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.
The technique that deals with the measurement of the size, weight, and proportions of the human or other primate body.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.
Maleness or femaleness as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or effect of a circumstance. It is used with human or animal concepts but should be differentiated from SEX CHARACTERISTICS, anatomical or physiological manifestations of sex, and from SEX DISTRIBUTION, the number of males and females in given circumstances.
Methods used to induce premature oocytes, that are maintained in tissue culture, to progress through developmental stages including to a stage that is competent to undergo FERTILIZATION.
An indicator of body density as determined by the relationship of BODY WEIGHT to BODY HEIGHT. BMI=weight (kg)/height squared (m2). BMI correlates with body fat (ADIPOSE TISSUE). Their relationship varies with age and gender. For adults, BMI falls into these categories: below 18.5 (underweight); 18.5-24.9 (normal); 25.0-29.9 (overweight); 30.0 and above (obese). (National Center for Health Statistics, Centers for Disease Control and Prevention)

Differential transcriptional activity associated with chromatin configuration in fully grown mouse germinal vesicle oocytes. (1/2118)

It was previously shown that fully grown ovarian germinal vesicle (GV) oocytes of adult mice exhibit several nuclear configurations that differ essentially by the presence or absence of a ring of condensed chromatin around the nucleolus. These configurations have been termed, respectively, SN (surrounded nucleolus) and NSN (nonsurrounded nucleolus). Work from our and other laboratories has revealed ultrastructural and functional differences between these two configurations. The aims of the present study were 1) to analyze the equilibrium between the SN and the NSN population as a function of the age of the mice and the time after hCG-induced ovulation and 2) to study the polymerase I (pol I)- and polymerase II (pol II)-dependent transcription in both types of oocytes through the detection of bromouridine incorporated into nascent RNA. We show 1) that ovarian GV oocytes exhibiting the SN-type configuration can be found as soon as 17 days after birth in the C57/CBA mouse strain and 2) that the SN:NSN ratio of ovarian GV oocytes is very low just after hCG-induced ovulation and then increases progressively with the time after ovulation. Furthermore, we demonstrate that the SN configuration correlates strictly with the arrest of both pol I- and pol II-dependent transcription in mice at any age. Finally, we show that ribosomal genes are located at the outer periphery of the nucleolus in the NSN configuration and that pol I-dependent perinucleolar transcription sites correspond to specific ultrastructural features of the nucleolus. Altogether, these results provide clear-cut criteria delineating transcriptionally active GV oocytes from those that are inactive, and confirm that the SN-type configuration is mostly present in preovulatory oocytes.  (+info)

Precocious estrus and reproductive ability induced by PG 600 in prepuberal gilts. (2/2118)

A total of 29 SPF Large White prepuberal gilts (mean age 152 days at treatment) were examined for estrous and ovulatory responses after PG 600 treatment. After treatment, 85.2% of the gilts showed standing estrus within 6 days. Whereas the treatment-to-estrus interval and duration were 3.7 and 1.9 days respectively. As ovulation occurred on Day 5 to 6, appropriate timing of artificial insemination would be about 4 days after treatment. Fertility of gilts revealed to be excellent, giving rise to a high percentage of normal embryos, 85.3%. Meanwhile, development and growth of fetuses were mostly normal. Other reproductive performances recorded were: mean litter size 6.8; mean birth weight 1.26 kg; weaning-to-return estrus interval 5 to 8 days. In conclusion, PG 600 was found to be useful in inducing fertile estrus in prepuberal gilts, a result which will be of interest for commercial pig farms.  (+info)

The degenerative fate of germ cells not conforming to stage in the pubertal golden hamster testis. (3/2118)

In the golden hamster (Mesocricetus auratus), pubertal establishment of spermatogenesis includes a defined period (d 26-30 of life) during which elongation of spermatids is selectively arrested. The resulting appearance of germ cell associations not conforming to stage and the phenomenon of desynchronisation-related germ cell degeneration are analysed both quantitatively and qualitatively by means of light and 'retrospective' electron microscopy. From d 26 onwards, the portion of tubules containing non-stage conforming germ cell associations gradually increases up to 37.5% of sectioned tubules on d 32. Concomitantly, the degree of desynchronisation rises to a maturational gap between spermatids and associated younger germ cells of 7 stages of the seminiferous epithelium cycle, i.e. of fully half a cycle. Beyond d 32, the frequency of desynchronised tubule segments decreases again. Some of the arrested round spermatids and, eventually, all belatedly elongating spermatids degenerate and are lost from the epithelium. Thus a regular maturation of advanced spermatids does not succeed under non-stage conforming conditions. Possibly it is not the desynchronisation between the associated germ cell generations and the spermatids by itself that impedes normal further development of the latter cells. Instead this may be due to the maturational delay of the stage-aberrant cells by several stages compared to the seminiferous epithelium as a whole and, especially, in relation to the stage-conditioned functional state of the neighbouring Sertoli cells.  (+info)

Leptin and reproduction. (4/2118)

In the few years since leptin was identified as a satiety factor in rodents, it has been implicated in the regulation of various physiological processes. Leptin has been shown to promote sexual maturation in rodent species and a role in reproduction has been investigated at various sites within the hypothalamo-pituitary-gonadal axis. This review considers the evidence that leptin (or alteration in amount of body fat) can affect reproduction. There is evidence that leptin plays a permissive role in the onset of puberty, probably through action on the hypothalamus, where leptin receptors are found in cells that express appetite-regulating peptides. There is little evidence that leptin has a positive effect on the pituitary gonadotrophs and the gonads. There is also very little indication that leptin acts in an acute manner to regulate reproduction in the short term. It seems more likely that leptin is a 'barometer' of body condition that sends signals to the brain. Studies in vitro have shown negative effects on ovarian steroid production and there are no reports of effects on testicular function. Leptin concentrations in plasma increase in women during pregnancy, owing to production by the placenta but the functional significance of this is unknown. A number of factors that affect the production and action of leptin have yet to be studied in detail.  (+info)

Effect of long-term food restriction on pituitary sensitivity to cLHRH-I in broiler breeder females. (5/2118)

The effect of long-term food restriction on the sensitivity of the pituitary to exogenously administered chicken luteinizing hormone releasing hormone I (cLHRH-I) was investigated in three groups of broiler breeder females fed ad libitum, fed a restricted quantity of food or fed a restricted quantity of food to obtain an intermediate body weight between those of the first two groups. At 16 weeks of age, basal FSH release was higher in ad libitum fed birds, culminating in ovarian development and subsequent oestradiol production by the small follicles. At this age, LH secretion was independent of ovarian feedback factors. In all groups, cLHRH-I was most active in releasing LH in intact and ovariectomized animals and, to a lesser extent, in releasing FSH in ovariectomized birds. At 39 weeks of age, basal FSH concentrations were similar among intact animals of all groups, whereas LH concentrations differed among groups, with higher values in the restricted birds. This food effect was enhanced in ovariectomized birds. Furthermore, the high response to cLHRH-I in the ovariectomized, restricted birds compared with the ad libitum, ovariectomized group suggests an improved sensitivity of the hypothalamic-pituitary axis. In conclusion, birds fed ad libitum showed the highest responsiveness to ovarian factors and to cLHRH-I in releasing FSH in the period before sexual maturity. No effect of amount of feeding could be observed for LH. However, during the egg laying period, LH release by cLHRH-I was highly dependent on amount of feeding and on ovarian feedback regulation. This finding indicates that the amount of feeding can modify the sensitivity of the pituitary to cLHRH-I, and possibly to gonadal hormones, during the laying period.  (+info)

Developmental changes in LH secretion by male pituitaries in vitro: from the infantile to adult period. (6/2118)

The secretion of LH from the anterior pituitary of male rats was studied at different periods of postnatal development. According to an established classification we used rats 14 (infantile), 23 (juvenile), 45 (pubertal) and 90 (adult) days old. By using an in vitro incubation system, both basal and stimulated LH secretion were studied in the same gland. Age-related differences were observed in basal LH secretion, with juvenile and pubertal pituitaries showing higher secretion compared with infantile and adult pituitaries. However, the GnRH-induced secretory response was significantly higher in the infantile rats than in other ages. LH secretion was also studied in primary cultures from infantile or adult pituitaries. In 24 and 48 h cultures, infantile cells showed a significantly larger response to GnRH than that of adult cells. In the infantile pituitary LH-immunopositive cells showed differences in size at different locations in the gland. At the periphery of the lobes the predominant cells were smaller and angular shaped, whereas in the center of the gland the majority of the cells were ovoid shaped. In the adult pituitary, the predominant LH-positive cells were ovoid in shape and larger in size. Furthermore, 10% more LH-positive cells were observed in infantile pituitaries. On the basis of these data we propose that at the infantile period the male rat pituitary has two populations of LH-secreting cells, one with adult secretory function and shape and a second with increased sensitivity to GnRH and with a morphology atypical of the adult cell. The results presented support the hypothesis that the infantile period is a transitional stage in the rat pituitary development.  (+info)

Opposing changes in 3alpha-hydroxysteroid dehydrogenase oxidative and reductive activities in rat leydig cells during pubertal development. (7/2118)

The enzyme 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) has an important role in androgen metabolism, catalyzing the interconversion of dihydrotestosterone (DHT) and 5alpha-androstane-3alpha,17beta-diol (3alpha-DIOL). The net direction of this interconversion will affect the amount of biologically active ligand available for androgen receptor binding. We hypothesize that in Leydig cells, differential expression of 3alpha-HSD enzymes favoring one of the two directions is a mechanism by which DHT levels are controlled. In order to characterize 3alpha-HSD in rat Leydig cells, the following properties were analyzed: rates of oxidation (3alpha-DIOL to DHT) and reduction (DHT to 3alpha-DIOL) and preference for the cofactors NADP(H) and NAD(H) (i.e., the oxidized and reduced forms of both pyridine nucleotides) in Leydig cells isolated on Days 21, 35, and 90 postpartum. Levels of 3alpha-HSD protein were measured by immunoblotting using an antibody directed against the liver type of the enzyme. Levels of 3alpha-HSD protein and rates of reduction were highest on Day 21 and lowest on Day 90. The opposite was true for the rate of 3alpha-HSD oxidation, which was barely detectable on Day 21 and highest on Day 90 (59.08 +/- 6.35 pmol/min per 10(6) cells, mean +/- SE). Therefore, the level of 3alpha-HSD protein detectable by liver enzyme was consistent with reduction but not with oxidation. There was a clear partitioning of NADP(H)-dependent activity into the cytosolic fraction of Leydig cells, whereas on Days 35 and 90, Leydig cells also contained a microsomal NAD(H)-activated 3alpha-HSD. We conclude that 1) the cytosolic 3alpha-HSD in Leydig cells on Day 21 behaves as a unidirectional NADPH-dependent reductase; 2) by Day 35, a microsomal NAD(H)-dependent enzyme activity is present and may account for predominance of 3alpha-HSD oxidation over reduction and the resultant high capacity of Leydig cells on Day 90 to synthesize DHT from 3alpha-DIOL.  (+info)

Disruption of estrogen signaling does not prevent progesterone action in the estrogen receptor alpha knockout mouse uterus. (8/2118)

Estrogen is known to increase progesterone receptor (PR) levels in the wild-type mouse uterus, and this estrogen induction was thought to be important for progesterone action through the PR. The estrogen receptor alpha knockout (ERKO) mouse uterus was observed to express PR mRNA that cannot be induced by estrogen. Progesterone action was characterized to determine whether it was diminished in ERKO mice. The PR protein is present in the ERKO uterus at 60% of the level measured in a wild-type uterus. The PR-A and PR-B isoforms are both detected on Western blot, and the ratio of isoforms is the same in both genotypes. Although the level of PR is reduced in the ERKO uterus, the receptor level is sufficient to induce genomic responses, since both calcitonin and amphiregulin mRNAs were increased after progesterone treatment. Finally, the ERKO uterus can be induced to undergo a progesterone-dependent decidual response. Surprisingly, the decidual response is estrogen independent in the ERKO, although it remains estrogen dependent in a wild type. These results indicate that estrogen receptor alpha modulation of PR levels is not necessary for expression of the PR or genomic and physiologic responses to progesterone in the ERKO uterus.  (+info)

Sexual maturation is the process of physical development during puberty that leads to the ability to reproduce. This process involves the development of primary and secondary sexual characteristics, changes in hormone levels, and the acquisition of reproductive capabilities. In females, this includes the onset of menstruation and the development of breasts and hips. In males, this includes the deepening of the voice, growth of facial hair, and the production of sperm. Achieving sexual maturation is an important milestone in human development and typically occurs during adolescence.

Puberty is the period of sexual maturation, generally occurring between the ages of 10 and 16 in females and between 12 and 18 in males. It is characterized by a series of events including rapid growth, development of secondary sexual characteristics, and the acquisition of reproductive capabilities. Puberty is initiated by the activation of the hypothalamic-pituitary-gonadal axis, leading to the secretion of hormones such as estrogen and testosterone that drive the physical changes associated with this stage of development.

In females, puberty typically begins with the onset of breast development (thelarche) and the appearance of pubic hair (pubarche), followed by the start of menstruation (menarche). In males, puberty usually starts with an increase in testicular size and the growth of pubic hair, followed by the deepening of the voice, growth of facial hair, and the development of muscle mass.

It's important to note that the onset and progression of puberty can vary widely among individuals, and may be influenced by genetic, environmental, and lifestyle factors.

Vitellogenesis is the process of producing and accumulating yolk proteins in the oocytes (immature ovum or egg cell) of females in preparation for fertilization and embryonic development. This process is primarily seen in oviparous animals, such as birds, fish, and insects, where the yolk serves as a source of nutrients for the developing embryo.

The yolk proteins are synthesized mainly in the liver under the control of estrogen hormones and are then transported to the oocytes through the bloodstream. Once inside the oocytes, these proteins are taken up by a process called pinocytosis, where they are enclosed in vesicles and fuse with lysosomes to form yolk granules. The accumulation of these yolk granules provides the developing embryo with essential nutrients such as lipids, carbohydrates, and proteins.

In addition to its role in reproduction, vitellogenesis has been used as a biomarker for environmental estrogen exposure in non-target organisms, as the production of yolk proteins can be induced by estrogenic compounds found in pollutants such as pesticides and industrial chemicals.

The testis, also known as the testicle, is a male reproductive organ that is part of the endocrine system. It is located in the scrotum, outside of the abdominal cavity. The main function of the testis is to produce sperm and testosterone, the primary male sex hormone.

The testis is composed of many tiny tubules called seminiferous tubules, where sperm are produced. These tubules are surrounded by a network of blood vessels, nerves, and supportive tissues. The sperm then travel through a series of ducts to the epididymis, where they mature and become capable of fertilization.

Testosterone is produced in the Leydig cells, which are located in the interstitial tissue between the seminiferous tubules. Testosterone plays a crucial role in the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also supports sperm production and sexual function.

Abnormalities in testicular function can lead to infertility, hormonal imbalances, and other health problems. Regular self-examinations and medical check-ups are recommended for early detection and treatment of any potential issues.

Delayed puberty is a condition where the typical physical changes of puberty, such as the development of secondary sexual characteristics, growth spurt, and fertility, do not begin to occur during the expected age range. In medical terms, delayed puberty is defined as the absence of signs of puberty by age 13 in girls (such as breast development or menstruation) and by age 14 in boys (such as testicular enlargement or growth of facial hair).

There are various factors that can contribute to delayed puberty, including genetic conditions, chronic illnesses, hormonal imbalances, eating disorders, and excessive exercise. In some cases, the cause may be unknown. Delayed puberty can have significant emotional and social consequences for affected individuals, so it is important to seek medical evaluation and treatment if there are concerns about delayed puberty. Treatment options may include hormone replacement therapy or other interventions to support normal pubertal development.

"Anguilla" is a term that refers to a type of fish, rather than something related to medicine or human health. It is a species of eel that belongs to the Anguillidae family. Therefore, there is no medical definition for "Anguilla."

Reproduction, in the context of biology and medicine, refers to the process by which organisms produce offspring. It is a complex process that involves the creation, development, and growth of new individuals from parent organisms. In sexual reproduction, this process typically involves the combination of genetic material from two parents through the fusion of gametes (sex cells) such as sperm and egg cells. This results in the formation of a zygote, which then develops into a new individual with a unique genetic makeup.

In contrast, asexual reproduction does not involve the fusion of gametes and can occur through various mechanisms such as budding, fragmentation, or parthenogenesis. Asexual reproduction results in offspring that are genetically identical to the parent organism.

Reproduction is a fundamental process that ensures the survival and continuation of species over time. It is also an area of active research in fields such as reproductive medicine, where scientists and clinicians work to understand and address issues related to human fertility, contraception, and genetic disorders.

Luteinizing Hormone (LH) is a glycoprotein hormone, which is primarily produced and released by the anterior pituitary gland. In women, a surge of LH triggers ovulation, the release of an egg from the ovaries during the menstrual cycle. During pregnancy, LH stimulates the corpus luteum to produce progesterone. In men, LH stimulates the testes to produce testosterone. It plays a crucial role in sexual development, reproduction, and maintaining the reproductive system.

5-Methoxytryptamine is a psychedelic tryptamine that is found in some plants and animals, as well as being produced synthetically. It is structurally similar to the neurotransmitter serotonin and is known for its ability to alter perception, thought, and mood. 5-Methoxytryptamine is also referred to as "mexamine" or "O-methylated tryptamine." It is a Schedule I controlled substance in the United States, making it illegal to possess or distribute without a license from the Drug Enforcement Administration (DEA).

In the medical field, 5-Methoxytryptamine does not have a specific use as a medication. However, it has been used in some research settings to study its effects on the brain and behavior. It is important to note that the use of 5-Methoxytryptamine or any other psychedelic substance should only be done under the supervision of trained medical professionals in a controlled setting due to the potential risks associated with their use.

Gonadotropin-Releasing Hormone (GnRH), also known as Luteinizing Hormone-Releasing Hormone (LHRH), is a hormonal peptide consisting of 10 amino acids. It is produced and released by the hypothalamus, an area in the brain that links the nervous system to the endocrine system via the pituitary gland.

GnRH plays a crucial role in regulating reproduction and sexual development through its control of two gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH). These gonadotropins, in turn, stimulate the gonads (ovaries or testes) to produce sex steroids and eggs or sperm.

GnRH acts on the anterior pituitary gland by binding to its specific receptors, leading to the release of FSH and LH. The hypothalamic-pituitary-gonadal axis is under negative feedback control, meaning that when sex steroid levels are high, they inhibit the release of GnRH, which subsequently decreases FSH and LH secretion.

GnRH agonists and antagonists have clinical applications in various medical conditions, such as infertility treatments, precocious puberty, endometriosis, uterine fibroids, prostate cancer, and hormone-responsive breast cancer.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

Organ size refers to the volume or physical measurement of an organ in the body of an individual. It can be described in terms of length, width, and height or by using specialized techniques such as imaging studies (like CT scans or MRIs) to determine the volume. The size of an organ can vary depending on factors such as age, sex, body size, and overall health status. Changes in organ size may indicate various medical conditions, including growths, inflammation, or atrophy.

Sexual development is a multidimensional process that includes physical, cognitive, emotional, and social aspects. It refers to the changes and growth that occur in an individual from infancy to adulthood related to sexuality, reproduction, and gender identity. This process involves the maturation of primary and secondary sex characteristics, the development of sexual attraction and desire, and the acquisition of knowledge about sexual health and relationships.

Physical aspects of sexual development include the maturation of reproductive organs, hormonal changes, and the development of secondary sexual characteristics such as breast development in females and facial hair growth in males. Cognitive aspects involve the development of sexual knowledge, attitudes, and values. Emotional aspects refer to the emergence of sexual feelings, desires, and fantasies, as well as the ability to form intimate relationships. Social aspects include the development of gender roles and identities, communication skills related to sexuality, and the ability to navigate social norms and expectations around sexual behavior.

Sexual development is a complex and ongoing process that is influenced by various factors such as genetics, hormones, environment, culture, and personal experiences. It is important to note that sexual development varies widely among individuals, and there is no one "normal" or "correct" way for it to unfold.

I could not find a widely accepted medical definition for "sex attractants" as it is not a standard term used in medical literature. However, the concept of sex attractants is often discussed in the context of animal behavior and can refer to chemical substances that animals produce and release to attract mates. These substances are also known as pheromones.

In humans, there is ongoing scientific debate about whether or not pheromones play a significant role in sexual attraction and mate selection. Some studies suggest that humans may have a functional vomeronasal organ (VNO), which is involved in the detection of pheromones in other animals. However, many scientists remain skeptical about the role of human sex attractants or pheromones due to limited evidence and conflicting results from various studies.

Therefore, it's essential to note that while there may be some scientific interest in the concept of human sex attractants, it is not a well-established area of study within medical research.

Fertility agents, also known as fertility drugs or medications, are substances that are used to enhance or restore fertility in individuals who are having difficulty conceiving a child. These agents work by affecting various aspects of the reproductive system, such as stimulating ovulation, enhancing sperm production, or improving the quality and quantity of eggs produced by the ovaries.

There are several types of fertility agents available, including:

1. Ovulation Inducers: These medications are used to stimulate ovulation in women who do not ovulate regularly or at all. Examples include clomiphene citrate (Clomid) and letrozole (Femara).
2. Gonadotropins: These hormones are administered to stimulate the ovaries to produce multiple eggs during a single menstrual cycle. Examples include human menopausal gonadotropin (hMG), follicle-stimulating hormone (FSH), and luteinizing hormone (LH).
3. Inhibins: These medications are used to prevent premature ovulation and improve the quality of eggs produced by the ovaries. Examples include ganirelix acetate and cetrorelix acetate.
4. Sperm Motility Enhancers: These medications are used to improve sperm motility in men with low sperm count or poor sperm movement. Examples include pentoxifylline and caffeine.
5. Fertility Preservation Medications: These medications are used to preserve fertility in individuals who are undergoing treatments that may affect their reproductive system, such as chemotherapy or radiation therapy. Examples include gonadotropin-releasing hormone agonists (GnRH) and cryopreservation of sperm, eggs, or embryos.

It is important to note that fertility agents can have side effects and should only be used under the guidance of a healthcare professional. It is also essential to discuss any underlying medical conditions, allergies, and potential risks before starting any fertility treatment.

"Male genitalia" refers to the reproductive and sexual organs that are typically present in male individuals. These structures include:

1. Testes: A pair of oval-shaped glands located in the scrotum that produce sperm and testosterone.
2. Epididymis: A long, coiled tube that lies on the surface of each testicle where sperm matures and is stored.
3. Vas deferens: A pair of muscular tubes that transport sperm from the epididymis to the urethra.
4. Seminal vesicles: Glands that produce a fluid that mixes with sperm to create semen.
5. Prostate gland: A small gland that surrounds the urethra and produces a fluid that also mixes with sperm to create semen.
6. Bulbourethral glands (Cowper's glands): Two pea-sized glands that produce a lubricating fluid that is released into the urethra during sexual arousal.
7. Urethra: A tube that runs through the penis and carries urine from the bladder out of the body, as well as semen during ejaculation.
8. Penis: The external organ that serves as both a reproductive and excretory organ, expelling both semen and urine.

Arvicolinae is a subfamily of rodents that includes voles, lemmings, and muskrats. These small mammals are characterized by their short legs, rounded bodies, and short tails. They are primarily found in the northern hemisphere, with the majority of species living in North America and Eurasia.

Arvicolines are known for their high reproductive rate and ability to survive in a variety of habitats, including grasslands, forests, tundra, and wetlands. They have a unique set of teeth called hypsodont teeth, which continue to grow throughout their lives. This adaptation allows them to wear down their teeth as they gnaw on tough plant material.

Many arvicoline species are important prey animals for larger predators, such as hawks, owls, and foxes. Some species, like the muskrat, are also hunted by humans for their fur or meat. In recent years, some arvicoline populations have experienced dramatic fluctuations in size due to changes in their habitats and food supplies, leading to concerns about their conservation status.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Group IB Phospholipases A2 (PLA2s) are a subclass of phospholipases A2, which are enzymes that hydrolyze the sn-2 acyl bond of glycerophospholipids to release free fatty acids and lysophospholipids. Specifically, Group IB PLA2s are secreted enzymes that require calcium ions for their activity and have a low molecular weight. They are produced by various tissues and cells, including pancreas, liver, and immune cells, and play important roles in various biological processes such as inflammation, host defense, and lipid metabolism. Group IB PLA2s have been implicated in several pathological conditions, including atherosclerosis, arthritis, and neurodegenerative diseases.

Menarche is the first occurrence of menstruation in a female adolescent, indicating the onset of reproductive capability. It usually happens between the ages of 10 and 16, with an average age of around 12-13 years old, but it can vary widely from one individual to another due to various factors such as genetics, nutrition, and overall health.

Achieving menarche is a significant milestone in a girl's life, signaling the transition from childhood to adolescence. It is also an essential indicator of sexual maturation, often used in conjunction with other physical changes to assess pubertal development. However, it does not necessarily mean that a girl is psychologically or emotionally prepared for menstruation and sexual activity; therefore, appropriate education and support are crucial during this period.

Gonadotropins are hormones that stimulate the gonads (sex glands) to produce sex steroids and gametes (sex cells). In humans, there are two main types of gonadotropins: follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which are produced and released by the anterior pituitary gland.

FSH plays a crucial role in the development and maturation of ovarian follicles in females and sperm production in males. LH triggers ovulation in females, causing the release of a mature egg from the ovary, and stimulates testosterone production in males.

Gonadotropins are often used in medical treatments to stimulate the gonads, such as in infertility therapies where FSH and LH are administered to induce ovulation or increase sperm production.

Kisspeptins are a family of peptides that are derived from the preproprotein kisspeptin. The most well-known member of this family is kisspeptin-54, which is also known as metastin. Kisspeptins play important roles in several physiological processes, including the regulation of growth, inflammation, and energy homeostasis. However, they are perhaps best known for their role in the reproductive system.

In the reproductive system, kisspeptins act as key regulators of the hypothalamic-pituitary-gonadal (HPG) axis, which is responsible for controlling reproductive function. Kisspeptins are produced by neurons in the hypothalamus and bind to receptors on other neurons that release gonadotropin-releasing hormone (GnRH). GnRH then stimulates the pituitary gland to release follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which act on the gonads to promote the production of sex steroids and eggs or sperm.

Dysregulation of the HPG axis, including abnormal kisspeptin signaling, has been implicated in a number of reproductive disorders, such as precocious puberty, delayed puberty, and infertility. As such, there is significant interest in understanding the role of kisspeptins in reproductive function and developing therapies that target this pathway.

Mirex is not typically defined in a medical context as it is not a medical term. However, Mirex is a chemical compound that was previously used as an insecticide and flame retardant. It is a colorless solid with a weak chemical odor and is highly stable, which led to its use in various applications.

In the medical field, Mirex may be mentioned in relation to environmental health or toxicology due to its potential harmful effects on human health. Exposure to Mirex can occur through contaminated food, water, or air, and it has been linked to several adverse health outcomes, including neurological damage, reproductive problems, and cancer. However, the use of Mirex as an insecticide has been banned in many countries due to its environmental and health hazards.

Aging is a complex, progressive and inevitable process of bodily changes over time, characterized by the accumulation of cellular damage and degenerative changes that eventually lead to increased vulnerability to disease and death. It involves various biological, genetic, environmental, and lifestyle factors that contribute to the decline in physical and mental functions. The medical field studies aging through the discipline of gerontology, which aims to understand the underlying mechanisms of aging and develop interventions to promote healthy aging and extend the human healthspan.

The pituitary gland is a small, endocrine gland located at the base of the brain, in the sella turcica of the sphenoid bone. It is often called the "master gland" because it controls other glands and makes the hormones that trigger many body functions. The pituitary gland measures about 0.5 cm in height and 1 cm in width, and it weighs approximately 0.5 grams.

The pituitary gland is divided into two main parts: the anterior lobe (adenohypophysis) and the posterior lobe (neurohypophysis). The anterior lobe is further divided into three zones: the pars distalis, pars intermedia, and pars tuberalis. Each part of the pituitary gland has distinct functions and produces different hormones.

The anterior pituitary gland produces and releases several important hormones, including:

* Growth hormone (GH), which regulates growth and development in children and helps maintain muscle mass and bone strength in adults.
* Thyroid-stimulating hormone (TSH), which controls the production of thyroid hormones by the thyroid gland.
* Adrenocorticotropic hormone (ACTH), which stimulates the adrenal glands to produce cortisol and other steroid hormones.
* Follicle-stimulating hormone (FSH) and luteinizing hormone (LH), which regulate reproductive function in both males and females.
* Prolactin, which stimulates milk production in pregnant and lactating women.

The posterior pituitary gland stores and releases two hormones that are produced by the hypothalamus:

* Antidiuretic hormone (ADH), which helps regulate water balance in the body by controlling urine production.
* Oxytocin, which stimulates uterine contractions during childbirth and milk release during breastfeeding.

Overall, the pituitary gland plays a critical role in maintaining homeostasis and regulating various bodily functions, including growth, development, metabolism, and reproductive function.

Gonadotropins are hormones produced and released by the anterior pituitary gland, a small endocrine gland located at the base of the brain. These hormones play crucial roles in regulating reproduction and sexual development. There are two main types of gonadotropins:

1. Follicle-Stimulating Hormone (FSH): FSH is essential for the growth and development of follicles in the ovaries (in females) or sperm production in the testes (in males). In females, FSH stimulates the maturation of eggs within the follicles.
2. Luteinizing Hormone (LH): LH triggers ovulation in females, causing the release of a mature egg from the dominant follicle. In males, LH stimulates the production and secretion of testosterone in the testes.

Together, FSH and LH work synergistically to regulate various aspects of reproductive function and sexual development. Their secretion is controlled by the hypothalamus, which releases gonadotropin-releasing hormone (GnRH) to stimulate the production and release of FSH and LH from the anterior pituitary gland.

Abnormal levels of gonadotropins can lead to various reproductive disorders, such as infertility or menstrual irregularities in females and issues related to sexual development or function in both sexes. In some cases, synthetic forms of gonadotropins may be used clinically to treat these conditions or for assisted reproductive technologies (ART).

An ovary is a part of the female reproductive system in which ova or eggs are produced through the process of oogenesis. They are a pair of solid, almond-shaped structures located one on each side of the uterus within the pelvic cavity. Each ovary measures about 3 to 5 centimeters in length and weighs around 14 grams.

The ovaries have two main functions: endocrine (hormonal) function and reproductive function. They produce and release eggs (ovulation) responsible for potential fertilization and development of an embryo/fetus during pregnancy. Additionally, they are essential in the production of female sex hormones, primarily estrogen and progesterone, which regulate menstrual cycles, sexual development, and reproduction.

During each menstrual cycle, a mature egg is released from one of the ovaries into the fallopian tube, where it may be fertilized by sperm. If not fertilized, the egg, along with the uterine lining, will be shed, leading to menstruation.

Follicle-Stimulating Hormone (FSH) is a glycoprotein hormone secreted and released by the anterior pituitary gland. In females, it promotes the growth and development of ovarian follicles in the ovary, which ultimately leads to the maturation and release of an egg (ovulation). In males, FSH stimulates the testes to produce sperm. It works in conjunction with luteinizing hormone (LH) to regulate reproductive processes. The secretion of FSH is controlled by the hypothalamic-pituitary-gonadal axis and its release is influenced by the levels of gonadotropin-releasing hormone (GnRH), estrogen, inhibin, and androgens.

Age determination by skeleton, also known as skeletal aging or skeletal maturation, is the process of estimating a person's age based on the analysis of their skeletal remains. This technique is commonly used in forensic anthropology to help identify unknown individuals or determine the time since death.

The method involves examining various features of the skeleton, such as the degree of fusion of epiphyseal growth plates, the shape and size of certain bones, and the presence or absence of degenerative changes. These features change in a predictable way as a person grows and develops, allowing for an estimation of their age at death.

It is important to note that while skeletal aging can provide useful information, it is not always possible to determine an exact age. Instead, forensic anthropologists typically provide a range of ages that the individual may have fallen into based on the skeletal evidence. Additionally, factors such as genetics, nutrition, and health can affect the rate at which skeletal features develop, making it difficult to provide a precise estimate in some cases.

Sexual behavior in animals refers to a variety of behaviors related to reproduction and mating that occur between members of the same species. These behaviors can include courtship displays, mating rituals, and various physical acts. The specific forms of sexual behavior displayed by a given species are influenced by a combination of genetic, hormonal, and environmental factors.

In some animals, sexual behavior is closely tied to reproductive cycles and may only occur during certain times of the year or under specific conditions. In other species, sexual behavior may be more frequent and less closely tied to reproduction, serving instead as a means of social bonding or communication.

It's important to note that while humans are animals, the term "sexual behavior" is often used in a more specific sense to refer to sexual activities between human beings. The study of sexual behavior in animals is an important area of research within the field of animal behavior and can provide insights into the evolutionary origins of human sexual behavior as well as the underlying mechanisms that drive it.

"Phodopus" is not a medical term, but a taxonomic genus that includes several species of small rodents commonly known as hamsters. The most common species within this genus are the Campbell's dwarf hamster (Phodopus campbelli) and the Djungarian or Russian winter white hamster (Phodopus sungorus). These hamsters are often kept as pets and may be involved in biomedical research. However, they are not typically associated with medical conditions or treatments.

Melatonin is a hormone that is produced by the pineal gland in the brain. It helps regulate sleep-wake cycles and is often referred to as the "hormone of darkness" because its production is stimulated by darkness and inhibited by light. Melatonin plays a key role in synchronizing the circadian rhythm, the body's internal clock that regulates various biological processes over a 24-hour period.

Melatonin is primarily released at night, and its levels in the blood can rise and fall in response to changes in light and darkness in an individual's environment. Supplementing with melatonin has been found to be helpful in treating sleep disorders such as insomnia, jet lag, and delayed sleep phase syndrome. It may also have other benefits, including antioxidant properties and potential uses in the treatment of certain neurological conditions.

It is important to note that while melatonin supplements are available over-the-counter in many countries, they should still be used under the guidance of a healthcare professional, as their use can have potential side effects and interactions with other medications.

Estradiol is a type of estrogen, which is a female sex hormone. It is the most potent and dominant form of estrogen in humans. Estradiol plays a crucial role in the development and maintenance of secondary sexual characteristics in women, such as breast development and regulation of the menstrual cycle. It also helps maintain bone density, protect the lining of the uterus, and is involved in cognition and mood regulation.

Estradiol is produced primarily by the ovaries, but it can also be synthesized in smaller amounts by the adrenal glands and fat cells. In men, estradiol is produced from testosterone through a process called aromatization. Abnormal levels of estradiol can contribute to various health issues, such as hormonal imbalances, infertility, osteoporosis, and certain types of cancer.

Photoperiod is a term used in chronobiology, which is the study of biological rhythms and their synchronization with environmental cycles. In medicine, photoperiod specifically refers to the duration of light and darkness in a 24-hour period, which can significantly impact various physiological processes in living organisms, including humans.

In human medicine, photoperiod is often considered in relation to circadian rhythms, which are internal biological clocks that regulate several functions such as sleep-wake cycles, hormone secretion, and metabolism. The length of the photoperiod can influence these rhythms and contribute to the development or management of certain medical conditions, like mood disorders, sleep disturbances, and metabolic disorders.

For instance, exposure to natural daylight or artificial light sources with specific intensities and wavelengths during particular times of the day can help regulate circadian rhythms and improve overall health. Conversely, disruptions in the photoperiod due to factors like shift work, jet lag, or artificial lighting can lead to desynchronization of circadian rhythms and related health issues.

Cyprinodontiformes is an order of ray-finned fish that includes several families, such as Cyprinodontidae (livebearers), Poeciliidae (including guppies and mollies), Aplocheilidae, Nothobranchiidae, Rivulidae, Valenciidae, Profundulidae, Goodeidae, Anablepidae, and Jenynsiidae. These fish are characterized by their small size, live-bearing reproduction (in most families), and the presence of a urogenital papilla in males. They inhabit a wide range of freshwater and brackish environments, with some species also found in marine habitats. Many cyprinodontiform fishes are popular as aquarium pets due to their vibrant colors and interesting behaviors.

Gonads are the reproductive organs that produce gametes (sex cells) and sex hormones. In males, the gonads are the testes, which produce sperm and testosterone. In females, the gonads are the ovaries, which produce eggs and estrogen and progesterone. The development, function, and regulation of the gonads are crucial for reproductive health and fertility.

Estrus is a term used in veterinary medicine to describe the physiological and behavioral state of female mammals that are ready to mate and conceive. It refers to the period of time when the female's reproductive system is most receptive to fertilization.

During estrus, the female's ovaries release one or more mature eggs (ovulation) into the fallopian tubes, where they can be fertilized by sperm from a male. This phase of the estrous cycle is often accompanied by changes in behavior and physical appearance, such as increased vocalization, restlessness, and swelling of the genital area.

The duration and frequency of estrus vary widely among different species of mammals. In some animals, such as dogs and cats, estrus occurs regularly at intervals of several weeks or months, while in others, such as cows and mares, it may only occur once or twice a year.

It's important to note that the term "estrus" is not used to describe human reproductive physiology. In humans, the equivalent phase of the menstrual cycle is called ovulation.

Gonadal steroid hormones, also known as gonadal sex steroids, are hormones that are produced and released by the gonads (i.e., ovaries in women and testes in men). These hormones play a critical role in the development and maintenance of secondary sexual characteristics, reproductive function, and overall health.

The three main classes of gonadal steroid hormones are:

1. Androgens: These are male sex hormones that are primarily produced by the testes but also produced in smaller amounts by the ovaries and adrenal glands. The most well-known androgen is testosterone, which plays a key role in the development of male secondary sexual characteristics such as facial hair, deepening of the voice, and increased muscle mass.
2. Estrogens: These are female sex hormones that are primarily produced by the ovaries but also produced in smaller amounts by the adrenal glands. The most well-known estrogen is estradiol, which plays a key role in the development of female secondary sexual characteristics such as breast development and the menstrual cycle.
3. Progestogens: These are hormones that are produced by the ovaries during the second half of the menstrual cycle and play a key role in preparing the uterus for pregnancy. The most well-known progestogen is progesterone, which also plays a role in maintaining pregnancy and regulating the menstrual cycle.

Gonadal steroid hormones can have significant effects on various physiological processes, including bone density, cognitive function, mood, and sexual behavior. Disorders of gonadal steroid hormone production or action can lead to a range of health problems, including infertility, osteoporosis, and sexual dysfunction.

Fertility is the natural ability to conceive or to cause conception of offspring. In humans, it is the capacity of a woman and a man to reproduce through sexual reproduction. For women, fertility usually takes place during their reproductive years, which is from adolescence until menopause. A woman's fertility depends on various factors including her age, overall health, and the health of her reproductive system.

For men, fertility can be affected by a variety of factors such as age, genetics, general health, sexual function, and environmental factors that may affect sperm production or quality. Factors that can negatively impact male fertility include exposure to certain chemicals, radiation, smoking, alcohol consumption, drug use, and sexually transmitted infections (STIs).

Infertility is a common medical condition affecting about 10-15% of couples trying to conceive. Infertility can be primary or secondary. Primary infertility refers to the inability to conceive after one year of unprotected sexual intercourse, while secondary infertility refers to the inability to conceive following a previous pregnancy.

Infertility can be treated with various medical and surgical interventions depending on the underlying cause. These may include medications to stimulate ovulation, intrauterine insemination (IUI), in vitro fertilization (IVF), or surgery to correct anatomical abnormalities.

Vitellogenins are a group of precursor proteins that are synthesized in the liver and subsequently transported to the ovaries, where they are taken up by developing oocytes. Once inside the oocyte, vitellogenins are cleaved into smaller proteins called lipovitellins and phosvitins, which play a crucial role in providing nutrients and energy to the developing embryo.

Vitellogenins are found in many oviparous species, including birds, reptiles, amphibians, fish, and some invertebrates. They are typically composed of several domains, including a large N-terminal domain that is rich in acidic amino acids, a central von Willebrand factor type D domain, and a C-terminal domain that contains multiple repeat units.

In addition to their role in egg development, vitellogenins have also been implicated in various physiological processes, such as immune function, stress response, and metal homeostasis. Moreover, the levels of vitellogenin in the blood can serve as a biomarker for environmental exposure to estrogenic compounds, as these chemicals can induce the synthesis of vitellogenins in male and juvenile animals.

In the context of medicine, growth generally refers to the increase in size or mass of an organism or a specific part of the body over time. This can be quantified through various methods such as measuring height, weight, or the dimensions of particular organs or tissues. In children, normal growth is typically assessed using growth charts that plot measurements like height and weight against age to determine whether a child's growth is following a typical pattern.

Growth can be influenced by a variety of factors, including genetics, nutrition, hormonal regulation, and overall health status. Abnormalities in growth patterns may indicate underlying medical conditions or developmental disorders that require further evaluation and treatment.

In the context of medicine, "periodicity" refers to the occurrence of events or phenomena at regular intervals or cycles. This term is often used in reference to recurring symptoms or diseases that have a pattern of appearing and disappearing over time. For example, some medical conditions like menstrual cycles, sleep-wake disorders, and certain infectious diseases exhibit periodicity. It's important to note that the duration and frequency of these cycles can vary depending on the specific condition or individual.

Seminiferous tubules are the long, convoluted tubes within the testicles that are responsible for producing sperm in males. They are lined with specialized epithelial cells called Sertoli cells, which provide structural support and nourishment to developing sperm cells. The seminiferous tubules also contain germ cells, which divide and differentiate into spermatozoa (sperm) through the process of spermatogenesis.

The seminiferous tubules are surrounded by a thin layer of smooth muscle called the tunica albuginea, which helps to maintain the structure and integrity of the testicle. The tubules are connected to the rete testis, a network of channels that transport sperm to the epididymis for further maturation and storage before ejaculation.

Damage or dysfunction of the seminiferous tubules can lead to male infertility, as well as other reproductive health issues.

Sperm maturation is the process by which spermatids, immature sperm cells produced in meiosis, transform into fully developed spermatozoa capable of fertilization. This complex process occurs in the seminiferous tubules of the testes and includes several stages:

1. **Golfi formation:** The first step involves the spermatids reorganizing their cytoplasm and forming a cap-like structure called the acrosome, which contains enzymes that help the sperm penetrate the egg's outer layers during fertilization.
2. **Flagellum development:** The spermatid also develops a tail (flagellum), enabling it to move independently. This is achieved through the assembly of microtubules and other associated proteins.
3. **Nuclear condensation and elongation:** The sperm's DNA undergoes significant compaction, making the nucleus smaller and more compact. Concurrently, the nucleus elongates and aligns with the flagellum.
4. **Mitochondrial positioning:** Mitochondria, which provide energy for sperm motility, migrate to the midpiece of the sperm, close to the base of the flagellum.
5. **Chromatin packaging:** Histones, proteins that help package DNA in non-sperm cells, are replaced by transition proteins and then protamines, which further compact and protect the sperm's DNA.
6. **Sperm release (spermiation):** The mature sperm is finally released from the supporting Sertoli cells into the lumen of the seminiferous tubule, where it mixes with fluid secreted by the testicular tissue to form seminal plasma.

This entire process takes approximately 64 days in humans.

Leydig cells, also known as interstitial cells of Leydig or interstitial cell-stroma, are cells in the testes that produce and release testosterone and other androgens into the bloodstream. They are located in the seminiferous tubules of the testis, near the blood vessels, and are named after Franz Leydig, the German physiologist who discovered them in 1850.

Leydig cells contain cholesterol esters, which serve as precursors for the synthesis of testosterone. They respond to luteinizing hormone (LH) released by the anterior pituitary gland, which stimulates the production and release of testosterone. Testosterone is essential for the development and maintenance of male secondary sexual characteristics, such as facial hair, deep voice, and muscle mass. It also plays a role in sperm production and bone density.

In addition to their endocrine function, Leydig cells have been shown to have non-hormonal functions, including phagocytosis, antigen presentation, and immune regulation. However, these functions are not as well understood as their hormonal roles.

I'm sorry for any confusion, but "seasons" is not a term that has a medical definition. Seasons refer to the four divisions of the year (spring, summer, autumn or fall, and winter) based on the position of the earth in its orbit around the sun. If you have any questions related to health or medicine, I'd be happy to try to help answer those!

Glycoprotein hormones are a group of hormones that share a similar structure and are made up of four subunits: two identical alpha subunits and two distinct beta subunits. The alpha subunit is common to all glycoprotein hormones, including thyroid-stimulating hormone (TSH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG).

The alpha subunit of glycoprotein hormones is a 92 amino acid polypeptide chain that contains several disulfide bonds, which help to stabilize its structure. It is heavily glycosylated, meaning that it contains many carbohydrate groups attached to the protein backbone. The alpha subunit plays an important role in the biological activity of the hormone by interacting with a specific receptor on the target cell surface.

The alpha subunit contains several regions that are important for its function, including a signal peptide, a variable region, and a conserved region. The signal peptide is a short sequence of amino acids at the N-terminus of the protein that directs it to the endoplasmic reticulum for processing and secretion. The variable region contains several amino acid residues that differ between different glycoprotein hormones, while the conserved region contains amino acids that are identical or very similar in all glycoprotein hormones.

Together with the beta subunit, the alpha subunit forms the functional hormone molecule. The beta subunit determines the specificity of the hormone for its target cells and regulates its biological activity.

The pineal gland, also known as the epiphysis cerebri, is a small endocrine gland located in the brain. It is shaped like a pinecone, hence its name, and is situated near the center of the brain, between the two hemispheres, attached to the third ventricle. The primary function of the pineal gland is to produce melatonin, a hormone that helps regulate sleep-wake cycles and circadian rhythms in response to light and darkness. Additionally, it plays a role in the onset of puberty and has been suggested to have other functions related to cognition, mood, and reproduction, although these are not as well understood.

Pheromones are chemical signals that one organism releases into the environment that can affect the behavior or physiology of other organisms of the same species. They are primarily used for communication in animals, including insects and mammals. In humans, the existence and role of pheromones are still a subject of ongoing research and debate.

In a medical context, pheromones may be discussed in relation to certain medical conditions or treatments that involve olfactory (smell) stimuli, such as some forms of aromatherapy. However, it's important to note that the use of pheromones as a medical treatment is not widely accepted and more research is needed to establish their effectiveness and safety.

Spermatogenesis is the process by which sperm cells, or spermatozoa, are produced in male organisms. It occurs in the seminiferous tubules of the testes and involves several stages:

1. Spermatocytogenesis: This is the initial stage where diploid spermatogonial stem cells divide mitotically to produce more spermatogonia, some of which will differentiate into primary spermatocytes.
2. Meiosis: The primary spermatocytes undergo meiotic division to form haploid secondary spermatocytes, which then divide again to form haploid spermatids. This process results in the reduction of chromosome number from 46 (diploid) to 23 (haploid).
3. Spermiogenesis: The spermatids differentiate into spermatozoa, undergoing morphological changes such as the formation of a head and tail. During this stage, most of the cytoplasm is discarded, resulting in highly compacted and streamlined sperm cells.
4. Spermation: The final stage where mature sperm are released from the seminiferous tubules into the epididymis for further maturation and storage.

The entire process takes approximately 72-74 days in humans, with continuous production throughout adulthood.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

The seminal vesicles are a pair of glands located in the male reproductive system, posterior to the urinary bladder and superior to the prostate gland. They are approximately 5 cm long and have a convoluted structure with many finger-like projections called infoldings. The primary function of seminal vesicles is to produce and secrete a significant portion of the seminal fluid, which makes up the bulk of semen along with spermatozoa from the testes and fluids from the prostate gland and bulbourethral glands.

The secretion of the seminal vesicles is rich in fructose, which serves as an energy source for sperm, as well as various proteins, enzymes, vitamins, and minerals that contribute to maintaining the optimal environment for sperm survival, nourishment, and transport. During sexual arousal and ejaculation, the smooth muscles in the walls of the seminal vesicles contract, forcing the stored secretion into the urethra, where it mixes with other fluids before being expelled from the body as semen.

Inhibins are a group of protein hormones that play a crucial role in regulating the function of the reproductive system, specifically by inhibiting the production of follicle-stimulating hormone (FSH) in the pituitary gland. They are produced and secreted primarily by the granulosa cells in the ovaries of females and Sertoli cells in the testes of males.

Inhibins consist of two subunits, an alpha subunit, and a beta subunit, which can be further divided into two types: inhibin A and inhibin B. Inhibin A is primarily produced by the granulosa cells of developing follicles in the ovary, while inhibin B is mainly produced by the Sertoli cells in the testes.

By regulating FSH production, inhibins help control the development and maturation of ovarian follicles in females and spermatogenesis in males. Abnormal levels of inhibins have been associated with various reproductive disorders, including polycystic ovary syndrome (PCOS) and certain types of cancer.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

"Salmo salar" is the scientific name for the Atlantic salmon, which is a species of ray-finned fish belonging to the family Salmonidae. This anadromous fish is born in freshwater, migrates to the sea as a juvenile, then returns to freshwater to reproduce. The Atlantic salmon is highly valued for its nutritional content and is a popular choice for food worldwide. It's also an important species for recreational fishing and aquaculture.

An oocyte, also known as an egg cell or female gamete, is a large specialized cell found in the ovary of female organisms. It contains half the number of chromosomes as a normal diploid cell, as it is the product of meiotic division. Oocytes are surrounded by follicle cells and are responsible for the production of female offspring upon fertilization with sperm. The term "oocyte" specifically refers to the immature egg cell before it reaches full maturity and is ready for fertilization, at which point it is referred to as an ovum or egg.

Hypogonadism is a medical condition characterized by the inability of the gonads (testes in males and ovaries in females) to produce sufficient amounts of sex hormones, such as testosterone and estrogen. This can lead to various symptoms including decreased libido, erectile dysfunction in men, irregular menstrual periods in women, and reduced fertility in both sexes. Hypogonadism may be caused by genetic factors, aging, injury to the gonads, or certain medical conditions such as pituitary disorders. It can be treated with hormone replacement therapy.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

LHRH (Luteinizing Hormone-Releasing Hormone) receptors are a type of G protein-coupled receptor found on the surface of certain cells in the body, most notably in the anterior pituitary gland. These receptors bind to LHRH, a hormone that is produced and released by the hypothalamus in the brain.

When LHRH binds to its receptor, it triggers a series of intracellular signaling events that ultimately lead to the release of two other hormones from the anterior pituitary gland: luteinizing hormone (LH) and follicle-stimulating hormone (FSH). These hormones play critical roles in regulating reproductive function, including the development and maturation of sex cells (sperm and eggs), the production of sex steroid hormones (such as testosterone and estrogen), and the regulation of the menstrual cycle in females.

Disorders of the LHRH receptor or its signaling pathway can lead to a variety of reproductive disorders, including precocious puberty, delayed puberty, and infertility.

"Sex characteristics" refer to the anatomical, chromosomal, and genetic features that define males and females. These include both primary sex characteristics (such as reproductive organs like ovaries or testes) and secondary sex characteristics (such as breasts or facial hair) that typically develop during puberty. Sex characteristics are primarily determined by the presence of either X or Y chromosomes, with XX individuals usually developing as females and XY individuals usually developing as males, although variations and exceptions to this rule do occur.

"Newborn animals" refers to the very young offspring of animals that have recently been born. In medical terminology, newborns are often referred to as "neonates," and they are classified as such from birth until about 28 days of age. During this time period, newborn animals are particularly vulnerable and require close monitoring and care to ensure their survival and healthy development.

The specific needs of newborn animals can vary widely depending on the species, but generally, they require warmth, nutrition, hydration, and protection from harm. In many cases, newborns are unable to regulate their own body temperature or feed themselves, so they rely heavily on their mothers for care and support.

In medical settings, newborn animals may be examined and treated by veterinarians to ensure that they are healthy and receiving the care they need. This can include providing medical interventions such as feeding tubes, antibiotics, or other treatments as needed to address any health issues that arise. Overall, the care and support of newborn animals is an important aspect of animal medicine and conservation efforts.

Prolactin is a hormone produced by the pituitary gland, a small gland located at the base of the brain. Its primary function is to stimulate milk production in women after childbirth, a process known as lactation. However, prolactin also plays other roles in the body, including regulating immune responses, metabolism, and behavior. In men, prolactin helps maintain the sexual glands and contributes to paternal behaviors.

Prolactin levels are usually low in both men and non-pregnant women but increase significantly during pregnancy and after childbirth. Various factors can affect prolactin levels, including stress, sleep, exercise, and certain medications. High prolactin levels can lead to medical conditions such as amenorrhea (absence of menstruation), galactorrhea (spontaneous milk production not related to childbirth), infertility, and reduced sexual desire in both men and women.

Animal migration is a seasonal movement of animals from one place to another, typically over long distances, to find food, reproduce, or escape harsh conditions. This phenomenon is observed in various species, including birds, mammals, fish, and insects. The routes and destinations of these migrations are often genetically programmed and can be quite complex. Animal migration has important ecological consequences and is influenced by factors such as climate change, habitat loss, and human activities.

Orchiectomy is a surgical procedure where one or both of the testicles are removed. It is also known as castration. This procedure can be performed for various reasons, including the treatment of testicular cancer, prostate cancer, or other conditions that may affect the testicles. It can also be done to reduce levels of male hormones in the body, such as in the case of transgender women undergoing gender affirming surgery. The specific medical definition may vary slightly depending on the context and the extent of the procedure.

In the context of medical terminology, "light" doesn't have a specific or standardized definition on its own. However, it can be used in various medical terms and phrases. For example, it could refer to:

1. Visible light: The range of electromagnetic radiation that can be detected by the human eye, typically between wavelengths of 400-700 nanometers. This is relevant in fields such as ophthalmology and optometry.
2. Therapeutic use of light: In some therapies, light is used to treat certain conditions. An example is phototherapy, which uses various wavelengths of ultraviolet (UV) or visible light for conditions like newborn jaundice, skin disorders, or seasonal affective disorder.
3. Light anesthesia: A state of reduced consciousness in which the patient remains responsive to verbal commands and physical stimulation. This is different from general anesthesia where the patient is completely unconscious.
4. Pain relief using light: Certain devices like transcutaneous electrical nerve stimulation (TENS) units have a 'light' setting, indicating lower intensity or frequency of electrical impulses used for pain management.

Without more context, it's hard to provide a precise medical definition of 'light'.

Castration is a surgical procedure to remove the testicles in males or ovaries in females. In males, it is also known as orchiectomy. This procedure results in the inability to produce sex hormones and gametes (sperm in men and eggs in women), and can be done for various reasons such as medical treatment for certain types of cancer, to reduce sexual urges in individuals with criminal tendencies, or as a form of birth control in animals.

The term "body constitution" is often used in traditional systems of medicine, such as Traditional Chinese Medicine (TCM) and Ayurveda. It refers to the unique combination of physical and psychological characteristics that make up an individual's inherent nature and predisposition to certain health conditions. In TCM, for example, a person's body constitution may be classified as being predominantly hot, cold, damp, or dry, which can influence their susceptibility to certain diseases and their response to treatment. Similarly, in Ayurveda, an individual's constitution is determined by the balance of three fundamental energies or doshas: Vata, Pitta, and Kapha. Understanding a person's body constitution is thought to be essential for developing a personalized approach to healthcare that addresses their unique needs and tendencies. However, it should be noted that this concept is not widely recognized in modern Western medicine.

Ovariectomy is a surgical procedure in which one or both ovaries are removed. It is also known as "ovary removal" or "oophorectomy." This procedure is often performed as a treatment for various medical conditions, including ovarian cancer, endometriosis, uterine fibroids, and pelvic pain. Ovariectomy can also be part of a larger surgical procedure called an hysterectomy, in which the uterus is also removed.

In some cases, an ovariectomy may be performed as a preventative measure for individuals at high risk of developing ovarian cancer. This is known as a prophylactic ovariectomy. After an ovariectomy, a person will no longer have menstrual periods and will be unable to become pregnant naturally. Hormone replacement therapy may be recommended in some cases to help manage symptoms associated with the loss of hormones produced by the ovaries.

Ovulation is the medical term for the release of a mature egg from an ovary during a woman's menstrual cycle. The released egg travels through the fallopian tube where it may be fertilized by sperm if sexual intercourse has occurred recently. If the egg is not fertilized, it will break down and leave the body along with the uterine lining during menstruation. Ovulation typically occurs around day 14 of a 28-day menstrual cycle, but the timing can vary widely from woman to woman and even from cycle to cycle in the same woman.

During ovulation, there are several physical changes that may occur in a woman's body, such as an increase in basal body temperature, changes in cervical mucus, and mild cramping or discomfort on one side of the lower abdomen (known as mittelschmerz). These symptoms can be used to help predict ovulation and improve the chances of conception.

It's worth noting that some medical conditions, such as polycystic ovary syndrome (PCOS) or premature ovarian failure, may affect ovulation and make it difficult for a woman to become pregnant. In these cases, medical intervention may be necessary to help promote ovulation and increase the chances of conception.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Cell differentiation is the process by which a less specialized cell, or stem cell, becomes a more specialized cell type with specific functions and structures. This process involves changes in gene expression, which are regulated by various intracellular signaling pathways and transcription factors. Differentiation results in the development of distinct cell types that make up tissues and organs in multicellular organisms. It is a crucial aspect of embryonic development, tissue repair, and maintenance of homeostasis in the body.

Developmental gene expression regulation refers to the processes that control the activation or repression of specific genes during embryonic and fetal development. These regulatory mechanisms ensure that genes are expressed at the right time, in the right cells, and at appropriate levels to guide proper growth, differentiation, and morphogenesis of an organism.

Developmental gene expression regulation is a complex and dynamic process involving various molecular players, such as transcription factors, chromatin modifiers, non-coding RNAs, and signaling molecules. These regulators can interact with cis-regulatory elements, like enhancers and promoters, to fine-tune the spatiotemporal patterns of gene expression during development.

Dysregulation of developmental gene expression can lead to various congenital disorders and developmental abnormalities. Therefore, understanding the principles and mechanisms governing developmental gene expression regulation is crucial for uncovering the etiology of developmental diseases and devising potential therapeutic strategies.

Urine is a physiological excretory product that is primarily composed of water, urea, and various ions (such as sodium, potassium, chloride, and others) that are the byproducts of protein metabolism. It also contains small amounts of other substances like uric acid, creatinine, ammonia, and various organic compounds. Urine is produced by the kidneys through a process called urination or micturition, where it is filtered from the blood and then stored in the bladder until it is excreted from the body through the urethra. The color, volume, and composition of urine can provide important diagnostic information about various medical conditions.

Oogenesis is the biological process of formation and maturation of female gametes, or ova or egg cells, in the ovary. It begins during fetal development and continues throughout a woman's reproductive years. The process involves the division and differentiation of a germ cell (oogonium) into an immature ovum (oocyte), which then undergoes meiotic division to form a mature ovum capable of being fertilized by sperm.

The main steps in oogenesis include:

1. Multiplication phase: The oogonia divide mitotically to increase their number.
2. Growth phase: One of the oogonia becomes primary oocyte and starts to grow, accumulating nutrients and organelles required for future development.
3. First meiotic division: The primary oocyte undergoes an incomplete first meiotic division, resulting in two haploid cells - a secondary oocyte and a smaller cell called the first polar body. This division is arrested in prophase I until puberty.
4. Second meiotic division: At ovulation or just before fertilization, the secondary oocyte completes the second meiotic division, producing another small cell, the second polar body, and a mature ovum (egg) with 23 chromosomes.
5. Fertilization: The mature ovum can be fertilized by a sperm, restoring the normal diploid number of chromosomes in the resulting zygote.

Oogenesis is a complex and highly regulated process that involves various hormonal signals and cellular interactions to ensure proper development and maturation of female gametes for successful reproduction.

"Body height" is a measure of the vertical length of a person's body from the top of their head to the bottom of their feet. It is typically measured in units such as centimeters (cm) or inches (in). In medical settings, body height is often used as a basic anthropometric measurement to assess overall health status, growth and development, nutritional status, and aging-related changes.

There are different methods for measuring body height, but the most common one involves having the person stand upright against a vertical surface (such as a wall or a stadiometer) with their heels, buttocks, shoulders, and head touching the surface. The measurement is taken at the point where the top of the person's head meets the surface.

Body height can be influenced by various factors, including genetics, nutrition, health status, and environmental conditions. Changes in body height over time can provide important insights into a person's health trajectory and potential health risks. For example, a significant decrease in body height may indicate bone loss or spinal compression, while a rapid increase in height during childhood or adolescence may suggest optimal growth and development.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

"Chickens" is a common term used to refer to the domesticated bird, Gallus gallus domesticus, which is widely raised for its eggs and meat. However, in medical terms, "chickens" is not a standard term with a specific definition. If you have any specific medical concern or question related to chickens, such as food safety or allergies, please provide more details so I can give a more accurate answer.

The hypothalamus is a small, vital region of the brain that lies just below the thalamus and forms part of the limbic system. It plays a crucial role in many important functions including:

1. Regulation of body temperature, hunger, thirst, fatigue, sleep, and circadian rhythms.
2. Production and regulation of hormones through its connection with the pituitary gland (the hypophysis). It controls the release of various hormones by producing releasing and inhibiting factors that regulate the anterior pituitary's function.
3. Emotional responses, behavior, and memory formation through its connections with the limbic system structures like the amygdala and hippocampus.
4. Autonomic nervous system regulation, which controls involuntary physiological functions such as heart rate, blood pressure, and digestion.
5. Regulation of the immune system by interacting with the autonomic nervous system.

Damage to the hypothalamus can lead to various disorders like diabetes insipidus, growth hormone deficiency, altered temperature regulation, sleep disturbances, and emotional or behavioral changes.

Progesterone is a steroid hormone that is primarily produced in the ovaries during the menstrual cycle and in pregnancy. It plays an essential role in preparing the uterus for implantation of a fertilized egg and maintaining the early stages of pregnancy. Progesterone works to thicken the lining of the uterus, creating a nurturing environment for the developing embryo.

During the menstrual cycle, progesterone is produced by the corpus luteum, a temporary structure formed in the ovary after an egg has been released from a follicle during ovulation. If pregnancy does not occur, the levels of progesterone will decrease, leading to the shedding of the uterine lining and menstruation.

In addition to its reproductive functions, progesterone also has various other effects on the body, such as helping to regulate the immune system, supporting bone health, and potentially influencing mood and cognition. Progesterone can be administered medically in the form of oral pills, intramuscular injections, or vaginal suppositories for various purposes, including hormone replacement therapy, contraception, and managing certain gynecological conditions.

Leptin is a hormone primarily produced and released by adipocytes, which are the fat cells in our body. It plays a crucial role in regulating energy balance and appetite by sending signals to the brain when the body has had enough food. This helps control body weight by suppressing hunger and increasing energy expenditure. Leptin also influences various metabolic processes, including glucose homeostasis, neuroendocrine function, and immune response. Defects in leptin signaling can lead to obesity and other metabolic disorders.

The uterus, also known as the womb, is a hollow, muscular organ located in the female pelvic cavity, between the bladder and the rectum. It has a thick, middle layer called the myometrium, which is composed of smooth muscle tissue, and an inner lining called the endometrium, which provides a nurturing environment for the fertilized egg to develop into a fetus during pregnancy.

The uterus is where the baby grows and develops until it is ready for birth through the cervix, which is the lower, narrow part of the uterus that opens into the vagina. The uterus plays a critical role in the menstrual cycle as well, by shedding its lining each month if pregnancy does not occur.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Dendritic cells (DCs) are a type of immune cell that play a critical role in the body's defense against infection and cancer. They are named for their dendrite-like projections, which they use to interact with and sample their environment. DCs are responsible for processing antigens (foreign substances that trigger an immune response) and presenting them to T cells, a type of white blood cell that plays a central role in the immune system's response to infection and cancer.

DCs can be found throughout the body, including in the skin, mucous membranes, and lymphoid organs. They are able to recognize and respond to a wide variety of antigens, including those from bacteria, viruses, fungi, and parasites. Once they have processed an antigen, DCs migrate to the lymph nodes, where they present the antigen to T cells. This interaction activates the T cells, which then go on to mount a targeted immune response against the invading pathogen or cancerous cells.

DCs are a diverse group of cells that can be divided into several subsets based on their surface markers and function. Some DCs, such as Langerhans cells and dermal DCs, are found in the skin and mucous membranes, where they serve as sentinels for invading pathogens. Other DCs, such as plasmacytoid DCs and conventional DCs, are found in the lymphoid organs, where they play a role in activating T cells and initiating an immune response.

Overall, dendritic cells are essential for the proper functioning of the immune system, and dysregulation of these cells has been implicated in a variety of diseases, including autoimmune disorders and cancer.

A base sequence in the context of molecular biology refers to the specific order of nucleotides in a DNA or RNA molecule. In DNA, these nucleotides are adenine (A), guanine (G), cytosine (C), and thymine (T). In RNA, uracil (U) takes the place of thymine. The base sequence contains genetic information that is transcribed into RNA and ultimately translated into proteins. It is the exact order of these bases that determines the genetic code and thus the function of the DNA or RNA molecule.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is a laboratory technique used in molecular biology to amplify and detect specific DNA sequences. This technique is particularly useful for the detection and quantification of RNA viruses, as well as for the analysis of gene expression.

The process involves two main steps: reverse transcription and polymerase chain reaction (PCR). In the first step, reverse transcriptase enzyme is used to convert RNA into complementary DNA (cDNA) by reading the template provided by the RNA molecule. This cDNA then serves as a template for the PCR amplification step.

In the second step, the PCR reaction uses two primers that flank the target DNA sequence and a thermostable polymerase enzyme to repeatedly copy the targeted cDNA sequence. The reaction mixture is heated and cooled in cycles, allowing the primers to anneal to the template, and the polymerase to extend the new strand. This results in exponential amplification of the target DNA sequence, making it possible to detect even small amounts of RNA or cDNA.

RT-PCR is a sensitive and specific technique that has many applications in medical research and diagnostics, including the detection of viruses such as HIV, hepatitis C virus, and SARS-CoV-2 (the virus that causes COVID-19). It can also be used to study gene expression, identify genetic mutations, and diagnose genetic disorders.

Anthropometry is the scientific study of measurements and proportions of the human body. It involves the systematic measurement and analysis of various physical characteristics, such as height, weight, blood pressure, waist circumference, and other body measurements. These measurements are used in a variety of fields, including medicine, ergonomics, forensics, and fashion design, to assess health status, fitness level, or to design products and environments that fit the human body. In a medical context, anthropometry is often used to assess growth and development, health status, and disease risk factors in individuals and populations.

Meiosis is a type of cell division that results in the formation of four daughter cells, each with half the number of chromosomes as the parent cell. It is a key process in sexual reproduction, where it generates gametes or sex cells (sperm and eggs).

The process of meiosis involves one round of DNA replication followed by two successive nuclear divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes pair, form chiasma and exchange genetic material through crossing over, then separate from each other. In meiosis II, sister chromatids separate, leading to the formation of four haploid cells. This process ensures genetic diversity in offspring by shuffling and recombining genetic information during the formation of gametes.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Spermatozoa are the male reproductive cells, or gametes, that are produced in the testes. They are microscopic, flagellated (tail-equipped) cells that are highly specialized for fertilization. A spermatozoon consists of a head, neck, and tail. The head contains the genetic material within the nucleus, covered by a cap-like structure called the acrosome which contains enzymes to help the sperm penetrate the female's egg (ovum). The long, thin tail propels the sperm forward through fluid, such as semen, enabling its journey towards the egg for fertilization.

"Sex factors" is a term used in medicine and epidemiology to refer to the differences in disease incidence, prevalence, or response to treatment that are observed between males and females. These differences can be attributed to biological differences such as genetics, hormones, and anatomy, as well as social and cultural factors related to gender.

For example, some conditions such as autoimmune diseases, depression, and osteoporosis are more common in women, while others such as cardiovascular disease and certain types of cancer are more prevalent in men. Additionally, sex differences have been observed in the effectiveness and side effects of various medications and treatments.

It is important to consider sex factors in medical research and clinical practice to ensure that patients receive appropriate and effective care.

In vitro oocyte maturation (IVM) techniques refer to the process of stimulating and promoting the development and maturation of immature oocytes (eggs) outside of the human body, in a laboratory setting. This procedure is often used in assisted reproductive technology (ART) for individuals or couples who may have difficulty conceiving due to various reasons such as premature ovarian failure, polycystic ovary syndrome (PCOS), or those undergoing cancer treatment.

The IVM process involves the retrieval of immature oocytes from the ovaries, usually through a minor surgical procedure called transvaginal oocyte retrieval. The immature oocytes are then cultured in a laboratory and exposed to specific hormones and nutrients that stimulate their growth and maturation. Once the oocytes have reached full maturity, they can be fertilized with sperm through intracytoplasmic sperm injection (ICSI) or other methods, and the resulting embryos can be transferred to a woman's uterus in the hope of achieving a successful pregnancy.

IVM techniques offer several advantages over traditional in vitro fertilization (IVF) procedures, including reduced medication doses, shorter treatment durations, and lower costs. Additionally, IVM may help minimize the risk of ovarian hyperstimulation syndrome (OHSS), a potentially serious complication associated with conventional ART treatments. However, IVM is still considered an experimental procedure in many countries and requires further research to establish its safety and efficacy for widespread clinical use.

Body Mass Index (BMI) is a measure used to assess whether a person has a healthy weight for their height. It's calculated by dividing a person's weight in kilograms by the square of their height in meters. Here is the medical definition:

Body Mass Index (BMI) = weight(kg) / [height(m)]^2

According to the World Health Organization, BMI categories are defined as follows:

* Less than 18.5: Underweight
* 18.5-24.9: Normal or healthy weight
* 25.0-29.9: Overweight
* 30.0 and above: Obese

It is important to note that while BMI can be a useful tool for identifying weight issues in populations, it does have limitations when applied to individuals. For example, it may not accurately reflect body fat distribution or muscle mass, which can affect health risks associated with excess weight. Therefore, BMI should be used as one of several factors when evaluating an individual's health status and risk for chronic diseases.

... , along with ego-dystonic sexual orientation and sexual relationship disorder, was introduced to the ... In reference to sexual maturation disorder specifically, the working group noted the possibility that this diagnostic category ... Sexual maturation disorder was listed in the tenth edition of the World Health Organization's (WHO) International ... on the Classification of Sexual Disorders and Sexual Health to make recommendations on the disease categories related to sexual ...
Neyzi, Olcay; Hülya Alp; Alper Orhon (1975). "Sexual maturation in Turkish girls". Annals of Human Biology. 2 (1): 49-59. doi: ...
L. Zacharias; R. J. Wurtman; M. Schatzoff (1 November 1970). "Sexual maturation in contemporary American girls". American ...
Rivest, RW (1991). "Sexual maturation in female rats: hereditary, developmental and environmental aspects". Experientia. 47 (10 ... Sizonenko, PC; Aubert, ML (1986). "Neuroendocrine changes characteristic of sexual maturation". Journal of Neural Transmission ... "A developmental study of the gonadotropin-releasing hormone neuronal system during sexual maturation in the male Djungarian ...
... the word puberty describes the physical changes to sexual maturation, not the psychosocial and cultural maturation denoted by ... Rivest RW (1991). "Sexual maturation in female rats: hereditary, developmental and environmental aspects". Experientia. 47 (10 ... Sizonenko PC, Aubert ML (1986). "Neuroendocrine changes characteristic of sexual maturation". Journal of Neural Transmission. ... "A developmental study of the gonadotropin-releasing hormone neuronal system during sexual maturation in the male Djungarian ...
Sexual maturation is the beginning of periodic ovulation. Ovulation is the regular release of one oocyte from the ovary into ... Oocyte maturation is the following phase of oocyte development. It occurs at sexual maturity when hormones stimulate the oocyte ... Different timing of maturation: oogenic meiosis is interrupted at one or more stages (for a long time) while spermatogenic ... It is in this period or in some cases at the beginning of sexual maturity that the primary oocytes secrete proteins to form a ...
These gonadotropic hormones lead to sexual maturation and gametogenesis. Disrupting GPR54 signaling can cause hypogonadotrophic ... February 2023). "Effects of Kisspeptin on Sexual Brain Processing and Penile Tumescence in Men With Hypoactive Sexual Desire ... The onset of puberty is marked by an increase in gonadotropin secretion, which leads to sexual maturity and the ability to ... The major role kisspeptin/GPR54 plays in sexual development was initially found in sexually immature humans and mice who had ...
Maturation also begins after one year; however, after sexual maturation, both sexes' growth rate decreases. Spawning rates ... Sexual maturity is reached two or three months after their birth, and the GSI value of the fish begins to increase early in the ... When sexual maturity is reached, females have an average length of 54.8 mm, and males have an approximate length of 44.7 mm. ... When sexual maturity is reached, females are about 68.9 mm in length while males are 54 mm. The gonadosomatic index (GSI) for ...
Sexual maturation depends on environmental temperature and photo-period. Longer days and warmer days stimulate brighter ... Braithwaite, Victoria A.; Barber, Iain (2000). "Limitations to colour-based sexual preferences in three-spined sticklebacks ( ...
"Sexual maturation in free-ranging Chilabothrus angulifer (Serpentes: Boidae)". Phyllomedusa. 15 (2): 163-174. doi:10.11606/issn ... C. angulifer reaches maturation for breeding at three years old for males, and five years old for females. Captive snakes reach ...
The sexual maturation process produces sexual interest and stimulates thought processes. Subsequent sexual behavior starts with ... sexual reproduction, sexual intercourse, human sexual behavior, and other aspects of sexuality, such as body image, sexual ... Development of one's sexual self-concept can occur even before sexual experiences begin. An important part of sexual self- ... "Sexual self-concept and sexual self-efficacy in adolescents: a possible clue to promoting sexual health?". Journal of Sex ...
Sexual and romantic emotions develop in connection with physical maturation. Genetic factors appear to regulate some of the ... In accordance with his view that the sexual drive is a basic human motivation, each stage centered around the gratification of ... The developmental delay may be caused by a genetic disorder, disease or physical, sexual or emotional abuse. The developmental ... Friederici AD, Brauer J, Lohmann G (2011). Rodriguez-Fornells A (ed.). "Maturation of the language network: from inter- to ...
Both males and females reach sexual maturation after two years. Harrison (1967) found that eggs hatched in 43-45 days, but ...
Sexual maturation occurs during the first reproductive season after birth. The length of the reproductive season can vary based ... Sexual maturity in males is recognized by a brood pouch. Males have two common yet very aggressive courtship behaviours. The ...
Other notable themes in the series are the role of family and friendship; sexual maturation and the conflicting worldviews of ...
Ellis, P.E.; Carlisle, D.B.; Osborne, D.J. (1965). "Desert locusts: sexual maturation delayed by feeding on senescent ...
Sexual maturation is attained after 4-6 weeks of initial infection. A female generally lays 500-1,000 eggs in a day. The female ... to attain full maturation. To evade detection by the host's immune system, the adults have the ability to coat themselves with ...
Sexual maturation in male and female cephalopods can be observed internally by the enlargement of gonads and accessory glands. ... Mating would be a poor indicator of sexual maturation in females; they can receive sperm when not fully reproductively mature ... An indication of sexual maturity of females is the development of brachial photophores to attract mates. Cephalopods are not ... And three, the ancestor would need to communicate using sexual signals that are visible to a conspecific receiver. For color ...
Some reports indicate that this frog may undergo early sexual maturation. Scientists note that the tadpoles develop ...
1965) Desert locusts: sexual maturation delayed by feeding on senescent vegetation. Science 149: 546-547 (abstract (with link ... 1965) Desert locusts: sexual maturation delayed by feeding on senescent vegetation. Science 149: 546-547 (abstract (with link ... She also worked on the effects of plant hormones on insects, showing that sexual maturity in desert locusts is regulated by ...
Clark, B.R. & Price, E.O. (1981). "Sexual maturation and fecundity of wild and domestic Norway rats (Rattus norvegicus)". ... They reach sexual maturity in about five weeks. Under ideal conditions (for the rat), this means that the population of females ... This is because they grow quickly to sexual maturity and are easy to keep and to breed in captivity. When modern biologists ... McCormick, C.M.; Cameron, C.M.; Thompson, M.A.; Cumming, M.J.; Hodges, T.E. & Langett, M. (2017). "The sexual preference of ...
The initial sign of sexual maturation in boys usually is the "fat spurt." The maturing boy gains weight and becomes almost ... Sexual events (such as sexual touching, sexual intercourse) were less common than romantic events (holding hands) and social ... This constant increase in the likelihood of a long-term relationship can be explained by sexual maturation and the development ... The production of these hormones increases gradually until sexual maturation is met. Some boys may develop gynecomastia due to ...
The goal is to complete sexual maturation over 2 to 3 years. Once sexual maturation has been achieved, a trial period with no ... Since bone maturation is a good indicator of overall physical maturation, an x-ray of the left hand and wrist to assess bone ... Gandhi J, Dagur G, Warren K, Smith NL, Sheynkin YR, Zumbo A, Khan SA (2017). "The Role of Diabetes Mellitus in Sexual and ... Although absence of pubic and/or axillary hair is common in children with delayed puberty, the presence of sexual hair is due ...
ISBN 978-0-88359-048-5. Shine, Richard (1978). "Growth Rates and Sexual Maturation in Six Species of Australian Elapid Snakes ...
Benedet Perea, Susana (2008). Growth hormone and somatolactin function during sexual maturation of female Atlantic salmon. (Ph. ...
62-. ISBN 978-1-4612-5525-3. Presl J, Hořejší J, Štroufová A, Herzmann J (1976). "Sexual maturation in girls and the ... Escamilla RF, Lisserf H (1940). "Induction of menarche and development of secondary sexual characteristics in a woman aged 34 ...
Clinical outcomes include depressed growth, diarrhea, impotence and delayed sexual maturation, alopecia, eye and skin lesions, ... In children, deficiency causes growth retardation, delayed sexual maturation, infection susceptibility, and diarrhea. Enzymes ...
Sexual maturation occurs at a disc width of around 20 cm (7.9 in). Despite its small size, the pearl stingray is probably taken ...
Sexual maturation occurs within 3-4 weeks, with fecundity peaking in 8-10 weeks. Nothobranchius furzeri shows no signs of ...
Wolfe L. (1979) "Sexual maturation among members of a transported troop of Japanese macaques". Primates 20(3):411-8. Yotsumoto ... Vasey, P. L. (2002). "Sexual partner preference in female Japanese macaques". Archives of Sexual Behavior. 31 (1): 51-62. doi: ... Archives of Sexual Behavior. 35 (2): 116-128. doi:10.1007/s10508-005-9007-1. PMID 16752116. S2CID 22047878. ...
Sexual maturation disorder, along with ego-dystonic sexual orientation and sexual relationship disorder, was introduced to the ... In reference to sexual maturation disorder specifically, the working group noted the possibility that this diagnostic category ... Sexual maturation disorder was listed in the tenth edition of the World Health Organizations (WHO) International ... on the Classification of Sexual Disorders and Sexual Health to make recommendations on the disease categories related to sexual ...
Male Puberty: A Triggered Biochemical Event towards Sexual Maturation. Author(s): Ana D. Martins and *Rua de Jorge Viterbo ... Male Puberty: A Triggered Biochemical Event towards Sexual Maturation, Andrology: Current and Future Developments Biochemistry ... clinical features that should be taken into consideration and the deleterious signals that may occur until sexual maturation is ...
... the prevailing predictor of maturation in fishes appears to be a redirection of energy from growth to reproduction. ... the prevailing predictor of maturation in fishes appears to be a redirection of energy from growth to reproduction. ... "Maturation and spawning appear to be induced when the supply of oxygen relative to the weight of individual fish declines. Thus ... Thus, the prevailing predictor of maturation in fish appears to be a redirection of energy from growth to reproduction. ...
Ranch profit is hugely hit by replacement heifer rearing and any strategies to assist in getting animals to sexual maturity ... How Can I Feed to Optimize Sexual Maturation of Beef Heifers? Ranch profit is hugely hit by replacement heifer rearing and any ... can potentially time reproductive maturation consistently so that the majority of replacement beef heifers have reached puberty ... strategies to assist in getting animals to sexual maturity faster is a major goal for the beef industry. ...
Physical Growth and Sexual Maturation of Adolescents - Explore from the MSD Manuals - Medical Consumer Version. ... If sexual maturation begins too early (see Early Puberty Early Puberty Early (precocious) puberty is sexual maturation that ... Sexual Maturation in Adolescents Sexual maturation or puberty begins at different ages depending on genetic and environmental ... boys and girls reach adult height and weight and undergo sexual maturation (puberty Sexual Maturation (Puberty) During ...
The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this ... This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re- ... levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual ... The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental ...
eating habits, favorite food, gestation, mating display, Odobenus rosmarus, predation, Sea World, sexual maturation, ... Fish sexual maturation in relation to influencing factors has been discussed in this presentation. Hatchery management is ... sexual maturation, tortue imbriquée, tortuga de carey, toxic sponges ... sexual maturation, threatening factors, threats to turtle population ...
Sexual Maturation in a Eusocial Mammal. Question Description. Im working on a biology writing question and need a sample draft ... RFamide-related peptide-3 (RFRP-3) suppresses sexualmaturation in a eusocial mammal ...
The association between sexual maturation and body satisfaction was significant, among the boys, for the shoulder/back area, ... The boys and girls were divided for the analysis based on their age, transformed into sexual maturation phase. To assess body ... Body image dissatisfaction during adolescence and its relation to sexual maturation. Rev. bras. crescimento desenvolv. hum. [ ...
... Export citation. *Global styles ... Marte, C. L., & Lam, T. J. (1992). Hormonal changes accompanying sexual maturation in captive milkfish (Chanos chanos Forsskal ... Steroid hormone profiles accompanying sexual maturation in captive milkfish are described. There were no significant ...
... sexual maturation Within the Thailand, this study to your menarcheal many years inside female… ...
Season and sexual maturation - impact on roe and muscle quality in trout. ... Season and sexual maturation - impact on roe and muscle quality in trout. ... Season and sexual maturation - impact on roe and muscle quality in trout ... The results from the 2015 season showed that the female rainbow trout, close to full sexual maturity, gets a visual quality ...
Keshock, Katherine G., "The Effects of Childhood Sexual Abuse on the Maturation and Self Esteem of Adolescent Females" (1993). ... The Effects of Childhood Sexual Abuse on the Maturation and Self Esteem of Adolescent Females. ...
Bell DJ, Mitchell S. Effects of female urine on growth and sexual maturation in male rabbits. Journal of Reproduction and ... Bell, D. J., & Mitchell, S. (1984). Effects of female urine on growth and sexual maturation in male rabbits. Journal of ... Bell, DJ & Mitchell, S 1984, Effects of female urine on growth and sexual maturation in male rabbits, Journal of Reproduction ... Effects of female urine on growth and sexual maturation in male rabbits. In: Journal of Reproduction and Fertility. 1984 ; Vol ...
Morales-Zárate M, Zayas-Álvarez A, Salinas-Zavala C, Mejía-Rebollo A. Gerreidae, feeding, behavior, sexual maturation, ... Gerreidae, feeding, behavior, sexual maturation, reproductive period, aquaculture. María Verónica Morales-Zárate, Alfredo Zayas ... Morales-Zárate, M., Zayas-Álvarez, A., Salinas-Zavala, C., & Mejía-Rebollo, A. (2017). Gerreidae, feeding, behavior, sexual ... maturation, reproductive period, aquaculture. Latin American Journal of Aquatic Research, 44(4), 726-741. doi:http://dx.doi.org ...
Phthalates and sexual maturation and growth: A focus on effects of phthalates exposure. / Chou, Yen Yin; Chen, Chung Yu; Lee, ... Chou, YY, Chen, CY, Lee, CC, Chen, SY, Tsai, MC, Lin, IS & Lin, SJ 2012, Phthalates and sexual maturation and growth: A focus ... Phthalates and sexual maturation and growth: A focus on effects of phthalates exposure. In Handbook of Growth and Growth ... Phthalates and sexual maturation and growth : A focus on effects of phthalates exposure. Handbook of Growth and Growth ...
Sexual Maturation * Testis / physiopathology * Testosterone / blood * Thyroid Gland / physiopathology Substances * Testosterone ...
Delayed sexual maturation; in males, hypogonadism and infertility. * Second or third decade of life: Retinal damage ...
We also assessed Tanner stages for sexual maturation (genital, pubic hair development, and testicular volume), at two time ... were used to evaluate the association of in utero and peripubertal metal exposures with sexual maturation and progression ... measures of in utero and peripubertal metal exposure in relation to reproductive hormone concentrations and sexual maturation ... From: In utero and peripubertal metals exposure in relation to reproductive hormones and sexual maturation and progression ...
Wang Y. Is obesity associated with early sexual maturation? a comparison of the association in American boys versus girls. ...
Tertiles of age in each sexual maturation stage were used to classify individuals in early, normal or late sexual maturation. ... Sexual maturation was self-assessed and classified according to Tanner stages of sexual development. ... Early sexual maturation is associated with increased BMI z score to boys until 11 years of age and to girls in all groups age, ... Late sexual maturation is associated with lower values of BMI Z score in boys between 10 to 12 years of age and slower ...
This activation lets sexual maturation, ovulation and you may you are able to pregnancy across the 2nd many years till the go ... Inicio Blog This activation lets sexual maturation, ovulation and you may you are able to pregnancy across the 2nd many years ... This activation lets sexual maturation, ovulation and you may you are able to pregnancy across the 2nd many years till the go ... This activation lets sexual maturation, ovulation and you may you are able to pregnancy across the 2nd many years till the go ...
... a mark of sexual maturation. But for women, any natural or stylistic variation in hair on any part of the body except the head ... have more time and energy to start questioning such overt sexual discrimination, or why we are being paid 15% less than men. ... two teenage boys saw the hairs on my legs and started inevitably weighing up my sexual attractiveness, declaring that I was " ...
If food restriction is maintained, central leptin infusion can induce sexual maturation, thus demonstrating that leptin can act ... Metabolic control of sexual function and growth: role of neuropeptide Y and leptin Mol Cell Endocrinol. 1998 May 25;140(1-2): ... Severe dietary restriction in juvenile female rats is associated with low plasma leptin and sexual immaturity. Cessation of ...
Sexual maturation may also be delayed. This happens because sickle cell RBCs cant supply enough oxygen and nutrients. ...
Growth and Sexual Maturation The long-term effects of risperidone tablets on growth and sexual maturation have not been fully ... In addition, sexual maturation was delayed at all doses in both males and females. The above effects showed little or no ... sexual interest, language/thought disorder, thought content, appearance, and insight) in a range from 0 (no manic features) to ... sexual function abnormal, fatigue, and skin discoloration. ...
Sexual maturation:. not examined. Organ weight findings including organ / body weight ratios:. not examined. Gross pathological ... Sexual maturation:. not examined. Organ weight findings including organ / body weight ratios:. not examined. Gross pathological ...
Sexual maturation:. no effects observed. Organ weight findings including organ / body weight ratios:. not examined. Gross ... Sexual maturation:. not examined. Organ weight findings including organ / body weight ratios:. not examined. Gross pathological ... Specimens were prepared until successful copulation was confirmed in order to evaluate any abnormalities in the sexual cycle. ... Fishers accuracy probability test was carried out to compare the control and undecane-administered groups for the sexual cycle ...
Growth and Sexual Maturation The long-term effects of risperidone on growth and sexual maturation have not been fully evaluated ... In addition, a delay in sexual maturation was seen at all doses in both males and females. The above effects showed little or ... In addition, a delay in sexual maturation was seen at all doses in both males and females. The above effects showed little or ... sexual interest, language/thought disorder, thought content, appearance and insight) in a range from 0 (no manic features) to ...
  • The final section of this chapter is dedicated to a brief overview on puberty-associated disorders, pinpointing the clinical features that should be taken into consideration and the deleterious signals that may occur until sexual maturation is achieved. (benthamscience.com)
  • Male Puberty: A Triggered Biochemical Event towards Sexual Maturation, Andrology: Current and Future Developments Biochemistry of Andrology (2017) 1: 154. (benthamscience.com)
  • They suggested that managerial approaches that focus on increasing availability of nutrients around 6 to 9 months of age (SS-2) can potentially time reproductive maturation consistently so that the majority of replacement beef heifers have reached puberty at 11 to 14 months of age while avoiding a high incidence of precocious puberty. (thecattlesite.com)
  • Delayed Puberty Delayed puberty is defined as absence of the start of sexual maturation at the expected time. (msdmanuals.com)
  • Early Puberty Early (precocious) puberty is sexual maturation that begins before the average age. (msdmanuals.com)
  • Sexual maturation or puberty begins at different ages depending on genetic and environmental factors. (msdmanuals.com)
  • If food restriction is maintained, central leptin infusion can induce sexual maturation, thus demonstrating that leptin can act as a signal for the onset of puberty. (nih.gov)
  • Since leptin, kisspeptin, neurokinin B and dynorphin are identified as regulators of puberty onset and reproductive function, this study investigated the influence of high fat diet on these modulators along puberty onset and after sexual maturation. (usp.br)
  • Puberty is a period of several years in which rapid physical growth and psychological changes occur, culminating in sexual maturity. (wikipedia.org)
  • Individual small RNAs are responsible for controlling the expression of gonadoliberin or GnRH (Gonadotropin-Releasing Hormone), a neurohormone that controls sexual maturation, the appearance of puberty, and fertility in adults, new research shows. (sciencedaily.com)
  • This inhibition of inhibitory factors allows increased production of GnRH, which is indispensable to infantile and juvenile sexual maturation, and the occurrence of puberty. (sciencedaily.com)
  • Indeed, in the absence of microRNAs, the expression of transcription factors that inhibit GnRH expression increases, and leads to the extinction of GnRH synthesis in the brain, leading to the arrest of sexual maturation, absence of puberty, and complete sterility in adult individuals. (sciencedaily.com)
  • The gonads direct sexual development before birth and during puberty and are important for reproduction. (medlineplus.gov)
  • Sound has been shown to play an important role in such aggregations as a species-specific recognition signal, orientation mechanism, and stimulant of sexual activity and synchronous reproductive efforts of the entire colony/aggregation 23 , 24 . (nature.com)
  • 2. Adolescence, a period of transition from childhood to adulthood, is characterized by rapid and objective physiologic changes, such as rapid growth, maturation of the reproductive system and changes in physical appearance. (who.int)
  • Thus, the prevailing predictor of maturation in fish appears to be a redirection of energy from growth to reproduction. (earth.com)
  • Bell, DJ & Mitchell, S 1984, ' Effects of female urine on growth and sexual maturation in male rabbits ', Journal of Reproduction and Fertility , vol. 71, no. 1, pp. 155-160. (uea.ac.uk)
  • To describe and analyze growth curves of body mass index (BMI) and height according to sexual maturation status in children and adolescents aged 8-14 years old in the city of Florianopolis, Santa Catarina, Brazil. (imed.pub)
  • We observed different growth curves of BMI and height according to sexual maturation status for both boys and girls. (imed.pub)
  • Association of sexual maturation with excess body weight and height in children and adolescents. (imed.pub)
  • Steroids Cycles for masteron when cutting, when calories sexual maturation in Flemish adolescents. (thedollpalace.com)
  • Severe dietary restriction in juvenile female rats is associated with low plasma leptin and sexual immaturity. (nih.gov)
  • Ranch profit is hugely hit by replacement heifer rearing and any strategies to assist in getting animals to sexual maturity faster is a major goal for the beef industry. (thecattlesite.com)
  • Sexual maturity begins earlier today than a century ago, probably because of improvements in nutrition, general health, and living conditions. (msdmanuals.com)
  • Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity. (biomedcentral.com)
  • This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. (biomedcentral.com)
  • The results from the 2015 season showed that the female rainbow trout, close to full sexual maturity, gets a visual quality reduction especially in meat color and external characteristics. (nofima.com)
  • 2002. The effects of atrazine on the sexual maturation of female rats. (cdc.gov)
  • During mitosis, cells undergo symmetrical cell division, while oocyte meiotic maturation undergoes two consecutive, asymmetric divisions that generate a totipotent haploid oocyte and two small polar bodies not involved in DNA replication. (bioone.org)
  • Fish sexual maturation in relation to influencing factors has been discussed in this presentation. (fishconsult.org)
  • GAMBARDELLA, Ana M D and FRUTUOSO, Maria F P . Body image dissatisfaction during adolescence and its relation to sexual maturation . (bvsalud.org)
  • The production of these hormones increases gradually until sexual maturation is met. (wikipedia.org)
  • HSDD may also result from impairment of sexual function, particularly erectile dysfunction on the part of the male, or vaginismus on the part of the female. (minddisorders.com)
  • Hypoactive sexual desire disorder (HSDD) is defined as the persistent or recurrent extreme aversion to, absence of, and avoidance of all, or almost all, genital sexual contact with a sexual partner. (minddisorders.com)
  • In the absence of sexual trauma, there is often a repressive family attitude concerning sex that is sometimes enhanced by rigid religious training. (minddisorders.com)
  • Priapism is the occurrence of any persistent erection of more than four hours duration occurring in the absence of sexual stimulation. (minddisorders.com)
  • Males and females are affected by disruptions to sexual development differently. (medlineplus.gov)
  • Sexual maturation disorder was listed in the tenth edition of the World Health Organization's (WHO) International Classification of Diseases, the ICD-10, the most widely used diagnostic manual by psychiatrists and psychologists worldwide. (wikipedia.org)
  • It was described as a disorder of anxiety or depression related to an uncertainty about one's gender identity or sexual orientation. (wikipedia.org)
  • Sexual maturation disorder, along with ego-dystonic sexual orientation and sexual relationship disorder, was introduced to the ICD in 1990, replacing the ICD-9 diagnosis of homosexuality. (wikipedia.org)
  • The following note was applied to the entirety of part F66, the section in which these three diagnoses appeared: "Sexual orientation by itself is not to be regarded as a disorder. (wikipedia.org)
  • In reference to sexual maturation disorder specifically, the working group noted the possibility that this diagnostic category conflated normal developmental patterns with pathological processes, and also noted that people with a non-heterosexual sexual orientation or who are gender nonconforming may experience social stress due to stigma, but such distress is not indicative of a disorder. (wikipedia.org)
  • His work has contributed to deciphering some physiological neuroendocrine mechanisms of sexual maturation. (chuv.ch)
  • However, whenever sexual maturation begins, it typically occurs in the same order. (msdmanuals.com)
  • It occurs between the first and third months of life of the infant, and is important to the correct course of sexual maturation. (sciencedaily.com)
  • Significant psychosocial development, especially emotional, intellectual and spiritual aspects occurs through a progressive maturation process from childhood dependence to adult interdependence. (who.int)
  • The sexual maturation seems to affect directly the evolution of BMI and height and should be considered in the assessment of nutritional status during childhood. (imed.pub)
  • Acquired, situational HSDD in the adult is commonly associated with boredom in the relationship with the sexual partner. (minddisorders.com)
  • It is the most common of all female sexual disorders, occurring in at least 20% of women in the United States. (minddisorders.com)
  • The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. (biomedcentral.com)
  • A major function of the brain is to establish the appropriate developmental and endocrine status for reproduction, and then to co-ordinate this with aspects of behavior and sexual maturation. (biomedcentral.com)
  • Maturation and spawning appear to be induced when the supply of oxygen relative to the weight of individual fish declines. (earth.com)
  • However, the level of maturation is the main factor determining the fish quality - flesh quality and skin pigment. (nofima.com)
  • The boys and girls were divided for the analysis based on their age, transformed into sexual maturation phase. (bvsalud.org)
  • Early sexual maturation is associated with increased BMI z score to boys until 11 years of age and to girls in all groups age, and with increased height z score to boys in all age groups and in girls of 9 -12.5 years of age. (imed.pub)
  • Late sexual maturation is associated with lower values of BMI Z score in boys between 10 to 12 years of age and slower evolution of BMI Z score in girls. (imed.pub)
  • I can't help but agree with Naomi Wolf that if we were free of the constraint of constant grooming we might (God forbid) have more time and energy to start questioning such overt sexual discrimination, or why we are being paid 15% less than men. (huffingtonpost.co.uk)
  • In affected individuals who are chromosomally male (having an X and a Y chromosome), problems with sexual development lead to abnormalities of the external genitalia. (medlineplus.gov)
  • As part of the development of the ICD-11, the WHO appointed a Working Group on the Classification of Sexual Disorders and Sexual Health to make recommendations on the disease categories related to sexual orientation (part F66). (wikipedia.org)
  • Sexual maturation was self-assessed and classified according to Tanner stages of sexual development. (imed.pub)
  • 17α-hydroxylase/17,20-lyase deficiency is one of a group of disorders, known as congenital adrenal hyperplasias, that impair hormone production and disrupt sexual development and maturation. (medlineplus.gov)
  • Hormone imbalances lead to the characteristic signs and symptoms of 17α-hydroxylase/17,20-lyase deficiency, which include high blood pressure ( hypertension ), low levels of potassium in the blood (hypokalemia), and abnormal sexual development. (medlineplus.gov)
  • 2. Adolescence is characterized by physiologic, psychosocial, especially emotional, intellectual and spiritual development and maturation processes. (who.int)
  • A third possibility is that initial attempts at sexual intercourse resulted in pain or sexual failure. (minddisorders.com)
  • The rainbow trout does not seem to have significant osmotic challenges in the maturation process in seawater. (nofima.com)
  • Sperm counts and the pattern of androgen-dependent production of gel-plugs in semen also differed significantly between treatments during the critical maturation period. (uea.ac.uk)
  • Accordingly, the ICD-11 does not include any diagnostic categories that can be applied to people on the basis of sexual orientation, bringing the ICD in line with the DSM-5. (wikipedia.org)
  • Tertiles of age in each sexual maturation stage were used to classify individuals in early, normal or late sexual maturation. (imed.pub)
  • The affected person has a low level of sexual interest and desire that is manifested by a failure to initiate or be responsive to a partner's initiation of sexual activity. (minddisorders.com)
  • In the extreme form of HSDD, the patient not only lacks sexual desire, but may also find sex to be repulsive, revolting, and distasteful. (minddisorders.com)