A major protein in the BLOOD. It is important in maintaining the colloidal osmotic pressure and transporting large organic molecules.
Serum albumin from cows, commonly used in in vitro biological studies. (From Stedman, 25th ed)
Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating.
The clear portion of BLOOD that is left after BLOOD COAGULATION to remove BLOOD CELLS and clotting proteins.
Normal human serum albumin mildly iodinated with radioactive iodine (131-I) which has a half-life of 8 days, and emits beta and gamma rays. It is used as a diagnostic aid in blood volume determination. (from Merck Index, 11th ed)
A condition in which albumin level in blood (SERUM ALBUMIN) is below the normal range. Hypoalbuminemia may be due to decreased hepatic albumin synthesis, increased albumin catabolism, altered albumin distribution, or albumin loss through the urine (ALBUMINURIA).
Cell surface proteins that bind albumin with high affinity and trigger intracellular changes influencing the behavior of cells.
A gamma-emitting radionuclide imaging agent used for the diagnosis of diseases in many tissues, particularly in cardiovascular and cerebral circulation.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins.
A bile pigment that is a degradation product of HEME.
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B.
Elements of limited time intervals, contributing to particular results or situations.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
The presence of albumin in the urine, an indicator of KIDNEY DISEASES.
The species Oryctolagus cuniculus, in the family Leporidae, order LAGOMORPHA. Rabbits are born in burrows, furless, and with eyes and ears closed. In contrast with HARES, rabbits have 22 chromosome pairs.
An indicator and reagent. It has been used in serum albumin determinations and as a pH indicator.
Therapy for the insufficient cleansing of the BLOOD by the kidneys based on dialysis and including hemodialysis, PERITONEAL DIALYSIS, and HEMODIAFILTRATION.
An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed.
The end-stage of CHRONIC RENAL INSUFFICIENCY. It is characterized by the severe irreversible kidney damage (as measured by the level of PROTEINURIA) and the reduction in GLOMERULAR FILTRATION RATE to less than 15 ml per min (Kidney Foundation: Kidney Disease Outcome Quality Initiative, 2002). These patients generally require HEMODIALYSIS or KIDNEY TRANSPLANTATION.
Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation.
All blood proteins except albumin ( = SERUM ALBUMIN, which is not a globulin) and FIBRINOGEN (which is not in the serum). The serum globulins are subdivided into ALPHA-GLOBULINS; BETA-GLOBULINS; and GAMMA-GLOBULINS on the basis of their electrophoretic mobilities. (From Dorland, 28th ed)
A process of selective diffusion through a membrane. It is usually used to separate low-molecular-weight solutes which diffuse through the membrane from the colloidal and high-molecular-weight solutes which do not. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Creatinine is a waste product that's generated from muscle metabolism, typically filtered through the kidneys and released in urine, with increased levels in blood indicating impaired kidney function.
State of the body in relation to the consumption and utilization of nutrients.
The rate dynamics in chemical or physical systems.
Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
Measurement of the intensity and quality of fluorescence.
The first alpha-globulins to appear in mammalian sera during FETAL DEVELOPMENT and the dominant serum proteins in early embryonic life.
The property of blood capillary ENDOTHELIUM that allows for the selective exchange of substances between the blood and surrounding tissues and through membranous barriers such as the BLOOD-AIR BARRIER; BLOOD-AQUEOUS BARRIER; BLOOD-BRAIN BARRIER; BLOOD-NERVE BARRIER; BLOOD-RETINAL BARRIER; and BLOOD-TESTIS BARRIER. Small lipid-soluble molecules such as carbon dioxide and oxygen move freely by diffusion. Water and water-soluble molecules cannot pass through the endothelial walls and are dependent on microscopic pores. These pores show narrow areas (TIGHT JUNCTIONS) which may limit large molecule movement.
The separation of particles from a suspension by passage through a filter with very fine pores. In ultrafiltration the separation is accomplished by convective transport; in DIALYSIS separation relies instead upon differential diffusion. Ultrafiltration occurs naturally and is a laboratory procedure. Artificial ultrafiltration of the blood is referred to as HEMOFILTRATION or HEMODIAFILTRATION (if combined with HEMODIALYSIS).
Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen.
Immune complex disease caused by the administration of foreign serum or serum proteins and characterized by fever, lymphadenopathy, arthralgia, and urticaria. When they are complexed to protein carriers, some drugs can also cause serum sickness when they act as haptens inducing antibody responses.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
The lack of sufficient energy or protein to meet the body's metabolic demands, as a result of either an inadequate dietary intake of protein, intake of poor quality dietary protein, increased demands due to disease, or increased nutrient losses.
The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily.
The presence of proteins in the urine, an indicator of KIDNEY DISEASES.
Electrophoresis applied to BLOOD PROTEINS.
Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed.
A major class of water-soluble seed storage proteins. Many proteins from this class are major PLANT ALLERGENS.
Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN.
An indicator and reagent. It has been used for several purposes including the determination of serum albumin concentrations
An iron-binding beta1-globulin that is synthesized in the LIVER and secreted into the blood. It plays a central role in the transport of IRON throughout the circulation. A variety of transferrin isoforms exist in humans, including some that are considered markers for specific disease states.
The complex formed by the binding of antigen and antibody molecules. The deposition of large antigen-antibody complexes leading to tissue damage causes IMMUNE COMPLEX DISEASES.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
Serum globulins that migrate to the gamma region (most positively charged) upon ELECTROPHORESIS. At one time, gamma-globulins came to be used as a synonym for immunoglobulins since most immunoglobulins are gamma globulins and conversely most gamma globulins are immunoglobulins. But since some immunoglobulins exhibit an alpha or beta electrophoretic mobility, that usage is in decline.
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.
The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group.
A tetrameric protein, molecular weight between 50,000 and 70,000, consisting of 4 equal chains, and migrating on electrophoresis in 3 fractions more mobile than serum albumin. Its concentration ranges from 7 to 33 per cent in the serum, but levels decrease in liver disease.
Body organ that filters blood for the secretion of URINE and that regulates ion concentrations.
The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality.
The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS.
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
Substances that are recognized by the immune system and induce an immune reaction.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
Products derived from the nonenzymatic reaction of GLUCOSE and PROTEINS in vivo that exhibit a yellow-brown pigmentation and an ability to participate in protein-protein cross-linking. These substances are involved in biological processes relating to protein turnover and it is believed that their excessive accumulation contributes to the chronic complications of DIABETES MELLITUS.
An aspect of personal behavior or lifestyle, environmental exposure, or inborn or inherited characteristic, which, on the basis of epidemiologic evidence, is known to be associated with a health-related condition considered important to prevent.
Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen.
Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response.
The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site.
Globulins of milk obtained from the WHEY.
A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance.
The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.
Chemical analysis based on the phenomenon whereby light, passing through a medium with dispersed particles of a different refractive index from that of the medium, is attenuated in intensity by scattering. In turbidimetry, the intensity of light transmitted through the medium, the unscattered light, is measured. In nephelometry, the intensity of the scattered light is measured, usually, but not necessarily, at right angles to the incident light beam.
Disorders caused by nutritional imbalance, either overnutrition or undernutrition.
Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A plasma protein that circulates in increased amounts during inflammation and after tissue damage.
A class of immunoglobulin bearing mu chains (IMMUNOGLOBULIN MU-CHAINS). IgM can fix COMPLEMENT. The name comes from its high molecular weight and originally being called a macroglobulin.
Dialysis fluid being introduced into and removed from the peritoneal cavity as either a continuous or an intermittent procedure.
A condition in which total serum protein level is below the normal range. Hypoproteinemia can be caused by protein malabsorption in the gastrointestinal tract, EDEMA, or PROTEINURIA.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A technique that combines protein electrophoresis and double immunodiffusion. In this procedure proteins are first separated by gel electrophoresis (usually agarose), then made visible by immunodiffusion of specific antibodies. A distinct elliptical precipitin arc results for each protein detectable by the antisera.
Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions.
The processes triggered by interactions of ANTIBODIES with their ANTIGENS.
The sum of the weight of all the atoms in a molecule.
An examination of chemicals in the blood.
A condition characterized by severe PROTEINURIA, greater than 3.5 g/day in an average adult. The substantial loss of protein in the urine results in complications such as HYPOPROTEINEMIA; generalized EDEMA; HYPERTENSION; and HYPERLIPIDEMIAS. Diseases associated with nephrotic syndrome generally cause chronic kidney dysfunction.
The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements.
Pathological conditions in the INTESTINES that are characterized by the gastrointestinal loss of serum proteins, including SERUM ALBUMIN; IMMUNOGLOBULINS; and at times LYMPHOCYTES. Severe condition can result in HYPOGAMMAGLOBULINEMIA or LYMPHOPENIA. Protein-losing enteropathies are associated with a number of diseases including INTESTINAL LYMPHANGIECTASIS; WHIPPLE'S DISEASE; and NEOPLASMS of the SMALL INTESTINE.
The relationship between the dose of an administered drug and the response of the organism to the drug.
Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes.
An imbalanced nutritional status resulted from insufficient intake of nutrients to meet normal physiological requirement.
The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms.
The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms.
A series of steps taken in order to conduct research.
Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.
Chromatography on non-ionic gels without regard to the mechanism of solute discrimination.
In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.
A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)
A chemical system that functions to control the levels of specific ions in solution. When the level of hydrogen ion in solution is controlled the system is called a pH buffer.
A prediction of the probable outcome of a disease based on a individual's condition and the usual course of the disease as seen in similar situations.
Technique involving the diffusion of antigen or antibody through a semisolid medium, usually agar or agarose gel, with the result being a precipitin reaction.
A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids.
Orosomucoid, also known as alpha-1-acid glycoprotein, is an acute phase protein involved in the immune response, functioning as a pattern recognition receptor and having the ability to bind various ligands including drugs and hormones.
A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499)
A non-steroidal anti-inflammatory drug. Oxyphenbutazone eyedrops have been used abroad in the management of postoperative ocular inflammation, superficial eye injuries, and episcleritis. (From AMA, Drug Evaluations Annual, 1994, p2000) It had been used by mouth in rheumatic disorders such as ankylosing spondylitis, osteoarthritis, and rheumatoid arthritis but such use is no longer considered justified owing to the risk of severe hematological adverse effects. (From Martindale, The Extra Pharmacopoeia, 30th ed, p27)
A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Physiological processes and properties of the BLOOD.
Studies used to test etiologic hypotheses in which inferences about an exposure to putative causal factors are derived from data relating to characteristics of persons under study or to events or experiences in their past. The essential feature is that some of the persons under study have the disease or outcome of interest and their characteristics are compared with those of unaffected persons.
Any liquid used to replace blood plasma, usually a saline solution, often with serum albumins, dextrans or other preparations. These substances do not enhance the oxygen- carrying capacity of blood, but merely replace the volume. They are also used to treat dehydration.
The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism.
A group of fatty acids that contain 18 carbon atoms and a double bond at the omega 9 carbon.
A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.
Portable peritoneal dialysis using the continuous (24 hours a day, 7 days a week) presence of peritoneal dialysis solution in the peritoneal cavity except for periods of drainage and instillation of fresh solution.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals.
The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH.
Proteins prepared by recombinant DNA technology.
The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity.
Studies which start with the identification of persons with a disease of interest and a control (comparison, referent) group without the disease. The relationship of an attribute to the disease is examined by comparing diseased and non-diseased persons with regard to the frequency or levels of the attribute in each group.
KIDNEY injuries associated with diabetes mellitus and affecting KIDNEY GLOMERULUS; ARTERIOLES; KIDNEY TUBULES; and the interstitium. Clinical signs include persistent PROTEINURIA, from microalbuminuria progressing to ALBUMINURIA of greater than 300 mg/24 h, leading to reduced GLOMERULAR FILTRATION RATE and END-STAGE RENAL DISEASE.
Volume of PLASMA in the circulation. It is usually measured by INDICATOR DILUTION TECHNIQUES.
Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques.
Stable iodine atoms that have the same atomic number as the element iodine, but differ in atomic weight. I-127 is the only naturally occurring stable iodine isotope.
A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4.
A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue.
Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA).
The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value.
Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.
The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements.
The volume of water filtered out of plasma through glomerular capillary walls into Bowman's capsules per unit of time. It is considered to be equivalent to INULIN clearance.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow).
Pathological processes of the KIDNEY or its component tissues.
A MADS domain-containing transcription factor that binds to the SERUM RESPONSE ELEMENT in the promoter-enhancer region of many genes. It is one of the four founder proteins that structurally define the superfamily of MADS DOMAIN PROTEINS.
An amorphous form of carbon prepared from the incomplete combustion of animal or vegetable matter, e.g., wood. The activated form of charcoal is used in the treatment of poisoning. (Grant & Hackh's Chemical Dictionary, 5th ed)
Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS.
Immunoglobulins produced in a response to BACTERIAL ANTIGENS.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes.
Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.
Evaluation undertaken to assess the results or consequences of management and procedures used in combating disease in order to determine the efficacy, effectiveness, safety, and practicability of these interventions in individual cases or series.
A clinical syndrome associated with the retention of renal waste products or uremic toxins in the blood. It is usually the result of RENAL INSUFFICIENCY. Most uremic toxins are end products of protein or nitrogen CATABOLISM, such as UREA or CREATININE. Severe uremia can lead to multiple organ dysfunctions with a constellation of symptoms.
The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent.
Phthalic acid anhydrides. Can be substituted on any carbon atom. Used extensively in industry and as a reagent in the acylation of amino- and hydroxyl groups.
Compounds containing the -SH radical.
Liver disease in which the normal microcirculation, the gross vascular anatomy, and the hepatic architecture have been variably destroyed and altered with fibrous septa surrounding regenerated or regenerating parenchymal nodules.
Studies in which individuals or populations are followed to assess the outcome of exposures, procedures, or effects of a characteristic, e.g., occurrence of disease.
An unsaturated fatty acid that is the most widely distributed and abundant fatty acid in nature. It is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. (Stedman, 26th ed)
Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
A suspension of metallic gold particles.
One of a group of nonenzymatic reactions in which aldehydes, ketones, or reducing sugars react with amino acids, peptides, or proteins. Food browning reactions, such as those that occur with cooking of meats, and also food deterioration reactions, resulting in decreased nutritional value and color changes, are attributed to this reaction type. The Maillard reaction is studied by scientists in the agriculture, food, nutrition, and carbohydrate chemistry fields.
Antibodies produced by a single clone of cells.
Inbred BALB/c mice are a strain of laboratory mice that have been selectively bred to be genetically identical to each other, making them useful for scientific research and experiments due to their consistent genetic background and predictable responses to various stimuli or treatments.
The chemical and physical integrity of a pharmaceutical product.
Established cell cultures that have the potential to propagate indefinitely.
An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
Triglycerides are the most common type of fat in the body, stored in fat cells and used as energy; they are measured in blood tests to assess heart disease risk, with high levels often resulting from dietary habits, obesity, physical inactivity, smoking, and alcohol consumption.
Studies in which subsets of a defined population are identified. These groups may or may not be exposed to factors hypothesized to influence the probability of the occurrence of a particular disease or other outcome. Cohorts are defined populations which, as a whole, are followed in an attempt to determine distinguishing subgroup characteristics.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Naturally occurring or experimentally induced animal diseases with pathological processes sufficiently similar to those of human diseases. They are used as study models for human diseases.
An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE).
Iron-containing proteins that are widely distributed in animals, plants, and microorganisms. Their major function is to store IRON in a nontoxic bioavailable form. Each ferritin molecule consists of ferric iron in a hollow protein shell (APOFERRITINS) made of 24 subunits of various sequences depending on the species and tissue types.
An insoluble support for an ANTIGEN or ANTIBODIES that is used in AFFINITY CHROMATOGRAPHY to adsorb the homologous antibody or antigen from a mixture. Many different substances are used, among them SEPHAROSE; GLUTARALDEHYDE; copolymers of ANHYDRIDES; polyacrylamides, etc.
Fluorescent probe capable of being conjugated to tissue and proteins. It is used as a label in fluorescent antibody staining procedures as well as protein- and amino acid-binding techniques.
Liquid components of living organisms.
Evaluation and measurement of nutritional variables in order to assess the level of nutrition or the NUTRITIONAL STATUS of the individual. NUTRITION SURVEYS may be used in making the assessment.
Polymers of ETHYLENE OXIDE and water, and their ethers. They vary in consistency from liquid to solid depending on the molecular weight indicated by a number following the name. They are used as SURFACTANTS, dispersing agents, solvents, ointment and suppository bases, vehicles, and tablet excipients. Some specific groups are NONOXYNOLS, OCTOXYNOLS, and POLOXAMERS.
Blood tests that are used to evaluate how well a patient's liver is working and also to help diagnose liver conditions.
Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other.
Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time.
Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable.
Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are linear polypeptides that are normally synthesized on RIBOSOMES.
An essential amino acid. It is often added to animal feed.
Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest.
A set of techniques used when variation in several variables has to be studied simultaneously. In statistics, multivariate analysis is interpreted as any analytic method that allows simultaneous study of two or more dependent variables.
A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function.
A cardiac glycoside sometimes used in place of DIGOXIN. It has a longer half-life than digoxin; toxic effects, which are similar to those of digoxin, are longer lasting. (From Martindale, The Extra Pharmacopoeia, 30th ed, p665)
A group of 16-carbon fatty acids that contain no double bonds.
Presence of warmth or heat or a temperature notably higher than an accustomed norm.
Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site.
Abnormally elevated THYROXINE level in the BLOOD.
The formation of a solid in a solution as a result of a chemical reaction or the aggregation of soluble substances into complexes large enough to fall out of solution.
Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses.
Blood proteins that bind to THYROID HORMONES such as THYROXINE and transport them throughout the circulatory system.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios.
An oxidation product, via XANTHINE OXIDASE, of oxypurines such as XANTHINE and HYPOXANTHINE. It is the final oxidation product of purine catabolism in humans and primates, whereas in most other mammals URATE OXIDASE further oxidizes it to ALLANTOIN.
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.
An enzyme that catalyzes the conversion of L-alanine and 2-oxoglutarate to pyruvate and L-glutamate. (From Enzyme Nomenclature, 1992) EC 2.6.1.2.
A polypeptide hormone (84 amino acid residues) secreted by the PARATHYROID GLANDS which performs the essential role of maintaining intracellular CALCIUM levels in the body. Parathyroid hormone increases intracellular calcium by promoting the release of CALCIUM from BONE, increases the intestinal absorption of calcium, increases the renal tubular reabsorption of calcium, and increases the renal excretion of phosphates.
Compounds that contain a 1-dimethylaminonaphthalene-5-sulfonyl group.
Sepharose is a brand name for a type of cross-linked agarose gel beads used as a matrix in chromatography and other biochemical procedures, known for their high porosity, mechanical stability, and low non-specific binding, making them suitable for various purification and analytical applications.
Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS.
Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time.
A glycoprotein that is central in both the classical and the alternative pathway of COMPLEMENT ACTIVATION. C3 can be cleaved into COMPLEMENT C3A and COMPLEMENT C3B, spontaneously at low level or by C3 CONVERTASE at high level. The smaller fragment C3a is an ANAPHYLATOXIN and mediator of local inflammatory process. The larger fragment C3b binds with C3 convertase to form C5 convertase.
The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55.
Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS.

Highly sensitive quantitation of methamphetamine by time-resolved fluoroimmunoassay using a new europium chelate as a label. (1/5528)

A simple and highly sensitive time-resolved fluoroimmunoassay of methamphetamine (MA) using a new fluorescent europium chelate (BHHCT-Eu3+) as a label is described. Two variations of competitive immunoassay were attempted. In the first (one-step) assay, microtiter plates coated with anti-MA were used, and the new label was bound to a conjugate of bovine serum albumin and N-(4-aminobutyl)-MA (MA-BSA). In the second (two-step) assay, instead of the labeled MA-BSA, biotinylated MA-BSA and BHHCT-Eu3+-labeled streptavidin-BSA were used. The lowest measurable concentrations of MA for the one-step and the two-step methods were 1 ng/mL (25 pg/assay) and 1 pg/mL (25 fg/assay), respectively. These were 10 to 1000 times superior to the detection limits of MA in any other immunoassay. Intra-assay coefficient of variation was approximately 2-8% at eight different concentrations (n = 4). Analysis of 34 urine samples with the new method and conventional gas chromatography showed a good correlation (r = 0.954). The high detectability of the present assay also enabled segmental hair analysis with a few centimeters of a hair.  (+info)

Upstream region of rat serum albumin gene promoter contributes to promoter activity: presence of functional binding site for hepatocyte nuclear factor-3. (2/5528)

Transcription of the serum albumin gene occurs almost exclusively in the liver and is controlled in part by a strong liver-specific promoter. The upstream region of the serum albumin gene promoter is highly conserved among species and is footprinted in vitro by a number of nuclear proteins. However, the role of the upstream promoter region in regulating transcription and the identity of the transcription factors that bind to this region have not been established. In the present study, deletion analysis of the rat serum albumin promoter in transiently transfected HepG2 cells demonstrated that elimination of the region between -207 and -153 bp caused a two-fold decrease in promoter activity (P<0.05). Additional analysis of the -207 to -124 bp promoter interval led to the identification of two potential binding sites for hepatocyte nuclear factor-3 (HNF-3) located at -168 to -157 bp (site X) and -145 to -134 bp (site Y). Electrophoretic mobility-shift assays performed with the HNF-3 X and Y sites demonstrated that both sites are capable of binding HNF-3alpha and HNF-3beta. Placement of a single copy of the HNF-3 X site upstream from a minimal promoter increased promoter activity by about four-fold in HepG2 cells, and the reporter construct containing this site could be transactivated if co-transfected with an HNF-3 expression construct. Furthermore, inactivation of the HNF-3 X site by site-directed mutagenesis within the context of the -261 bp albumin promoter construct resulted in a 40% decrease in transcription (P<0.05). These results indicate that the positive effect of the -207 to -153 bp promoter interval is attributable to the presence of the HNF-3 X site within this interval. Additional results obtained with transfected HepG2 cells suggest that the HNF-3 Y site plays a lesser role in activation of transcription than the X site.  (+info)

Hypoalbuminemia increases lysophosphatidylcholine in low-density lipoprotein of normocholesterolemic subjects. (3/5528)

BACKGROUND: A phospholipid, lysophosphatidylcholine (LPC), is the major determinant of the atherosclerotic properties of oxidized low-density lipoprotein (LDL). Under normal circumstances most LPC is bound to albumin. We hypothesized that lipoprotein LPC concentrations are increased in hypoalbuminemic patients with the nephrotic syndrome, irrespective of their lipid levels. To test this hypothesis, we selected nephrotic and control subjects with matched LDL cholesterol levels. METHODS: Lipoproteins and the albumin-rich lipoprotein-deficient fractions were separated by ultracentrifugation and their phospholipid composition was analyzed by thin-layer chromatography. RESULTS: Nephrotic subjects (albumin 23 +/- 2 g/liter and LDL cholesterol 3.1 +/- 0.2 mmol/liter) had a LDL LPC concentration that was increased (P < 0.05) to 66 +/- 7 vs. 35 +/- 6 micromol/liter in matched controls (albumin 42 +/- 5 g/liter and LDL cholesterol 3.1 +/- 0.2 mmol/liter). LPC in very low-density lipoprotein plus intermediate-density lipoprotein (VLDL + IDL) in these subjects was also increased to 33 +/- 7 vs. 9 +/- 2 micromol/liter in controls (P < 0.05). Conversely, LPC was decreased to 19 +/- 4 micromol/liter in the albumin-containing fraction of these hypoalbuminemic patients, as compared to 46 +/- 10 micromol/liter in the controls (P < 0.05). LPC was also low (14 +/- 4 micromol/liter) in the albumin-containing fraction of hypoalbuminemic, hypocholesterolemic patients with nonrenal diseases. In hyperlipidemic nephrotic subjects (albumin 21 +/- 2 g/liter and LDL cholesterol 5.7 +/- 0.5 mmol/liter) the LPC levels in LDL and VLDL + IDL were further increased, to 95 +/- 20 and 56 +/- 23 micromol/liter, respectively (P < 0.05). CONCLUSION: These findings suggest that in the presence of hypoalbuminemia in combination with proteinuria, LPC shifts from albumin to VLDL, IDL and LDL. This effect is independent of hyperlipidemia. Increased LPC in lipoproteins may be an important factor in the disproportionate increase in cardiovascular disease in nephrotic patients with hypoalbuminemia.  (+info)

Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure. (4/5528)

BACKGROUND: In patients with chronic renal failure (CRF), abnormalities in vitamin D metabolism are known to be present, and several factors could contribute to the abnormalities. METHODS: We measured serum levels of three vitamin D metabolites, 1,25(OH)2D, 24, 25(OH)2D and 25(OH)D, and analyzed factors affecting their levels in 76 nondialyzed patients with CRF (serum creatinine> 1.6 and < 9.0 mg/dl), 37 of whom had diabetes mellitus (DM-CRF) and 39 of whom were nondiabetic (nonDM-CRF). RESULTS: Serum levels of 1,25(OH)2D were positively correlated with estimated creatinine clearance (CCr; r = 0.429; P < 0.0001), and levels of 24,25(OH)2D were weakly correlated with CCr (r = 0.252, P < 0.05); no correlation was noted for 25(OH)D. Serum levels of all three vitamin D metabolites were significantly and positively correlated with serum albumin. Although there were no significant differences in age, sex, estimated CCr, calcium and phosphate between DM-CRF and nonDM-CRF, all three vitamin D metabolites were significantly lower in DM-CRF than in nonDM-CRF. To analyze factors influencing vitamin D metabolite levels, we performed multiple regression analyses. Serum 25(OH)D levels were significantly and independently associated with serum albumin, presence of DM and serum phosphate (R2 = 0.599; P < 0.0001). 24,25(OH)2D levels were significantly and strongly associated with 25(OH)D (beta = 0.772; R2 = 0.446; P < 0.0001). Serum 1,25(OH)2D levels were significantly associated only with estimated CCr (R2 = 0. 409; P < 0.0001). CONCLUSIONS: These results suggest that hypoalbuminemia and the presence of DM independently affect serum 25(OH)D levels, probably via diabetic nephropathy and poor nutritional status associated with diabetes, and that 25(OH)D is actively catalyzed to 24,25(OH)2D in CRF, probably largely via extrarenal 24-hydroxylase. Serum levels of 1,25(OH)2D were significantly affected by the degree of renal failure. Thus, this study indicates that patients with CRF, particularly those with DM, should receive supplements containing the active form of vitamin D prior to dialysis.  (+info)

Septicemia in dialysis patients: incidence, risk factors, and prognosis. (5/5528)

BACKGROUND: Infection is second to cardiovascular disease as a cause of death in patients with end-stage renal disease (ESRD), and septicemia causes a majority of these infectious deaths. To identify patients at high risk and to characterize modifiable risk factors for septicemia, we examined the incidence, risk factors, and prognosis for septicemia in a large, representative group of U.S. dialysis patients. METHODS: We conducted a longitudinal cohort study of incident ESRD patients in the case-mix study of the U.S. Renal Data System with seven years of follow-up from hospitalization and death records. Poisson regression was used to examine independent risk factors for hospital-managed septicemia. Cox proportional hazards analysis was used to assess the independent effect of septicemia on all-cause mortality and on death from septicemia. Separate analyses were performed for patients on peritoneal dialysis (PD) and hemodialysis (HD). RESULTS: Over seven years of follow-up, 11.7% of 4005 HD patients and 9.4% of 913 PD patients had at least one episode of septicemia. Older age and diabetes were independent risk factors for septicemia in all patients. Among HD patients, low serum albumin, temporary vascular access, and dialyzer reuse were also associated with increased risk. Among PD patients, white race and having no health insurance at dialysis initiation were also risk factors. Patients with septicemia had twice the risk of death from any cause and a fivefold to ninefold increased risk of death from septicemia. CONCLUSIONS: Septicemia, which carries a marked increased risk of death, occurs frequently in patients on PD as well as HD. Early referral to a nephrologist, improving nutrition, and avoiding temporary vascular access may decrease the incidence of septicemia. Further study of how race, insurance status, and dialyzer reuse can contribute to the risk of septicemia among ESRD patients is indicated.  (+info)

Early mycological treatment failure in AIDS-associated cryptococcal meningitis. (6/5528)

Cryptococcal meningitis causes significant morbidity and mortality in persons with AIDS. Of 236 AIDS patients treated with amphotericin B plus flucytosine, 29 (12%) died within 2 weeks and 62 (26%) died before 10 weeks. Just 129 (55%) of 236 patients were alive with negative cerebrospinal fluid (CSF) cultures at 10 weeks. Multivariate analyses identified that titer of cryptococcal antigen in CSF, serum albumin level, and CD4 cell count, together with dose of amphotericin B, had the strongest joint association with failure to achieve negative CSF cultures by day 14. Among patients with similar CSF cryptococcal antigen titers, CD4 cell counts, and serum albumin levels, the odds of failure at week 10 for those without negative CSF cultures by day 14 was five times that for those with negative CSF cultures by day 14 (odds ratio, 5.0; 95% confidence interval, 2.2-10.9). Prognosis is dismal for patients with AIDS-related cryptococcal meningitis. Multivariate analyses identified three components that, along with initial treatment, have the strongest joint association with early outcome. Clearly, more effective initial therapy and patient management strategies that address immune function and nutritional status are needed to improve outcomes of this disease.  (+info)

Distinct clinical and laboratory activity of two recombinant interleukin-2 preparations. (7/5528)

Interleukin-2 (IL-2) is a potent lymphokine that activates natural killer cells, T cells, and other cells of the immune system. Several distinct recombinant human IL-2 preparations have shown antitumor activity, particularly for renal cell cancer and melanoma. Somewhat distinct immune and clinical effects have been noted when different IL-2 preparations have been tested clinically; however, the regimens and doses used were not identical. To compare these more directly, we have evaluated two clinical recombinant IL-2 preparations in vitro and in vivo using similar regimens and similar IUs of IL-2. We used the Food and Drug Administration-approved, commercially available Chiron IL-2 and the Hoffmann LaRoche (HLR) IL-2 supplied by the National Cancer Institute. Using equivalent IUs of IL-2, we noted quantitative differences in vitro and in vivo in the IL-2 activity of these two preparations. In patients receiving comparable IUs of the two preparations, HLR IL-2 induced the release of more soluble IL-2 receptor alpha into the serum than Chiron IL-2. In addition, more toxicities were noted in patients receiving 1.5 x 10(6) IU of HLR IL-2 than were seen in patients treated with 1.5 x 10(6) or even 4.5 x 10(6) IU of Chiron IL-2. These toxicities included fever, nausea and vomiting, and hepatic toxicity. In vitro proliferative assays using IL-2-dependent human and murine cell lines indicated that the IU of HLR IL-2 was more effective than Chiron IL-2 at inducing tritiated thymidine incorporation. Using flow cytometry, we also found quantitative differences in the ability of these two preparations to bind to IL-2 receptors. These findings indicate that approximately 3-6 IU of Chiron IL-2 are required to induce the same biological effect as 1 IU of HLR IL-2.  (+info)

Phospholipid hydroperoxide cysteine peroxidase activity of human serum albumin. (8/5528)

Human serum albumin (HSA) reduced the phospholipid hydroperoxide, 1-palmitoyl-2-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-l-3-phosphatidylcholine (PLPC-OOH) to the corresponding hydroxy-derivative with a high apparent affinity (Km=9. 23+/-0.95 microM). Removal of bound lipid during purification increased this activity. At physiological concentration, HSA reduced the phospholipid hydroperoxide in the absence of a cofactor. However, in the presence of a cofactor (reductant), the rate of the reaction was increased. All of the major aminothiols in plasma could act as reductants, the best being the most abundant, cysteine (Km=600+/-80 microM). For every nanomole of PLPC-OOH reduced by HSA, 1.26 nmol of cystine was formed, indicating a reaction stoichiometry of 1 mol PLPC-OOH to 2 mol cysteine. We used chemical modification to determine which amino acid residues on HSA were responsible for the activity. Oxidation of thiol group(s) by N-ethylmaleimide led to a reduction in the rate of activity, whereas reduction of thiols by either dithiothreitol or the angiotensin-converting enzyme inhibitor, captopril, increased the activity. Both N-ethylmaleimide-modified HSA and dithiothreitol-treated HSA exhibited increased apparent affinities for PLPC-OOH. For a range of preparations of albumin with different modifications, the activity on PLPC-OOH was dependent on the amount of free thiol groups on the albumin (correlation coefficient=0.91). Patients with lowered albumin concentrations after septic shock showed lowered total plasma thiol concentrations and decreased phospholipid hydroperoxide cysteine peroxidase (PHCPx) activities. These results therefore show for the first time that HSA exhibits PHCPx activity, and that the majority of the activity depends on the presence of reduced thiol group(s) on the albumin.  (+info)

Serum albumin is the most abundant protein in human blood plasma, synthesized by the liver. It plays a crucial role in maintaining the oncotic pressure or colloid osmotic pressure of blood, which helps to regulate the fluid balance between the intravascular and extravascular spaces.

Serum albumin has a molecular weight of around 66 kDa and is composed of a single polypeptide chain. It contains several binding sites for various endogenous and exogenous substances, such as bilirubin, fatty acids, hormones, and drugs, facilitating their transport throughout the body. Additionally, albumin possesses antioxidant properties, protecting against oxidative damage.

Albumin levels in the blood are often used as a clinical indicator of liver function, nutritional status, and overall health. Low serum albumin levels may suggest liver disease, malnutrition, inflammation, or kidney dysfunction.

Bovine Serum Albumin (BSA) is not a medical term per se, but a biochemical term. It is widely used in medical and biological research. Here's the definition:

Bovine Serum Albumin is a serum albumin protein derived from cows. It is often used as a stabilizer, an emulsifier, or a protein source in various laboratory and industrial applications, including biochemical experiments, cell culture media, and diagnostic kits. BSA has a high solubility in water and can bind to many different types of molecules, making it useful for preventing unwanted interactions between components in a solution. It also has a consistent composition and is relatively inexpensive compared to human serum albumin, which are factors that contribute to its widespread use.

Albumins are a type of protein found in various biological fluids, including blood plasma. The most well-known albumin is serum albumin, which is produced by the liver and is the most abundant protein in blood plasma. Serum albumin plays several important roles in the body, such as maintaining oncotic pressure (which helps to regulate fluid balance in the body), transporting various substances (such as hormones, fatty acids, and drugs), and acting as an antioxidant.

Albumins are soluble in water and have a molecular weight ranging from 65,000 to 69,000 daltons. They are composed of a single polypeptide chain that contains approximately 585 amino acid residues. The structure of albumin is characterized by a high proportion of alpha-helices and beta-sheets, which give it a stable, folded conformation.

In addition to their role in human physiology, albumins are also used as diagnostic markers in medicine. For example, low serum albumin levels may indicate liver disease, malnutrition, or inflammation, while high levels may be seen in dehydration or certain types of kidney disease. Albumins may also be used as a replacement therapy in patients with severe protein loss, such as those with nephrotic syndrome or burn injuries.

Serum, in the context of clinical and medical laboratory science, refers to the fluid that is obtained after blood coagulation. It is the yellowish, straw-colored liquid fraction of whole blood that remains after the clotting factors have been removed. Serum contains various proteins, electrolytes, hormones, antibodies, antigens, and other substances, which can be analyzed to help diagnose and monitor a wide range of medical conditions. It is commonly used for various clinical tests such as chemistry panels, immunological assays, drug screening, and infectious disease testing.

Radio-iodinated serum albumin refers to human serum albumin that has been chemically bonded with radioactive iodine isotopes, typically I-125 or I-131. This results in a radiolabeled protein that can be used in medical imaging and research to track the distribution and movement of the protein in the body.

In human physiology, serum albumin is the most abundant protein in plasma, synthesized by the liver, and it plays a crucial role in maintaining oncotic pressure and transporting various molecules in the bloodstream. Radio-iodination of serum albumin allows for non-invasive monitoring of its behavior in vivo, which can be useful in evaluating conditions such as protein losing enteropathies, nephrotic syndrome, or liver dysfunction.

It is essential to handle and dispose of radio-iodinated serum albumin with proper radiation safety protocols due to its radioactive nature.

Hypoalbuminemia is a medical condition characterized by having lower than normal levels of albumin in the blood. Albumin is a type of protein produced by the liver, and it plays a crucial role in maintaining oncotic pressure (the force that keeps fluid inside blood vessels) and transporting various substances throughout the body.

A serum albumin level below 3.5 g/dL (grams per deciliter) is generally considered hypoalbuminemia, although some laboratories may define it as a level below 3.4 g/dL or even lower. This condition can be caused by various factors, including liver disease, malnutrition, kidney disease, inflammation, and protein-losing enteropathy (a disorder that causes excessive loss of protein in the gastrointestinal tract).

Hypoalbuminemia is often associated with poorer clinical outcomes in several medical conditions, such as increased risk of infection, longer hospital stays, and higher mortality rates. It's essential to identify and address the underlying cause of hypoalbuminemia for appropriate treatment and improved patient outcomes.

I'm sorry for any confusion, but "Receptors, Albumin" is not a standard medical term or concept.

Albumin is a type of protein produced by the liver that circulates in blood plasma. It plays several important roles, such as maintaining oncotic pressure (helping to keep fluid in the blood vessels), transporting various substances like hormones, drugs, and fatty acids, and acting as an antioxidant.

Receptors, on the other hand, are proteins on the surface of cells that interact with specific molecules (like hormones, neurotransmitters, or drugs) to trigger a response within the cell. Different receptors respond to different molecules, and there are many types of receptors in the human body.

If you meant something else or need information on a related topic, please provide more context or clarify your question.

Technetium Tc 99m Aggregated Albumin is a radiopharmaceutical preparation used in diagnostic imaging. It consists of radioactive technetium-99m (^99m^Tc) chemically bonded to human serum albumin, which has been aggregated to increase its size and alter its clearance from the body.

The resulting compound is injected into the patient's bloodstream, where it accumulates in the reticuloendothelial system (RES), including the liver, spleen, and bone marrow. The radioactive emission of technetium-99m can then be detected by a gamma camera, producing images that reflect the distribution and function of the RES.

This imaging technique is used to diagnose and monitor various conditions, such as liver disease, inflammation, or tumors. It provides valuable information about the patient's health status and helps guide medical decision-making.

"Cattle" is a term used in the agricultural and veterinary fields to refer to domesticated animals of the genus *Bos*, primarily *Bos taurus* (European cattle) and *Bos indicus* (Zebu). These animals are often raised for meat, milk, leather, and labor. They are also known as bovines or cows (for females), bulls (intact males), and steers/bullocks (castrated males). However, in a strict medical definition, "cattle" does not apply to humans or other animals.

Blood proteins, also known as serum proteins, are a group of complex molecules present in the blood that are essential for various physiological functions. These proteins include albumin, globulins (alpha, beta, and gamma), and fibrinogen. They play crucial roles in maintaining oncotic pressure, transporting hormones, enzymes, vitamins, and minerals, providing immune defense, and contributing to blood clotting.

Albumin is the most abundant protein in the blood, accounting for about 60% of the total protein mass. It functions as a transporter of various substances, such as hormones, fatty acids, and drugs, and helps maintain oncotic pressure, which is essential for fluid balance between the blood vessels and surrounding tissues.

Globulins are divided into three main categories: alpha, beta, and gamma globulins. Alpha and beta globulins consist of transport proteins like lipoproteins, hormone-binding proteins, and enzymes. Gamma globulins, also known as immunoglobulins or antibodies, are essential for the immune system's defense against pathogens.

Fibrinogen is a protein involved in blood clotting. When an injury occurs, fibrinogen is converted into fibrin, which forms a mesh to trap platelets and form a clot, preventing excessive bleeding.

Abnormal levels of these proteins can indicate various medical conditions, such as liver or kidney disease, malnutrition, infections, inflammation, or autoimmune disorders. Blood protein levels are typically measured through laboratory tests like serum protein electrophoresis (SPE) and immunoelectrophoresis (IEP).

Bilirubin is a yellowish pigment that is produced by the liver when it breaks down old red blood cells. It is a normal byproduct of hemoglobin metabolism and is usually conjugated (made water-soluble) in the liver before being excreted through the bile into the digestive system. Elevated levels of bilirubin can cause jaundice, a yellowing of the skin and eyes. Increased bilirubin levels may indicate liver disease or other medical conditions such as gallstones or hemolysis. It is also measured to assess liver function and to help diagnose various liver disorders.

A biological marker, often referred to as a biomarker, is a measurable indicator that reflects the presence or severity of a disease state, or a response to a therapeutic intervention. Biomarkers can be found in various materials such as blood, tissues, or bodily fluids, and they can take many forms, including molecular, histologic, radiographic, or physiological measurements.

In the context of medical research and clinical practice, biomarkers are used for a variety of purposes, such as:

1. Diagnosis: Biomarkers can help diagnose a disease by indicating the presence or absence of a particular condition. For example, prostate-specific antigen (PSA) is a biomarker used to detect prostate cancer.
2. Monitoring: Biomarkers can be used to monitor the progression or regression of a disease over time. For instance, hemoglobin A1c (HbA1c) levels are monitored in diabetes patients to assess long-term blood glucose control.
3. Predicting: Biomarkers can help predict the likelihood of developing a particular disease or the risk of a negative outcome. For example, the presence of certain genetic mutations can indicate an increased risk for breast cancer.
4. Response to treatment: Biomarkers can be used to evaluate the effectiveness of a specific treatment by measuring changes in the biomarker levels before and after the intervention. This is particularly useful in personalized medicine, where treatments are tailored to individual patients based on their unique biomarker profiles.

It's important to note that for a biomarker to be considered clinically valid and useful, it must undergo rigorous validation through well-designed studies, including demonstrating sensitivity, specificity, reproducibility, and clinical relevance.

The liver is a large, solid organ located in the upper right portion of the abdomen, beneath the diaphragm and above the stomach. It plays a vital role in several bodily functions, including:

1. Metabolism: The liver helps to metabolize carbohydrates, fats, and proteins from the food we eat into energy and nutrients that our bodies can use.
2. Detoxification: The liver detoxifies harmful substances in the body by breaking them down into less toxic forms or excreting them through bile.
3. Synthesis: The liver synthesizes important proteins, such as albumin and clotting factors, that are necessary for proper bodily function.
4. Storage: The liver stores glucose, vitamins, and minerals that can be released when the body needs them.
5. Bile production: The liver produces bile, a digestive juice that helps to break down fats in the small intestine.
6. Immune function: The liver plays a role in the immune system by filtering out bacteria and other harmful substances from the blood.

Overall, the liver is an essential organ that plays a critical role in maintaining overall health and well-being.

Immunoglobulin G (IgG) is a type of antibody, which is a protective protein produced by the immune system in response to foreign substances like bacteria or viruses. IgG is the most abundant type of antibody in human blood, making up about 75-80% of all antibodies. It is found in all body fluids and plays a crucial role in fighting infections caused by bacteria, viruses, and toxins.

IgG has several important functions:

1. Neutralization: IgG can bind to the surface of bacteria or viruses, preventing them from attaching to and infecting human cells.
2. Opsonization: IgG coats the surface of pathogens, making them more recognizable and easier for immune cells like neutrophils and macrophages to phagocytose (engulf and destroy) them.
3. Complement activation: IgG can activate the complement system, a group of proteins that work together to help eliminate pathogens from the body. Activation of the complement system leads to the formation of the membrane attack complex, which creates holes in the cell membranes of bacteria, leading to their lysis (destruction).
4. Antibody-dependent cellular cytotoxicity (ADCC): IgG can bind to immune cells like natural killer (NK) cells and trigger them to release substances that cause target cells (such as virus-infected or cancerous cells) to undergo apoptosis (programmed cell death).
5. Immune complex formation: IgG can form immune complexes with antigens, which can then be removed from the body through various mechanisms, such as phagocytosis by immune cells or excretion in urine.

IgG is a critical component of adaptive immunity and provides long-lasting protection against reinfection with many pathogens. It has four subclasses (IgG1, IgG2, IgG3, and IgG4) that differ in their structure, function, and distribution in the body.

In the field of medicine, "time factors" refer to the duration of symptoms or time elapsed since the onset of a medical condition, which can have significant implications for diagnosis and treatment. Understanding time factors is crucial in determining the progression of a disease, evaluating the effectiveness of treatments, and making critical decisions regarding patient care.

For example, in stroke management, "time is brain," meaning that rapid intervention within a specific time frame (usually within 4.5 hours) is essential to administering tissue plasminogen activator (tPA), a clot-busting drug that can minimize brain damage and improve patient outcomes. Similarly, in trauma care, the "golden hour" concept emphasizes the importance of providing definitive care within the first 60 minutes after injury to increase survival rates and reduce morbidity.

Time factors also play a role in monitoring the progression of chronic conditions like diabetes or heart disease, where regular follow-ups and assessments help determine appropriate treatment adjustments and prevent complications. In infectious diseases, time factors are crucial for initiating antibiotic therapy and identifying potential outbreaks to control their spread.

Overall, "time factors" encompass the significance of recognizing and acting promptly in various medical scenarios to optimize patient outcomes and provide effective care.

Protein binding, in the context of medical and biological sciences, refers to the interaction between a protein and another molecule (known as the ligand) that results in a stable complex. This process is often reversible and can be influenced by various factors such as pH, temperature, and concentration of the involved molecules.

In clinical chemistry, protein binding is particularly important when it comes to drugs, as many of them bind to proteins (especially albumin) in the bloodstream. The degree of protein binding can affect a drug's distribution, metabolism, and excretion, which in turn influence its therapeutic effectiveness and potential side effects.

Protein-bound drugs may be less available for interaction with their target tissues, as only the unbound or "free" fraction of the drug is active. Therefore, understanding protein binding can help optimize dosing regimens and minimize adverse reactions.

Albuminuria is a medical condition that refers to the presence of albumin in the urine. Albumin is a type of protein normally found in the blood, but not in the urine. When the kidneys are functioning properly, they prevent large proteins like albumin from passing through into the urine. However, when the kidneys are damaged or not working correctly, such as in nephrotic syndrome or other kidney diseases, small amounts of albumin can leak into the urine.

The amount of albumin in the urine is often measured in milligrams per liter (mg/L) or in a spot urine sample, as the albumin-to-creatinine ratio (ACR). A small amount of albumin in the urine is called microalbuminuria, while a larger amount is called macroalbuminuria or proteinuria. The presence of albuminuria can indicate kidney damage and may be a sign of underlying medical conditions such as diabetes or high blood pressure. It is important to monitor and manage albuminuria to prevent further kidney damage and potential complications.

I believe there may be some confusion in your question. "Rabbits" is a common name used to refer to the Lagomorpha species, particularly members of the family Leporidae. They are small mammals known for their long ears, strong legs, and quick reproduction.

However, if you're referring to "rabbits" in a medical context, there is a term called "rabbit syndrome," which is a rare movement disorder characterized by repetitive, involuntary movements of the fingers, resembling those of a rabbit chewing. It is also known as "finger-chewing chorea." This condition is usually associated with certain medications, particularly antipsychotics, and typically resolves when the medication is stopped or adjusted.

Bromcresol green is a pH indicator dye that is commonly used in medical and laboratory settings to determine the acidity or alkalinity (pH level) of various substances. It has a green color in its unionized form, which appears at a pH range of 3.8 to 5.4. When the pH rises above 5.4, bromcresol green turns blue, indicating an alkaline environment.

In medical testing, bromcresol green is often used in urinalysis and other bodily fluid analysis to assess acid-base balance. It can also be used as a component of certain culture media for microbiological tests. However, it's worth noting that bromcresol green has been largely replaced by other pH indicators like phenolphthalein and methyl orange in many applications due to its lower sensitivity and specificity.

Renal dialysis is a medical procedure that is used to artificially remove waste products, toxins, and excess fluids from the blood when the kidneys are no longer able to perform these functions effectively. This process is also known as hemodialysis.

During renal dialysis, the patient's blood is circulated through a special machine called a dialyzer or an artificial kidney, which contains a semi-permeable membrane that filters out waste products and excess fluids from the blood. The cleaned blood is then returned to the patient's body.

Renal dialysis is typically recommended for patients with advanced kidney disease or kidney failure, such as those with end-stage renal disease (ESRD). It is a life-sustaining treatment that helps to maintain the balance of fluids and electrolytes in the body, prevent the buildup of waste products and toxins, and control blood pressure.

There are two main types of renal dialysis: hemodialysis and peritoneal dialysis. Hemodialysis is the most common type and involves using a dialyzer to filter the blood outside the body. Peritoneal dialysis, on the other hand, involves placing a catheter in the abdomen and using the lining of the abdomen (peritoneum) as a natural filter to remove waste products and excess fluids from the body.

Overall, renal dialysis is an essential treatment option for patients with kidney failure, helping them to maintain their quality of life and prolong their survival.

An Enzyme-Linked Immunosorbent Assay (ELISA) is a type of analytical biochemistry assay used to detect and quantify the presence of a substance, typically a protein or peptide, in a liquid sample. It takes its name from the enzyme-linked antibodies used in the assay.

In an ELISA, the sample is added to a well containing a surface that has been treated to capture the target substance. If the target substance is present in the sample, it will bind to the surface. Next, an enzyme-linked antibody specific to the target substance is added. This antibody will bind to the captured target substance if it is present. After washing away any unbound material, a substrate for the enzyme is added. If the enzyme is present due to its linkage to the antibody, it will catalyze a reaction that produces a detectable signal, such as a color change or fluorescence. The intensity of this signal is proportional to the amount of target substance present in the sample, allowing for quantification.

ELISAs are widely used in research and clinical settings to detect and measure various substances, including hormones, viruses, and bacteria. They offer high sensitivity, specificity, and reproducibility, making them a reliable choice for many applications.

Chronic kidney failure, also known as chronic kidney disease (CKD) stage 5 or end-stage renal disease (ESRD), is a permanent loss of kidney function that occurs gradually over a period of months to years. It is defined as a glomerular filtration rate (GFR) of less than 15 ml/min, which means the kidneys are filtering waste and excess fluids at less than 15% of their normal capacity.

CKD can be caused by various underlying conditions such as diabetes, hypertension, glomerulonephritis, polycystic kidney disease, and recurrent kidney infections. Over time, the damage to the kidneys can lead to a buildup of waste products and fluids in the body, which can cause a range of symptoms including fatigue, weakness, shortness of breath, nausea, vomiting, and confusion.

Treatment for chronic kidney failure typically involves managing the underlying condition, making lifestyle changes such as following a healthy diet, and receiving supportive care such as dialysis or a kidney transplant to replace lost kidney function.

Radioimmunoassay (RIA) is a highly sensitive analytical technique used in clinical and research laboratories to measure concentrations of various substances, such as hormones, vitamins, drugs, or tumor markers, in biological samples like blood, urine, or tissues. The method relies on the specific interaction between an antibody and its corresponding antigen, combined with the use of radioisotopes to quantify the amount of bound antigen.

In a typical RIA procedure, a known quantity of a radiolabeled antigen (also called tracer) is added to a sample containing an unknown concentration of the same unlabeled antigen. The mixture is then incubated with a specific antibody that binds to the antigen. During the incubation period, the antibody forms complexes with both the radiolabeled and unlabeled antigens.

After the incubation, the unbound (free) radiolabeled antigen is separated from the antibody-antigen complexes, usually through a precipitation or separation step involving centrifugation, filtration, or chromatography. The amount of radioactivity in the pellet (containing the antibody-antigen complexes) is then measured using a gamma counter or other suitable radiation detection device.

The concentration of the unlabeled antigen in the sample can be determined by comparing the ratio of bound to free radiolabeled antigen in the sample to a standard curve generated from known concentrations of unlabeled antigen and their corresponding bound/free ratios. The higher the concentration of unlabeled antigen in the sample, the lower the amount of radiolabeled antigen that will bind to the antibody, resulting in a lower bound/free ratio.

Radioimmunoassays offer high sensitivity, specificity, and accuracy, making them valuable tools for detecting and quantifying low levels of various substances in biological samples. However, due to concerns about radiation safety and waste disposal, alternative non-isotopic immunoassay techniques like enzyme-linked immunosorbent assays (ELISAs) have become more popular in recent years.

Serum globulins are a group of proteins present in the liquid portion of blood, known as serum. They are produced by the immune system in response to foreign substances such as bacteria, viruses, and allergens. Serum globulins include several types of immunoglobulins (antibodies), complement components, and other proteins involved in the immune response.

The serum globulin level is often measured as part of a complete blood count (CBC) or a protein electrophoresis test. An elevated serum globulin level may indicate an ongoing infection, inflammation, or an autoimmune disorder. Conversely, a decreased level may suggest a liver or kidney disease, or a malnutrition condition. It is important to note that the interpretation of serum globulin levels should be done in conjunction with other laboratory and clinical findings.

Dialysis is a medical treatment that is used to remove waste and excess fluid from the blood when the kidneys are no longer able to perform these functions effectively. This life-sustaining procedure uses a specialized machine, called a dialyzer or artificial kidney, to filter the blood outside of the body and return clean, chemically balanced blood back into the body.

There are two main types of dialysis: hemodialysis and peritoneal dialysis.

1. Hemodialysis: In this method, a patient's blood is passed through an external filter (dialyzer) that removes waste products, toxins, and excess fluids. The cleaned blood is then returned to the body with the help of a specialized machine. Hemodialysis typically requires access to a large vein, often created by a surgical procedure called an arteriovenous (AV) fistula or graft. Hemodialysis sessions usually last for about 3-5 hours and are performed three times a week in a clinical setting, such as a dialysis center or hospital.
2. Peritoneal Dialysis: This method uses the lining of the patient's own abdomen (peritoneum) as a natural filter to clean the blood. A sterile dialysate solution is introduced into the peritoneal cavity via a permanently implanted catheter. The solution absorbs waste products and excess fluids from the blood vessels lining the peritoneum through a process called diffusion. After a dwell time, usually several hours, the used dialysate is drained out and replaced with fresh dialysate. This process is known as an exchange and is typically repeated multiple times throughout the day or night, depending on the specific type of peritoneal dialysis (continuous ambulatory peritoneal dialysis or automated peritoneal dialysis).

Both methods have their advantages and disadvantages, and the choice between them depends on various factors, such as a patient's overall health, lifestyle, and personal preferences. Dialysis is a life-saving treatment for people with end-stage kidney disease or severe kidney dysfunction, allowing them to maintain their quality of life and extend their lifespan until a kidney transplant becomes available or their kidney function improves.

Hydrogen-ion concentration, also known as pH, is a measure of the acidity or basicity of a solution. It is defined as the negative logarithm (to the base 10) of the hydrogen ion activity in a solution. The standard unit of measurement is the pH unit. A pH of 7 is neutral, less than 7 is acidic, and greater than 7 is basic.

In medical terms, hydrogen-ion concentration is important for maintaining homeostasis within the body. For example, in the stomach, a high hydrogen-ion concentration (low pH) is necessary for the digestion of food. However, in other parts of the body such as blood, a high hydrogen-ion concentration can be harmful and lead to acidosis. Conversely, a low hydrogen-ion concentration (high pH) in the blood can lead to alkalosis. Both acidosis and alkalosis can have serious consequences on various organ systems if not corrected.

Creatinine is a waste product that's produced by your muscles and removed from your body by your kidneys. Creatinine is a breakdown product of creatine, a compound found in meat and fish, as well as in the muscles of vertebrates, including humans.

In healthy individuals, the kidneys filter out most of the creatinine and eliminate it through urine. However, when the kidneys are not functioning properly, creatinine levels in the blood can rise. Therefore, measuring the amount of creatinine in the blood or urine is a common way to test how well the kidneys are working. High creatinine levels in the blood may indicate kidney damage or kidney disease.

Nutritional status is a concept that refers to the condition of an individual in relation to their nutrient intake, absorption, metabolism, and excretion. It encompasses various aspects such as body weight, muscle mass, fat distribution, presence of any deficiencies or excesses of specific nutrients, and overall health status.

A comprehensive assessment of nutritional status typically includes a review of dietary intake, anthropometric measurements (such as height, weight, waist circumference, blood pressure), laboratory tests (such as serum albumin, total protein, cholesterol levels, vitamin and mineral levels), and clinical evaluation for signs of malnutrition or overnutrition.

Malnutrition can result from inadequate intake or absorption of nutrients, increased nutrient requirements due to illness or injury, or excessive loss of nutrients due to medical conditions. On the other hand, overnutrition can lead to obesity and related health problems such as diabetes, cardiovascular disease, and certain types of cancer.

Therefore, maintaining a good nutritional status is essential for overall health and well-being, and it is an important consideration in the prevention, diagnosis, and treatment of various medical conditions.

In the context of medicine and pharmacology, "kinetics" refers to the study of how a drug moves throughout the body, including its absorption, distribution, metabolism, and excretion (often abbreviated as ADME). This field is called "pharmacokinetics."

1. Absorption: This is the process of a drug moving from its site of administration into the bloodstream. Factors such as the route of administration (e.g., oral, intravenous, etc.), formulation, and individual physiological differences can affect absorption.

2. Distribution: Once a drug is in the bloodstream, it gets distributed throughout the body to various tissues and organs. This process is influenced by factors like blood flow, protein binding, and lipid solubility of the drug.

3. Metabolism: Drugs are often chemically modified in the body, typically in the liver, through processes known as metabolism. These changes can lead to the formation of active or inactive metabolites, which may then be further distributed, excreted, or undergo additional metabolic transformations.

4. Excretion: This is the process by which drugs and their metabolites are eliminated from the body, primarily through the kidneys (urine) and the liver (bile).

Understanding the kinetics of a drug is crucial for determining its optimal dosing regimen, potential interactions with other medications or foods, and any necessary adjustments for special populations like pediatric or geriatric patients, or those with impaired renal or hepatic function.

Antibodies are proteins produced by the immune system in response to the presence of a foreign substance, such as a bacterium or virus. They are capable of identifying and binding to specific antigens (foreign substances) on the surface of these invaders, marking them for destruction by other immune cells. Antibodies are also known as immunoglobulins and come in several different types, including IgA, IgD, IgE, IgG, and IgM, each with a unique function in the immune response. They are composed of four polypeptide chains, two heavy chains and two light chains, that are held together by disulfide bonds. The variable regions of the heavy and light chains form the antigen-binding site, which is specific to a particular antigen.

Fluorescence spectrometry is a type of analytical technique used to investigate the fluorescent properties of a sample. It involves the measurement of the intensity of light emitted by a substance when it absorbs light at a specific wavelength and then re-emits it at a longer wavelength. This process, known as fluorescence, occurs because the absorbed energy excites electrons in the molecules of the substance to higher energy states, and when these electrons return to their ground state, they release the excess energy as light.

Fluorescence spectrometry typically measures the emission spectrum of a sample, which is a plot of the intensity of emitted light versus the wavelength of emission. This technique can be used to identify and quantify the presence of specific fluorescent molecules in a sample, as well as to study their photophysical properties.

Fluorescence spectrometry has many applications in fields such as biochemistry, environmental science, and materials science. For example, it can be used to detect and measure the concentration of pollutants in water samples, to analyze the composition of complex biological mixtures, or to study the properties of fluorescent nanomaterials.

Alpha-fetoprotein (AFP) is a protein produced by the yolk sac and the liver during fetal development. In adults, AFP is normally present in very low levels in the blood. However, abnormal production of AFP can occur in certain medical conditions, such as:

* Liver cancer or hepatocellular carcinoma (HCC)
* Germ cell tumors, including non-seminomatous testicular cancer and ovarian cancer
* Hepatitis or liver inflammation
* Certain types of benign liver disease, such as cirrhosis or hepatic adenomas

Elevated levels of AFP in the blood can be detected through a simple blood test. This test is often used as a tumor marker to help diagnose and monitor certain types of cancer, particularly HCC. However, it's important to note that an elevated AFP level alone is not enough to diagnose cancer, and further testing is usually needed to confirm the diagnosis. Additionally, some non-cancerous conditions can also cause elevated AFP levels, so it's important to interpret the test results in the context of the individual's medical history and other diagnostic tests.

Capillary permeability refers to the ability of substances to pass through the walls of capillaries, which are the smallest blood vessels in the body. These tiny vessels connect the arterioles and venules, allowing for the exchange of nutrients, waste products, and gases between the blood and the surrounding tissues.

The capillary wall is composed of a single layer of endothelial cells that are held together by tight junctions. The permeability of these walls varies depending on the size and charge of the molecules attempting to pass through. Small, uncharged molecules such as water, oxygen, and carbon dioxide can easily diffuse through the capillary wall, while larger or charged molecules such as proteins and large ions have more difficulty passing through.

Increased capillary permeability can occur in response to inflammation, infection, or injury, allowing larger molecules and immune cells to enter the surrounding tissues. This can lead to swelling (edema) and tissue damage if not controlled. Decreased capillary permeability, on the other hand, can lead to impaired nutrient exchange and tissue hypoxia.

Overall, the permeability of capillaries is a critical factor in maintaining the health and function of tissues throughout the body.

Ultrafiltration is a medical process that separates fluids and dissolved solutes based on their size and charge. It's a type of membrane filtration that uses a semipermeable membrane with pores small enough to allow the passage of water and low molecular weight solutes, while retaining larger molecules and cells.

In clinical practice, ultrafiltration is often used in patients with acute or chronic kidney failure to remove excess fluid from the bloodstream, a process known as renal replacement therapy or dialysis. During this procedure, the patient's blood is passed through a hollow fiber membrane, and pressure differences across the membrane cause water and small solutes to move through the pores, while larger molecules such as proteins and cells are retained.

Ultrafiltration can also be used in other medical contexts, such as plasma exchange or therapeutic apheresis, where specific components of the blood are removed for therapeutic purposes.

'Immune sera' refers to the serum fraction of blood that contains antibodies produced in response to an antigenic stimulus, such as a vaccine or an infection. These antibodies are proteins known as immunoglobulins, which are secreted by B cells (a type of white blood cell) and can recognize and bind to specific antigens. Immune sera can be collected from an immunized individual and used as a source of passive immunity to protect against infection or disease. It is often used in research and diagnostic settings to identify or measure the presence of specific antigens or antibodies.

Serum sickness is an immune-mediated hypersensitivity reaction that typically occurs within 1 to 3 weeks after the administration of foreign proteins or drugs, such as certain types of antibiotics, antiserums, or monoclonal antibodies. It is characterized by symptoms such as fever, rash, joint pain, and lymphadenopathy (swollen lymph nodes). These symptoms are caused by the formation of immune complexes, which deposit in various tissues and activate the complement system, leading to inflammation. Serum sickness can be treated with antihistamines, corticosteroids, and other immunomodulatory agents. It is important to note that serum sickness is different from anaphylaxis, which is a more severe, life-threatening allergic reaction that occurs immediately after exposure to an allergen.

In the context of medical and biological sciences, a "binding site" refers to a specific location on a protein, molecule, or cell where another molecule can attach or bind. This binding interaction can lead to various functional changes in the original protein or molecule. The other molecule that binds to the binding site is often referred to as a ligand, which can be a small molecule, ion, or even another protein.

The binding between a ligand and its target binding site can be specific and selective, meaning that only certain ligands can bind to particular binding sites with high affinity. This specificity plays a crucial role in various biological processes, such as signal transduction, enzyme catalysis, or drug action.

In the case of drug development, understanding the location and properties of binding sites on target proteins is essential for designing drugs that can selectively bind to these sites and modulate protein function. This knowledge can help create more effective and safer therapeutic options for various diseases.

Protein-Energy Malnutrition (PEM) is a serious condition that occurs when an individual's diet does not provide enough protein or calories to meet their body's needs. It can lead to impaired physical and cognitive development, decreased immune function, increased susceptibility to infections, and in severe cases, death.

PEM can be caused by a variety of factors, including poverty, food insecurity, digestive disorders, chronic diseases, and eating disorders. The two most common forms of PEM are marasmus and kwashiorkor. Marasmus is characterized by extreme weight loss, muscle wasting, and decreased fat stores, while kwashiorkor is marked by swelling (edema), fluid accumulation in the abdomen, and a distended belly.

In medical terms, PEM is defined as a state of nutrient deficiency that results from a lack of adequate protein and energy intake over an extended period. It can be diagnosed through a combination of clinical assessment, medical history, physical examination, and laboratory tests. Treatment typically involves providing the individual with a balanced diet that is high in both protein and calories, as well as addressing any underlying medical conditions that may be contributing to their malnutrition.

Adsorption is a process in which atoms, ions, or molecules from a gas, liquid, or dissolved solid accumulate on the surface of a material. This occurs because the particles in the adsorbate (the substance being adsorbed) have forces that attract them to the surface of the adsorbent (the material that the adsorbate is adhering to).

In medical terms, adsorption can refer to the use of materials with adsorptive properties to remove harmful substances from the body. For example, activated charcoal is sometimes used in the treatment of poisoning because it can adsorb a variety of toxic substances and prevent them from being absorbed into the bloodstream.

It's important to note that adsorption is different from absorption, which refers to the process by which a substance is taken up and distributed throughout a material or tissue.

Proteinuria is a medical term that refers to the presence of excess proteins, particularly albumin, in the urine. Under normal circumstances, only small amounts of proteins should be found in the urine because the majority of proteins are too large to pass through the glomeruli, which are the filtering units of the kidneys.

However, when the glomeruli become damaged or diseased, they may allow larger molecules such as proteins to leak into the urine. Persistent proteinuria is often a sign of kidney disease and can indicate damage to the glomeruli. It is usually detected through a routine urinalysis and may be confirmed with further testing.

The severity of proteinuria can vary, and it can be a symptom of various underlying conditions such as diabetes, hypertension, glomerulonephritis, and other kidney diseases. Treatment for proteinuria depends on the underlying cause and may include medications to control blood pressure, manage diabetes, or reduce protein loss in the urine.

Blood protein electrophoresis (BPE) is a laboratory test that separates and measures the different proteins in the blood, such as albumin, alpha-1 globulins, alpha-2 globulins, beta globulins, and gamma globulins. This test is often used to help diagnose or monitor conditions related to abnormal protein levels, such as multiple myeloma, macroglobulinemia, and other plasma cell disorders.

In this test, a sample of the patient's blood is placed on a special gel and an electric current is applied. The proteins in the blood migrate through the gel based on their electrical charge and size, creating bands that can be visualized and measured. By comparing the band patterns to reference ranges, doctors can identify any abnormal protein levels or ratios, which may indicate underlying medical conditions.

It's important to note that while BPE is a useful diagnostic tool, it should be interpreted in conjunction with other clinical findings and laboratory tests for accurate diagnosis and management of the patient's condition.

High-performance liquid chromatography (HPLC) is a type of chromatography that separates and analyzes compounds based on their interactions with a stationary phase and a mobile phase under high pressure. The mobile phase, which can be a gas or liquid, carries the sample mixture through a column containing the stationary phase.

In HPLC, the mobile phase is a liquid, and it is pumped through the column at high pressures (up to several hundred atmospheres) to achieve faster separation times and better resolution than other types of liquid chromatography. The stationary phase can be a solid or a liquid supported on a solid, and it interacts differently with each component in the sample mixture, causing them to separate as they travel through the column.

HPLC is widely used in analytical chemistry, pharmaceuticals, biotechnology, and other fields to separate, identify, and quantify compounds present in complex mixtures. It can be used to analyze a wide range of substances, including drugs, hormones, vitamins, pigments, flavors, and pollutants. HPLC is also used in the preparation of pure samples for further study or use.

2S albumins are a type of protein found in plants. They are part of the larger family of storage proteins, which are abundant in seeds and provide nutrients to the developing plant embryo. 2S albumins are characterized by their small size, stable structure, and ability to resist digestion in the gut, making them important allergens in some plants.

The name "2S albumins" refers to their sedimentation coefficient, which is a measure of their size and shape in an ultracentrifuge. These proteins typically have a molecular weight of around 8-16 kDa and consist of two subunits held together by disulfide bonds. They are found in a wide variety of plant species, including legumes, cereals, and nuts.

In addition to their role as allergens, 2S albumins have been studied for their potential health benefits. Some studies suggest that they may have antimicrobial, antioxidant, and anti-inflammatory properties, although more research is needed to confirm these effects and understand their mechanisms of action.

Culture media is a substance that is used to support the growth of microorganisms or cells in an artificial environment, such as a petri dish or test tube. It typically contains nutrients and other factors that are necessary for the growth and survival of the organisms being cultured. There are many different types of culture media, each with its own specific formulation and intended use. Some common examples include blood agar, which is used to culture bacteria; Sabouraud dextrose agar, which is used to culture fungi; and Eagle's minimum essential medium, which is used to culture animal cells.

Bromcresol purple is a pH indicator dye that is commonly used in medical and laboratory settings to determine the acidity or alkalinity (pH level) of various substances. It is often used in clinical chemistry to monitor the pH of blood, urine, and other bodily fluids.

When added to a solution, bromcresol purple changes color depending on the pH of the solution. At a pH below 5.2, it appears yellow, while at a pH above 6.8, it turns purple. In between these values, it takes on various shades of greenish-blue, with the exact shade corresponding to the pH level of the solution.

Bromcresol purple is also used in some types of litmus paper and in certain medical tests, such as the bromcresol purple test for proteinuria (the presence of excess protein in the urine), where it can help detect changes in the pH of urine that may indicate kidney disease or other health problems.

Transferrin is a glycoprotein that plays a crucial role in the transport and homeostasis of iron in the body. It's produced mainly in the liver and has the ability to bind two ferric (Fe3+) ions in its N-lobe and C-lobe, thus creating transferrin saturation.

This protein is essential for delivering iron to cells while preventing the harmful effects of free iron, which can catalyze the formation of reactive oxygen species through Fenton reactions. Transferrin interacts with specific transferrin receptors on the surface of cells, particularly in erythroid precursors and brain endothelial cells, to facilitate iron uptake via receptor-mediated endocytosis.

In addition to its role in iron transport, transferrin also has antimicrobial properties due to its ability to sequester free iron, making it less available for bacterial growth and survival. Transferrin levels can be used as a clinical marker of iron status, with decreased levels indicating iron deficiency anemia and increased levels potentially signaling inflammation or liver disease.

An antigen-antibody complex is a type of immune complex that forms when an antibody binds to a specific antigen. An antigen is any substance that triggers an immune response, while an antibody is a protein produced by the immune system to neutralize or destroy foreign substances like antigens.

When an antibody binds to an antigen, it forms a complex that can be either soluble or insoluble. Soluble complexes are formed when the antigen is small and can move freely through the bloodstream. Insoluble complexes, on the other hand, are formed when the antigen is too large to move freely, such as when it is part of a bacterium or virus.

The formation of antigen-antibody complexes plays an important role in the immune response. Once formed, these complexes can be recognized and cleared by other components of the immune system, such as phagocytes, which help to prevent further damage to the body. However, in some cases, the formation of large numbers of antigen-antibody complexes can lead to inflammation and tissue damage, contributing to the development of certain autoimmune diseases.

"Cells, cultured" is a medical term that refers to cells that have been removed from an organism and grown in controlled laboratory conditions outside of the body. This process is called cell culture and it allows scientists to study cells in a more controlled and accessible environment than they would have inside the body. Cultured cells can be derived from a variety of sources, including tissues, organs, or fluids from humans, animals, or cell lines that have been previously established in the laboratory.

Cell culture involves several steps, including isolation of the cells from the tissue, purification and characterization of the cells, and maintenance of the cells in appropriate growth conditions. The cells are typically grown in specialized media that contain nutrients, growth factors, and other components necessary for their survival and proliferation. Cultured cells can be used for a variety of purposes, including basic research, drug development and testing, and production of biological products such as vaccines and gene therapies.

It is important to note that cultured cells may behave differently than they do in the body, and results obtained from cell culture studies may not always translate directly to human physiology or disease. Therefore, it is essential to validate findings from cell culture experiments using additional models and ultimately in clinical trials involving human subjects.

Gamma-globulins are a type of protein found in the blood serum, specifically a class of immunoglobulins (antibodies) known as IgG. They are the most abundant type of antibody and provide long-term defense against bacterial and viral infections. Gamma-globulins can also be referred to as "gamma globulin" or "gamma immune globulins."

These proteins are produced by B cells, a type of white blood cell, in response to an antigen (a foreign substance that triggers an immune response). IgG gamma-globulins have the ability to cross the placenta and provide passive immunity to the fetus. They can be measured through various medical tests such as serum protein electrophoresis (SPEP) or immunoelectrophoresis, which are used to diagnose and monitor conditions related to immune system disorders, such as multiple myeloma or primary immunodeficiency diseases.

In addition, gamma-globulins can be administered therapeutically in the form of intravenous immunoglobulin (IVIG) to provide passive immunity for patients with immunodeficiencies, autoimmune disorders, or infectious diseases.

"Inbred strains of rats" are genetically identical rodents that have been produced through many generations of brother-sister mating. This results in a high degree of homozygosity, where the genes at any particular locus in the genome are identical in all members of the strain.

Inbred strains of rats are widely used in biomedical research because they provide a consistent and reproducible genetic background for studying various biological phenomena, including the effects of drugs, environmental factors, and genetic mutations on health and disease. Additionally, inbred strains can be used to create genetically modified models of human diseases by introducing specific mutations into their genomes.

Some commonly used inbred strains of rats include the Wistar Kyoto (WKY), Sprague-Dawley (SD), and Fischer 344 (F344) rat strains. Each strain has its own unique genetic characteristics, making them suitable for different types of research.

Blood is the fluid that circulates in the body of living organisms, carrying oxygen and nutrients to the cells and removing carbon dioxide and other waste products. It is composed of red and white blood cells suspended in a liquid called plasma. The main function of blood is to transport oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs. It also transports nutrients, hormones, and other substances to the cells and removes waste products from them. Additionally, blood plays a crucial role in the body's immune system by helping to fight infection and disease.

Prospective studies, also known as longitudinal studies, are a type of cohort study in which data is collected forward in time, following a group of individuals who share a common characteristic or exposure over a period of time. The researchers clearly define the study population and exposure of interest at the beginning of the study and follow up with the participants to determine the outcomes that develop over time. This type of study design allows for the investigation of causal relationships between exposures and outcomes, as well as the identification of risk factors and the estimation of disease incidence rates. Prospective studies are particularly useful in epidemiology and medical research when studying diseases with long latency periods or rare outcomes.

Prealbumin, also known as transthyretin, is a protein produced primarily in the liver and circulates in the blood. It plays a role in transporting thyroid hormones and vitamin A throughout the body. Prealbumin levels are often used as an indicator of nutritional status and liver function. Low prealbumin levels may suggest malnutrition or inflammation, while increased levels can be seen in certain conditions like hyperthyroidism. It is important to note that prealbumin levels should be interpreted in conjunction with other clinical findings and laboratory tests for a more accurate assessment of a patient's health status.

A kidney, in medical terms, is one of two bean-shaped organs located in the lower back region of the body. They are essential for maintaining homeostasis within the body by performing several crucial functions such as:

1. Regulation of water and electrolyte balance: Kidneys help regulate the amount of water and various electrolytes like sodium, potassium, and calcium in the bloodstream to maintain a stable internal environment.

2. Excretion of waste products: They filter waste products from the blood, including urea (a byproduct of protein metabolism), creatinine (a breakdown product of muscle tissue), and other harmful substances that result from normal cellular functions or external sources like medications and toxins.

3. Endocrine function: Kidneys produce several hormones with important roles in the body, such as erythropoietin (stimulates red blood cell production), renin (regulates blood pressure), and calcitriol (activated form of vitamin D that helps regulate calcium homeostasis).

4. pH balance regulation: Kidneys maintain the proper acid-base balance in the body by excreting either hydrogen ions or bicarbonate ions, depending on whether the blood is too acidic or too alkaline.

5. Blood pressure control: The kidneys play a significant role in regulating blood pressure through the renin-angiotensin-aldosterone system (RAAS), which constricts blood vessels and promotes sodium and water retention to increase blood volume and, consequently, blood pressure.

Anatomically, each kidney is approximately 10-12 cm long, 5-7 cm wide, and 3 cm thick, with a weight of about 120-170 grams. They are surrounded by a protective layer of fat and connected to the urinary system through the renal pelvis, ureters, bladder, and urethra.

Reference values, also known as reference ranges or reference intervals, are the set of values that are considered normal or typical for a particular population or group of people. These values are often used in laboratory tests to help interpret test results and determine whether a patient's value falls within the expected range.

The process of establishing reference values typically involves measuring a particular biomarker or parameter in a large, healthy population and then calculating the mean and standard deviation of the measurements. Based on these statistics, a range is established that includes a certain percentage of the population (often 95%) and excludes extreme outliers.

It's important to note that reference values can vary depending on factors such as age, sex, race, and other demographic characteristics. Therefore, it's essential to use reference values that are specific to the relevant population when interpreting laboratory test results. Additionally, reference values may change over time due to advances in measurement technology or changes in the population being studied.

Antibody formation, also known as humoral immune response, is the process by which the immune system produces proteins called antibodies in response to the presence of a foreign substance (antigen) in the body. This process involves several steps:

1. Recognition: The antigen is recognized and bound by a type of white blood cell called a B lymphocyte or B cell, which then becomes activated.
2. Differentiation: The activated B cell undergoes differentiation to become a plasma cell, which is a type of cell that produces and secretes large amounts of antibodies.
3. Antibody production: The plasma cells produce and release antibodies, which are proteins made up of four polypeptide chains (two heavy chains and two light chains) arranged in a Y-shape. Each antibody has two binding sites that can recognize and bind to specific regions on the antigen called epitopes.
4. Neutralization or elimination: The antibodies bind to the antigens, neutralizing them or marking them for destruction by other immune cells. This helps to prevent the spread of infection and protect the body from harmful substances.

Antibody formation is an important part of the adaptive immune response, which allows the body to specifically recognize and respond to a wide variety of pathogens and foreign substances.

Electrophoresis, polyacrylamide gel (EPG) is a laboratory technique used to separate and analyze complex mixtures of proteins or nucleic acids (DNA or RNA) based on their size and electrical charge. This technique utilizes a matrix made of cross-linked polyacrylamide, a type of gel, which provides a stable and uniform environment for the separation of molecules.

In this process:

1. The polyacrylamide gel is prepared by mixing acrylamide monomers with a cross-linking agent (bis-acrylamide) and a catalyst (ammonium persulfate) in the presence of a buffer solution.
2. The gel is then poured into a mold and allowed to polymerize, forming a solid matrix with uniform pore sizes that depend on the concentration of acrylamide used. Higher concentrations result in smaller pores, providing better resolution for separating smaller molecules.
3. Once the gel has set, it is placed in an electrophoresis apparatus containing a buffer solution. Samples containing the mixture of proteins or nucleic acids are loaded into wells on the top of the gel.
4. An electric field is applied across the gel, causing the negatively charged molecules to migrate towards the positive electrode (anode) while positively charged molecules move toward the negative electrode (cathode). The rate of migration depends on the size, charge, and shape of the molecules.
5. Smaller molecules move faster through the gel matrix and will migrate farther from the origin compared to larger molecules, resulting in separation based on size. Proteins and nucleic acids can be selectively stained after electrophoresis to visualize the separated bands.

EPG is widely used in various research fields, including molecular biology, genetics, proteomics, and forensic science, for applications such as protein characterization, DNA fragment analysis, cloning, mutation detection, and quality control of nucleic acid or protein samples.

An antigen is a substance (usually a protein) that is recognized as foreign by the immune system and stimulates an immune response, leading to the production of antibodies or activation of T-cells. Antigens can be derived from various sources, including bacteria, viruses, fungi, parasites, and tumor cells. They can also come from non-living substances such as pollen, dust mites, or chemicals.

Antigens contain epitopes, which are specific regions on the antigen molecule that are recognized by the immune system. The immune system's response to an antigen depends on several factors, including the type of antigen, its size, and its location in the body.

In general, antigens can be classified into two main categories:

1. T-dependent antigens: These require the help of T-cells to stimulate an immune response. They are typically larger, more complex molecules that contain multiple epitopes capable of binding to both MHC class II molecules on antigen-presenting cells and T-cell receptors on CD4+ T-cells.
2. T-independent antigens: These do not require the help of T-cells to stimulate an immune response. They are usually smaller, simpler molecules that contain repetitive epitopes capable of cross-linking B-cell receptors and activating them directly.

Understanding antigens and their properties is crucial for developing vaccines, diagnostic tests, and immunotherapies.

Proteins are complex, large molecules that play critical roles in the body's functions. They are made up of amino acids, which are organic compounds that are the building blocks of proteins. Proteins are required for the structure, function, and regulation of the body's tissues and organs. They are essential for the growth, repair, and maintenance of body tissues, and they play a crucial role in many biological processes, including metabolism, immune response, and cellular signaling. Proteins can be classified into different types based on their structure and function, such as enzymes, hormones, antibodies, and structural proteins. They are found in various foods, especially animal-derived products like meat, dairy, and eggs, as well as plant-based sources like beans, nuts, and grains.

Advanced Glycosylation End Products (AGEs) are formed through the non-enzymatic glycation and oxidative modification of proteins, lipids, and nucleic acids. This process occurs when a sugar molecule, such as glucose, binds to a protein or lipid without the regulation of an enzyme, leading to the formation of a Schiff base. This then rearranges to form a more stable ketoamine, known as an Amadori product. Over time, these Amadori products can undergo further reactions, including oxidation, fragmentation, and cross-linking, resulting in the formation of AGEs.

AGEs can alter the structure and function of proteins and lipids, leading to damage in tissues and organs. They have been implicated in the development and progression of several age-related diseases, including diabetes, atherosclerosis, kidney disease, and Alzheimer's disease. AGEs can also contribute to inflammation and oxidative stress, which can further exacerbate tissue damage.

In summary, Advanced Glycosylation End Products (AGEs) are the result of non-enzymatic glycation and oxidation of proteins, lipids, and nucleic acids, leading to structural and functional changes in tissues and organs, and contributing to the development and progression of several age-related diseases.

Medical Definition:

"Risk factors" are any attribute, characteristic or exposure of an individual that increases the likelihood of developing a disease or injury. They can be divided into modifiable and non-modifiable risk factors. Modifiable risk factors are those that can be changed through lifestyle choices or medical treatment, while non-modifiable risk factors are inherent traits such as age, gender, or genetic predisposition. Examples of modifiable risk factors include smoking, alcohol consumption, physical inactivity, and unhealthy diet, while non-modifiable risk factors include age, sex, and family history. It is important to note that having a risk factor does not guarantee that a person will develop the disease, but rather indicates an increased susceptibility.

Cross reactions, in the context of medical diagnostics and immunology, refer to a situation where an antibody or a immune response directed against one antigen also reacts with a different antigen due to similarities in their molecular structure. This can occur in allergy testing, where a person who is allergic to a particular substance may have a positive test result for a different but related substance because of cross-reactivity between them. For example, some individuals who are allergic to birch pollen may also have symptoms when eating certain fruits, such as apples, due to cross-reactive proteins present in both.

A hapten is a small molecule that can elicit an immune response only when it is attached to a larger carrier protein. On its own, a hapten is too small to be recognized by the immune system as a foreign substance. However, when it binds to a carrier protein, it creates a new antigenic site that can be detected by the immune system. This process is known as haptenization.

Haptens are important in the study of immunology and allergies because they can cause an allergic response when they bind to proteins in the body. For example, certain chemicals found in cosmetics, drugs, or industrial products can act as haptens and trigger an allergic reaction when they come into contact with the skin or mucous membranes. The resulting immune response can cause symptoms such as rash, itching, or inflammation.

Haptens can also be used in the development of vaccines and diagnostic tests, where they are attached to carrier proteins to stimulate an immune response and produce specific antibodies that can be measured or used for therapy.

Antibody specificity refers to the ability of an antibody to bind to a specific epitope or antigenic determinant on an antigen. Each antibody has a unique structure that allows it to recognize and bind to a specific region of an antigen, typically a small portion of the antigen's surface made up of amino acids or sugar residues. This highly specific binding is mediated by the variable regions of the antibody's heavy and light chains, which form a pocket that recognizes and binds to the epitope.

The specificity of an antibody is determined by its unique complementarity-determining regions (CDRs), which are loops of amino acids located in the variable domains of both the heavy and light chains. The CDRs form a binding site that recognizes and interacts with the epitope on the antigen. The precise fit between the antibody's binding site and the epitope is critical for specificity, as even small changes in the structure of either can prevent binding.

Antibody specificity is important in immune responses because it allows the immune system to distinguish between self and non-self antigens. This helps to prevent autoimmune reactions where the immune system attacks the body's own cells and tissues. Antibody specificity also plays a crucial role in diagnostic tests, such as ELISA assays, where antibodies are used to detect the presence of specific antigens in biological samples.

Lactoglobulins, specifically referring to β-lactoglobulin, are a type of protein found in the whey fraction of milk from ruminant animals such as cows and sheep. They are one of the major proteins in bovine milk, making up about 10% of the total protein content.

β-lactoglobulin is a small, stable protein that is resistant to heat and acid denaturation. It has an important role in the nutrition of young mammals as it can bind to fat molecules and help with their absorption. In addition, β-lactoglobulin has been studied for its potential health benefits, including its antioxidant and anti-inflammatory properties.

However, some people may have allergies to β-lactoglobulin, which can cause symptoms such as hives, swelling, and difficulty breathing. In these cases, it is important to avoid foods that contain this protein.

An immunoassay is a biochemical test that measures the presence or concentration of a specific protein, antibody, or antigen in a sample using the principles of antibody-antigen reactions. It is commonly used in clinical laboratories to diagnose and monitor various medical conditions such as infections, hormonal disorders, allergies, and cancer.

Immunoassays typically involve the use of labeled reagents, such as enzymes, radioisotopes, or fluorescent dyes, that bind specifically to the target molecule. The amount of label detected is proportional to the concentration of the target molecule in the sample, allowing for quantitative analysis.

There are several types of immunoassays, including enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), fluorescence immunoassay (FIA), and chemiluminescent immunoassay (CLIA). Each type has its own advantages and limitations, depending on the sensitivity, specificity, and throughput required for a particular application.

Cholesterol is a type of lipid (fat) molecule that is an essential component of cell membranes and is also used to make certain hormones and vitamins in the body. It is produced by the liver and is also obtained from animal-derived foods such as meat, dairy products, and eggs.

Cholesterol does not mix with blood, so it is transported through the bloodstream by lipoproteins, which are particles made up of both lipids and proteins. There are two main types of lipoproteins that carry cholesterol: low-density lipoproteins (LDL), also known as "bad" cholesterol, and high-density lipoproteins (HDL), also known as "good" cholesterol.

High levels of LDL cholesterol in the blood can lead to a buildup of cholesterol in the walls of the arteries, increasing the risk of heart disease and stroke. On the other hand, high levels of HDL cholesterol are associated with a lower risk of these conditions because HDL helps remove LDL cholesterol from the bloodstream and transport it back to the liver for disposal.

It is important to maintain healthy levels of cholesterol through a balanced diet, regular exercise, and sometimes medication if necessary. Regular screening is also recommended to monitor cholesterol levels and prevent health complications.

Nephelometry and turbidimetry are methods used in clinical laboratories to measure the amount of particles, such as proteins or cells, present in a liquid sample. The main difference between these two techniques lies in how they detect and quantify the particles.

1. Nephelometry: This is a laboratory method that measures the amount of light scattered by suspended particles in a liquid medium at a 90-degree angle to the path of the incident light. When light passes through a sample containing particles, some of the light is absorbed, while some is scattered in various directions. In nephelometry, a light beam is shone into the sample, and a detector measures the intensity of the scattered light at a right angle to the light source. The more particles present in the sample, the higher the intensity of scattered light, which correlates with the concentration of particles in the sample. Nephelometry is often used to measure the levels of immunoglobulins, complement components, and other proteins in serum or plasma.

2. Turbidimetry: This is another laboratory method that measures the amount of light blocked or absorbed by suspended particles in a liquid medium. In turbidimetry, a light beam is shone through the sample, and the intensity of the transmitted light is measured. The more particles present in the sample, the more light is absorbed or scattered, resulting in lower transmitted light intensity. Turbidimetric measurements are typically reported as percent transmittance, which is the ratio of the intensity of transmitted light to that of the incident light expressed as a percentage. Turbidimetry can be used to measure various substances, such as proteins, cells, and crystals, in body fluids like urine, serum, or plasma.

In summary, nephelometry measures the amount of scattered light at a 90-degree angle, while turbidimetry quantifies the reduction in transmitted light intensity due to particle presence. Both methods are useful for determining the concentration of particles in liquid samples and are commonly used in clinical laboratories for diagnostic purposes.

Nutrition disorders refer to conditions that result from eating, drinking, or absorbing nutrients in a way that is not consistent with human physiological needs. These disorders can manifest as both undernutrition and overnutrition. Undernutrition includes disorders such as protein-energy malnutrition, vitamin deficiencies, and mineral deficiencies, while overnutrition includes conditions such as obesity and diet-related noncommunicable diseases like diabetes, cardiovascular disease, and certain types of cancer.

Malnutrition is the broad term used to describe a state in which a person's nutrient intake is insufficient or excessive, leading to negative consequences for their health. Malnutrition can be caused by a variety of factors, including poverty, food insecurity, lack of education, cultural practices, and chronic diseases.

In addition to under- and overnutrition, disordered eating patterns such as anorexia nervosa, bulimia nervosa, binge eating disorder, and other specified feeding or eating disorders can also be considered nutrition disorders. These conditions are characterized by abnormal eating habits that can lead to serious health consequences, including malnutrition, organ damage, and mental health problems.

Overall, nutrition disorders are complex conditions that can have significant impacts on a person's physical and mental health. They require careful assessment, diagnosis, and treatment by healthcare professionals with expertise in nutrition and dietetics.

Sensitivity and specificity are statistical measures used to describe the performance of a diagnostic test or screening tool in identifying true positive and true negative results.

* Sensitivity refers to the proportion of people who have a particular condition (true positives) who are correctly identified by the test. It is also known as the "true positive rate" or "recall." A highly sensitive test will identify most or all of the people with the condition, but may also produce more false positives.
* Specificity refers to the proportion of people who do not have a particular condition (true negatives) who are correctly identified by the test. It is also known as the "true negative rate." A highly specific test will identify most or all of the people without the condition, but may also produce more false negatives.

In medical testing, both sensitivity and specificity are important considerations when evaluating a diagnostic test. High sensitivity is desirable for screening tests that aim to identify as many cases of a condition as possible, while high specificity is desirable for confirmatory tests that aim to rule out the condition in people who do not have it.

It's worth noting that sensitivity and specificity are often influenced by factors such as the prevalence of the condition in the population being tested, the threshold used to define a positive result, and the reliability and validity of the test itself. Therefore, it's important to consider these factors when interpreting the results of a diagnostic test.

Fatty acids are carboxylic acids with a long aliphatic chain, which are important components of lipids and are widely distributed in living organisms. They can be classified based on the length of their carbon chain, saturation level (presence or absence of double bonds), and other structural features.

The two main types of fatty acids are:

1. Saturated fatty acids: These have no double bonds in their carbon chain and are typically solid at room temperature. Examples include palmitic acid (C16:0) and stearic acid (C18:0).
2. Unsaturated fatty acids: These contain one or more double bonds in their carbon chain and can be further classified into monounsaturated (one double bond) and polyunsaturated (two or more double bonds) fatty acids. Examples of unsaturated fatty acids include oleic acid (C18:1, monounsaturated), linoleic acid (C18:2, polyunsaturated), and alpha-linolenic acid (C18:3, polyunsaturated).

Fatty acids play crucial roles in various biological processes, such as energy storage, membrane structure, and cell signaling. Some essential fatty acids cannot be synthesized by the human body and must be obtained through dietary sources.

Molecular sequence data refers to the specific arrangement of molecules, most commonly nucleotides in DNA or RNA, or amino acids in proteins, that make up a biological macromolecule. This data is generated through laboratory techniques such as sequencing, and provides information about the exact order of the constituent molecules. This data is crucial in various fields of biology, including genetics, evolution, and molecular biology, allowing for comparisons between different organisms, identification of genetic variations, and studies of gene function and regulation.

C-reactive protein (CRP) is a protein produced by the liver in response to inflammation or infection in the body. It is named after its ability to bind to the C-polysaccharide of pneumococcus, a type of bacteria. CRP levels can be measured with a simple blood test and are often used as a marker of inflammation or infection. Elevated CRP levels may indicate a variety of conditions, including infections, tissue damage, and chronic diseases such as rheumatoid arthritis and cancer. However, it is important to note that CRP is not specific to any particular condition, so additional tests are usually needed to make a definitive diagnosis.

Immunoglobulin M (IgM) is a type of antibody that is primarily found in the blood and lymph fluid. It is the first antibody to be produced in response to an initial exposure to an antigen, making it an important part of the body's primary immune response. IgM antibodies are large molecules that are composed of five basic units, giving them a pentameric structure. They are primarily found on the surface of B cells as membrane-bound immunoglobulins (mlgM), where they function as receptors for antigens. Once an mlgM receptor binds to an antigen, it triggers the activation and differentiation of the B cell into a plasma cell that produces and secretes large amounts of soluble IgM antibodies.

IgM antibodies are particularly effective at agglutination (clumping) and complement activation, which makes them important in the early stages of an immune response to help clear pathogens from the bloodstream. However, they are not as stable or long-lived as other types of antibodies, such as IgG, and their levels tend to decline after the initial immune response has occurred.

In summary, Immunoglobulin M (IgM) is a type of antibody that plays a crucial role in the primary immune response to antigens by agglutination and complement activation. It is primarily found in the blood and lymph fluid, and it is produced by B cells after they are activated by an antigen.

Peritoneal dialysis is a type of renal replacement therapy used to treat patients with severe kidney dysfunction or end-stage renal disease. It is a process that utilizes the peritoneum, a membranous sac lining the abdominal cavity, as a natural semipermeable membrane for filtering waste products, excess fluids, and electrolytes from the bloodstream.

In peritoneal dialysis, a sterile dialysate solution is infused into the peritoneal cavity via a permanently implanted catheter. The dialysate contains various substances such as glucose or other osmotic agents, electrolytes, and buffer solutions that facilitate the diffusion of waste products and fluids from the blood vessels surrounding the peritoneum into the dialysate.

There are two primary types of peritoneal dialysis: continuous ambulatory peritoneal dialysis (CAPD) and automated peritoneal dialysis (APD). CAPD is performed manually, several times a day, while APD is carried out using a cycler machine overnight.

Peritoneal dialysis offers certain advantages over hemodialysis, such as better preservation of residual renal function, fewer dietary restrictions, and greater flexibility in scheduling treatments. However, it also has potential complications, including peritonitis (inflammation of the peritoneum), catheter-related infections, fluid imbalances, and membrane failure over time.

Hypoproteinemia is a medical condition characterized by abnormally low levels of protein, particularly albumin, in the blood. This can occur due to various reasons such as malnutrition, liver disease, kidney disease, or gastrointestinal disorders that affect protein absorption. It can lead to edema (swelling), especially in the legs and abdomen, and other complications. It's important to note that while albumin is the most abundant protein in blood serum, other proteins such as immunoglobulins and enzymes can also be affected in hypoproteinemia.

An amino acid sequence is the specific order of amino acids in a protein or peptide molecule, formed by the linking of the amino group (-NH2) of one amino acid to the carboxyl group (-COOH) of another amino acid through a peptide bond. The sequence is determined by the genetic code and is unique to each type of protein or peptide. It plays a crucial role in determining the three-dimensional structure and function of proteins.

Spectrophotometry, Ultraviolet (UV-Vis) is a type of spectrophotometry that measures how much ultraviolet (UV) and visible light is absorbed or transmitted by a sample. It uses a device called a spectrophotometer to measure the intensity of light at different wavelengths as it passes through a sample. The resulting data can be used to determine the concentration of specific components within the sample, identify unknown substances, or evaluate the physical and chemical properties of materials.

UV-Vis spectroscopy is widely used in various fields such as chemistry, biology, pharmaceuticals, and environmental science. It can detect a wide range of substances including organic compounds, metal ions, proteins, nucleic acids, and dyes. The technique is non-destructive, meaning that the sample remains unchanged after the measurement.

In UV-Vis spectroscopy, the sample is placed in a cuvette or other container, and light from a source is directed through it. The light then passes through a monochromator, which separates it into its component wavelengths. The monochromatic light is then directed through the sample, and the intensity of the transmitted or absorbed light is measured by a detector.

The resulting absorption spectrum can provide information about the concentration and identity of the components in the sample. For example, if a compound has a known absorption maximum at a specific wavelength, its concentration can be determined by measuring the absorbance at that wavelength and comparing it to a standard curve.

Overall, UV-Vis spectrophotometry is a versatile and powerful analytical technique for quantitative and qualitative analysis of various samples in different fields.

Immunoelectrophoresis (IEP) is a laboratory technique used in the field of clinical pathology and immunology. It is a method for separating and identifying proteins, particularly immunoglobulins or antibodies, in a sample. This technique combines the principles of electrophoresis, which separates proteins based on their electric charge and size, with immunological reactions, which detect specific proteins using antigen-antibody interactions.

In IEP, a protein sample is first separated by electrophoresis in an agarose or agar gel matrix on a glass slide or in a test tube. After separation, an antibody specific to the protein of interest is layered on top of the gel and allowed to diffuse towards the separated proteins. This creates a reaction between the antigen (protein) and the antibody, forming a visible precipitate at the point where they meet. The precipitate line's position and intensity can then be analyzed to identify and quantify the protein of interest.

Immunoelectrophoresis is particularly useful in diagnosing various medical conditions, such as immunodeficiency disorders, monoclonal gammopathies (like multiple myeloma), and other plasma cell dyscrasias. It can help detect abnormal protein patterns, quantify specific immunoglobulins, and identify the presence of M-proteins or Bence Jones proteins, which are indicative of monoclonal gammopathies.

Immunoglobulin A (IgA) is a type of antibody that plays a crucial role in the immune function of the human body. It is primarily found in external secretions, such as saliva, tears, breast milk, and sweat, as well as in mucous membranes lining the respiratory and gastrointestinal tracts. IgA exists in two forms: a monomeric form found in serum and a polymeric form found in secretions.

The primary function of IgA is to provide immune protection at mucosal surfaces, which are exposed to various environmental antigens, such as bacteria, viruses, parasites, and allergens. By doing so, it helps prevent the entry and colonization of pathogens into the body, reducing the risk of infections and inflammation.

IgA functions by binding to antigens present on the surface of pathogens or allergens, forming immune complexes that can neutralize their activity. These complexes are then transported across the epithelial cells lining mucosal surfaces and released into the lumen, where they prevent the adherence and invasion of pathogens.

In summary, Immunoglobulin A (IgA) is a vital antibody that provides immune defense at mucosal surfaces by neutralizing and preventing the entry of harmful antigens into the body.

An antigen-antibody reaction is a specific immune response that occurs when an antigen (a foreign substance, such as a protein or polysaccharide on the surface of a bacterium or virus) comes into contact with a corresponding antibody (a protective protein produced by the immune system in response to the antigen). The antigen and antibody bind together, forming an antigen-antibody complex. This interaction can neutralize the harmful effects of the antigen, mark it for destruction by other immune cells, or activate complement proteins to help eliminate the antigen from the body. Antigen-antibody reactions are a crucial part of the adaptive immune response and play a key role in the body's defense against infection and disease.

Molecular weight, also known as molecular mass, is the mass of a molecule. It is expressed in units of atomic mass units (amu) or daltons (Da). Molecular weight is calculated by adding up the atomic weights of each atom in a molecule. It is a useful property in chemistry and biology, as it can be used to determine the concentration of a substance in a solution, or to calculate the amount of a substance that will react with another in a chemical reaction.

Blood chemical analysis, also known as clinical chemistry or chemistry panel, is a series of tests that measure the levels of various chemicals in the blood. These tests can help evaluate the function of organs such as the kidneys and liver, and can also detect conditions such as diabetes and heart disease.

The tests typically include:

* Glucose: to check for diabetes
* Electrolytes (such as sodium, potassium, chloride, and bicarbonate): to check the body's fluid and electrolyte balance
* Calcium: to check for problems with bones, nerves, or kidneys
* Creatinine: to check for kidney function
* Urea Nitrogen (BUN): to check for kidney function
* Albumin: to check for liver function and nutrition status
* ALT (Alanine Transaminase) and AST (Aspartate Transaminase): to check for liver function
* Alkaline Phosphatase: to check for liver or bone disease
* Total Bilirubin: to check for liver function and gallbladder function
* Cholesterol: to check for heart disease risk
* Triglycerides: to check for heart disease risk

These tests are usually ordered by a doctor as part of a routine check-up, or to help diagnose and monitor specific medical conditions. The results of the blood chemical analysis are compared to reference ranges provided by the laboratory performing the test, which take into account factors such as age, sex, and race.

Nephrotic syndrome is a group of symptoms that indicate kidney damage, specifically damage to the glomeruli—the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. The main features of nephrotic syndrome are:

1. Proteinuria (excess protein in urine): Large amounts of a protein called albumin leak into the urine due to damaged glomeruli, which can't properly filter proteins. This leads to low levels of albumin in the blood, causing fluid buildup and swelling.
2. Hypoalbuminemia (low blood albumin levels): As albumin leaks into the urine, the concentration of albumin in the blood decreases, leading to hypoalbuminemia. This can cause edema (swelling), particularly in the legs, ankles, and feet.
3. Edema (fluid retention and swelling): With low levels of albumin in the blood, fluids move into the surrounding tissues, causing swelling or puffiness. The swelling is most noticeable around the eyes, face, hands, feet, and abdomen.
4. Hyperlipidemia (high lipid/cholesterol levels): The kidneys play a role in regulating lipid metabolism. Damage to the glomeruli can lead to increased lipid production and high cholesterol levels in the blood.

Nephrotic syndrome can result from various underlying kidney diseases, such as minimal change disease, membranous nephropathy, or focal segmental glomerulosclerosis. Treatment depends on the underlying cause and may include medications to control inflammation, manage high blood pressure, and reduce proteinuria. In some cases, dietary modifications and lifestyle changes are also recommended.

Hemoglobin (Hb or Hgb) is the main oxygen-carrying protein in the red blood cells, which are responsible for delivering oxygen throughout the body. It is a complex molecule made up of four globin proteins and four heme groups. Each heme group contains an iron atom that binds to one molecule of oxygen. Hemoglobin plays a crucial role in the transport of oxygen from the lungs to the body's tissues, and also helps to carry carbon dioxide back to the lungs for exhalation.

There are several types of hemoglobin present in the human body, including:

* Hemoglobin A (HbA): This is the most common type of hemoglobin, making up about 95-98% of total hemoglobin in adults. It consists of two alpha and two beta globin chains.
* Hemoglobin A2 (HbA2): This makes up about 1.5-3.5% of total hemoglobin in adults. It consists of two alpha and two delta globin chains.
* Hemoglobin F (HbF): This is the main type of hemoglobin present in fetal life, but it persists at low levels in adults. It consists of two alpha and two gamma globin chains.
* Hemoglobin S (HbS): This is an abnormal form of hemoglobin that can cause sickle cell disease when it occurs in the homozygous state (i.e., both copies of the gene are affected). It results from a single amino acid substitution in the beta globin chain.
* Hemoglobin C (HbC): This is another abnormal form of hemoglobin that can cause mild to moderate hemolytic anemia when it occurs in the homozygous state. It results from a different single amino acid substitution in the beta globin chain than HbS.

Abnormal forms of hemoglobin, such as HbS and HbC, can lead to various clinical disorders, including sickle cell disease, thalassemia, and other hemoglobinopathies.

Protein-losing enteropathies (PLE) refer to a group of conditions characterized by excessive loss of proteins from the gastrointestinal tract into the intestinal lumen and ultimately into the stool. This results in hypoproteinemia, which is a decrease in the concentration of proteins in the bloodstream, particularly albumin.

The protein loss can occur due to various reasons such as increased permeability of the intestinal mucosa, lymphatic obstruction, or inflammatory processes affecting the gastrointestinal tract. Common causes of PLE include conditions such as inflammatory bowel disease, intestinal lymphangiectasia, celiac disease, Whipple's disease, and menetrier's disease.

Symptoms of PLE may include edema, ascites, weight loss, diarrhea, and fatigue. The diagnosis of PLE typically involves measuring the concentration of proteins in the stool, as well as other diagnostic tests to determine the underlying cause. Treatment of PLE depends on the underlying cause and may involve dietary modifications, medications, or surgical interventions.

A dose-response relationship in the context of drugs refers to the changes in the effects or symptoms that occur as the dose of a drug is increased or decreased. Generally, as the dose of a drug is increased, the severity or intensity of its effects also increases. Conversely, as the dose is decreased, the effects of the drug become less severe or may disappear altogether.

The dose-response relationship is an important concept in pharmacology and toxicology because it helps to establish the safe and effective dosage range for a drug. By understanding how changes in the dose of a drug affect its therapeutic and adverse effects, healthcare providers can optimize treatment plans for their patients while minimizing the risk of harm.

The dose-response relationship is typically depicted as a curve that shows the relationship between the dose of a drug and its effect. The shape of the curve may vary depending on the drug and the specific effect being measured. Some drugs may have a steep dose-response curve, meaning that small changes in the dose can result in large differences in the effect. Other drugs may have a more gradual dose-response curve, where larger changes in the dose are needed to produce significant effects.

In addition to helping establish safe and effective dosages, the dose-response relationship is also used to evaluate the potential therapeutic benefits and risks of new drugs during clinical trials. By systematically testing different doses of a drug in controlled studies, researchers can identify the optimal dosage range for the drug and assess its safety and efficacy.

Iodine radioisotopes are radioactive isotopes of the element iodine, which decays and emits radiation in the form of gamma rays. Some commonly used iodine radioisotopes include I-123, I-125, I-131. These radioisotopes have various medical applications such as in diagnostic imaging, therapy for thyroid disorders, and cancer treatment.

For example, I-131 is commonly used to treat hyperthyroidism and differentiated thyroid cancer due to its ability to destroy thyroid tissue. On the other hand, I-123 is often used in nuclear medicine scans of the thyroid gland because it emits gamma rays that can be detected by a gamma camera, allowing for detailed images of the gland's structure and function.

It is important to note that handling and administering radioisotopes require specialized training and safety precautions due to their radiation-emitting properties.

Malnutrition is a condition that results from eating a diet in which one or more nutrients are either not enough or are too much such that the body's function is not maintained. It can also refer to a deficiency or excess of vitamins, minerals, protein, energy, and/or water. This condition can have negative effects on physical and mental health. Malnutrition includes undernutrition (wasting, stunting, underweight), overnutrition (overweight, obesity) and micronutrient deficiencies or excesses.

It's important to note that malnutrition is different from malabsorption, which is the inability to absorb nutrients from food. Malabsorption can also lead to malnutrition if it results in a lack of necessary nutrients for the body's function.

Body weight is the measure of the force exerted on a scale or balance by an object's mass, most commonly expressed in units such as pounds (lb) or kilograms (kg). In the context of medical definitions, body weight typically refers to an individual's total weight, which includes their skeletal muscle, fat, organs, and bodily fluids.

Healthcare professionals often use body weight as a basic indicator of overall health status, as it can provide insights into various aspects of a person's health, such as nutritional status, metabolic function, and risk factors for certain diseases. For example, being significantly underweight or overweight can increase the risk of developing conditions like malnutrition, diabetes, heart disease, and certain types of cancer.

It is important to note that body weight alone may not provide a complete picture of an individual's health, as it does not account for factors such as muscle mass, bone density, or body composition. Therefore, healthcare professionals often use additional measures, such as body mass index (BMI), waist circumference, and blood tests, to assess overall health status more comprehensively.

Temperature, in a medical context, is a measure of the degree of hotness or coldness of a body or environment. It is usually measured using a thermometer and reported in degrees Celsius (°C), degrees Fahrenheit (°F), or kelvin (K). In the human body, normal core temperature ranges from about 36.5-37.5°C (97.7-99.5°F) when measured rectally, and can vary slightly depending on factors such as time of day, physical activity, and menstrual cycle. Elevated body temperature is a common sign of infection or inflammation, while abnormally low body temperature can indicate hypothermia or other medical conditions.

In the context of medical research, "methods" refers to the specific procedures or techniques used in conducting a study or experiment. This includes details on how data was collected, what measurements were taken, and what statistical analyses were performed. The methods section of a medical paper allows other researchers to replicate the study if they choose to do so. It is considered one of the key components of a well-written research article, as it provides transparency and helps establish the validity of the findings.

Amino acids are organic compounds that serve as the building blocks of proteins. They consist of a central carbon atom, also known as the alpha carbon, which is bonded to an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom (H), and a variable side chain (R group). The R group can be composed of various combinations of atoms such as hydrogen, oxygen, sulfur, nitrogen, and carbon, which determine the unique properties of each amino acid.

There are 20 standard amino acids that are encoded by the genetic code and incorporated into proteins during translation. These include:

1. Alanine (Ala)
2. Arginine (Arg)
3. Asparagine (Asn)
4. Aspartic acid (Asp)
5. Cysteine (Cys)
6. Glutamine (Gln)
7. Glutamic acid (Glu)
8. Glycine (Gly)
9. Histidine (His)
10. Isoleucine (Ile)
11. Leucine (Leu)
12. Lysine (Lys)
13. Methionine (Met)
14. Phenylalanine (Phe)
15. Proline (Pro)
16. Serine (Ser)
17. Threonine (Thr)
18. Tryptophan (Trp)
19. Tyrosine (Tyr)
20. Valine (Val)

Additionally, there are several non-standard or modified amino acids that can be incorporated into proteins through post-translational modifications, such as hydroxylation, methylation, and phosphorylation. These modifications expand the functional diversity of proteins and play crucial roles in various cellular processes.

Amino acids are essential for numerous biological functions, including protein synthesis, enzyme catalysis, neurotransmitter production, energy metabolism, and immune response regulation. Some amino acids can be synthesized by the human body (non-essential), while others must be obtained through dietary sources (essential).

Gel chromatography is a type of liquid chromatography that separates molecules based on their size or molecular weight. It uses a stationary phase that consists of a gel matrix made up of cross-linked polymers, such as dextran, agarose, or polyacrylamide. The gel matrix contains pores of various sizes, which allow smaller molecules to penetrate deeper into the matrix while larger molecules are excluded.

In gel chromatography, a mixture of molecules is loaded onto the top of the gel column and eluted with a solvent that moves down the column by gravity or pressure. As the sample components move down the column, they interact with the gel matrix and get separated based on their size. Smaller molecules can enter the pores of the gel and take longer to elute, while larger molecules are excluded from the pores and elute more quickly.

Gel chromatography is commonly used to separate and purify proteins, nucleic acids, and other biomolecules based on their size and molecular weight. It is also used in the analysis of polymers, colloids, and other materials with a wide range of applications in chemistry, biology, and medicine.

The Predictive Value of Tests, specifically the Positive Predictive Value (PPV) and Negative Predictive Value (NPV), are measures used in diagnostic tests to determine the probability that a positive or negative test result is correct.

Positive Predictive Value (PPV) is the proportion of patients with a positive test result who actually have the disease. It is calculated as the number of true positives divided by the total number of positive results (true positives + false positives). A higher PPV indicates that a positive test result is more likely to be a true positive, and therefore the disease is more likely to be present.

Negative Predictive Value (NPV) is the proportion of patients with a negative test result who do not have the disease. It is calculated as the number of true negatives divided by the total number of negative results (true negatives + false negatives). A higher NPV indicates that a negative test result is more likely to be a true negative, and therefore the disease is less likely to be present.

The predictive value of tests depends on the prevalence of the disease in the population being tested, as well as the sensitivity and specificity of the test. A test with high sensitivity and specificity will generally have higher predictive values than a test with low sensitivity and specificity. However, even a highly sensitive and specific test can have low predictive values if the prevalence of the disease is low in the population being tested.

Lipids are a broad group of organic compounds that are insoluble in water but soluble in nonpolar organic solvents. They include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E, and K), monoglycerides, diglycerides, triglycerides, and phospholipids. Lipids serve many important functions in the body, including energy storage, acting as structural components of cell membranes, and serving as signaling molecules. High levels of certain lipids, particularly cholesterol and triglycerides, in the blood are associated with an increased risk of cardiovascular disease.

A buffer in the context of physiology and medicine refers to a substance or system that helps to maintain stable or neutral conditions, particularly in relation to pH levels, within the body or biological fluids.

Buffers are weak acids or bases that can react with strong acids or bases to minimize changes in the pH level. They do this by taking up excess hydrogen ions (H+) when acidity increases or releasing hydrogen ions when alkalinity increases, thereby maintaining a relatively constant pH.

In the human body, some of the key buffer systems include:

1. Bicarbonate buffer system: This is the major buffer in blood and extracellular fluids. It consists of bicarbonate ions (HCO3-) and carbonic acid (H2CO3). When there is an increase in acidity, the bicarbonate ion accepts a hydrogen ion to form carbonic acid, which then dissociates into water and carbon dioxide. The carbon dioxide can be exhaled, helping to remove excess acid from the body.
2. Phosphate buffer system: This is primarily found within cells. It consists of dihydrogen phosphate (H2PO4-) and monohydrogen phosphate (HPO42-) ions. When there is an increase in alkalinity, the dihydrogen phosphate ion donates a hydrogen ion to form monohydrogen phosphate, helping to neutralize the excess base.
3. Protein buffer system: Proteins, particularly histidine-rich proteins, can also act as buffers due to the presence of ionizable groups on their surfaces. These groups can bind or release hydrogen ions in response to changes in pH, thus maintaining a stable environment within cells and organelles.

Maintaining appropriate pH levels is crucial for various biological processes, including enzyme function, cell membrane stability, and overall homeostasis. Buffers play a vital role in preserving these balanced conditions despite internal or external challenges that might disrupt them.

Prognosis is a medical term that refers to the prediction of the likely outcome or course of a disease, including the chances of recovery or recurrence, based on the patient's symptoms, medical history, physical examination, and diagnostic tests. It is an important aspect of clinical decision-making and patient communication, as it helps doctors and patients make informed decisions about treatment options, set realistic expectations, and plan for future care.

Prognosis can be expressed in various ways, such as percentages, categories (e.g., good, fair, poor), or survival rates, depending on the nature of the disease and the available evidence. However, it is important to note that prognosis is not an exact science and may vary depending on individual factors, such as age, overall health status, and response to treatment. Therefore, it should be used as a guide rather than a definitive forecast.

Immunodiffusion is a laboratory technique used in immunology to detect and measure the presence of specific antibodies or antigens in a sample. It is based on the principle of diffusion, where molecules move from an area of high concentration to an area of low concentration until they reach equilibrium. In this technique, a sample containing an unknown quantity of antigen or antibody is placed in a gel or agar medium that contains a known quantity of antibody or antigen, respectively.

The two substances then diffuse towards each other and form a visible precipitate at the point where they meet and reach equivalence, which indicates the presence and quantity of the specific antigen or antibody in the sample. There are several types of immunodiffusion techniques, including radial immunodiffusion (RID) and double immunodiffusion (Ouchterlony technique). These techniques are widely used in diagnostic laboratories to identify and measure various antigens and antibodies, such as those found in infectious diseases, autoimmune disorders, and allergic reactions.

Urea is not a medical condition but it is a medically relevant substance. Here's the definition:

Urea is a colorless, odorless solid that is the primary nitrogen-containing compound in the urine of mammals. It is a normal metabolic end product that is excreted by the kidneys and is also used as a fertilizer and in various industrial applications. Chemically, urea is a carbamide, consisting of two amino groups (NH2) joined by a carbon atom and having a hydrogen atom and a hydroxyl group (OH) attached to the carbon atom. Urea is produced in the liver as an end product of protein metabolism and is then eliminated from the body by the kidneys through urination. Abnormal levels of urea in the blood, known as uremia, can indicate impaired kidney function or other medical conditions.

Orosomucoid, also known as α-1-acid glycoprotein or AAG, is a protein found in human plasma. It's a member of the acute phase proteins, which are produced in higher amounts during inflammation and infection. Orosomucoid has a molecular weight of approximately 41-43 kDa and is composed of a single polypeptide chain with five N-linked glycosylation sites. It plays a role in protecting tissues from various harmful substances, such as proteases and oxidants, by binding to them and preventing their interaction with cells. Additionally, orosomucoid has been studied as a potential biomarker for several diseases due to its altered levels during inflammation and cancer.

Circular dichroism (CD) is a technique used in physics and chemistry to study the structure of molecules, particularly large biological molecules such as proteins and nucleic acids. It measures the difference in absorption of left-handed and right-handed circularly polarized light by a sample. This difference in absorption can provide information about the three-dimensional structure of the molecule, including its chirality or "handedness."

In more technical terms, CD is a form of spectroscopy that measures the differential absorption of left and right circularly polarized light as a function of wavelength. The CD signal is measured in units of millidegrees (mdeg) and can be positive or negative, depending on the type of chromophore and its orientation within the molecule.

CD spectra can provide valuable information about the secondary and tertiary structure of proteins, as well as the conformation of nucleic acids. For example, alpha-helical proteins typically exhibit a strong positive band near 190 nm and two negative bands at around 208 nm and 222 nm, while beta-sheet proteins show a strong positive band near 195 nm and two negative bands at around 217 nm and 175 nm.

CD spectroscopy is a powerful tool for studying the structural changes that occur in biological molecules under different conditions, such as temperature, pH, or the presence of ligands or other molecules. It can also be used to monitor the folding and unfolding of proteins, as well as the binding of drugs or other small molecules to their targets.

Indicators and reagents are terms commonly used in the field of clinical chemistry and laboratory medicine. Here are their definitions:

1. Indicator: An indicator is a substance that changes its color or other physical properties in response to a chemical change, such as a change in pH, oxidation-reduction potential, or the presence of a particular ion or molecule. Indicators are often used in laboratory tests to monitor or signal the progress of a reaction or to indicate the end point of a titration. A familiar example is the use of phenolphthalein as a pH indicator in acid-base titrations, which turns pink in basic solutions and colorless in acidic solutions.

2. Reagent: A reagent is a substance that is added to a system (such as a sample or a reaction mixture) to bring about a chemical reaction, test for the presence or absence of a particular component, or measure the concentration of a specific analyte. Reagents are typically chemicals with well-defined and consistent properties, allowing them to be used reliably in analytical procedures. Examples of reagents include enzymes, antibodies, dyes, metal ions, and organic compounds. In laboratory settings, reagents are often prepared and standardized according to strict protocols to ensure their quality and performance in diagnostic tests and research applications.

Oxyphenbutazone is a non-selective non-steroidal anti-inflammatory drug (NSAID) that has been used in the past for its analgesic, anti-inflammatory, and antipyretic properties. It works by inhibiting the enzyme cyclooxygenase (COX), which is involved in the synthesis of prostaglandins, chemicals that mediate inflammation, pain, and fever.

However, due to its potential for serious side effects such as gastrointestinal ulcers, bleeding, and kidney damage, as well as interactions with other medications, oxyphenbutazone is no longer commonly used in many countries. It has been largely replaced by newer NSAIDs that have a more favorable safety profile.

It's important to note that the use of oxyphenbutazone should be under the strict supervision of a healthcare professional and should only be taken as directed, as it can cause potentially serious side effects even at therapeutic doses.

Affinity chromatography is a type of chromatography technique used in biochemistry and molecular biology to separate and purify proteins based on their biological characteristics, such as their ability to bind specifically to certain ligands or molecules. This method utilizes a stationary phase that is coated with a specific ligand (e.g., an antibody, antigen, receptor, or enzyme) that selectively interacts with the target protein in a sample.

The process typically involves the following steps:

1. Preparation of the affinity chromatography column: The stationary phase, usually a solid matrix such as agarose beads or magnetic beads, is modified by covalently attaching the ligand to its surface.
2. Application of the sample: The protein mixture is applied to the top of the affinity chromatography column, allowing it to flow through the stationary phase under gravity or pressure.
3. Binding and washing: As the sample flows through the column, the target protein selectively binds to the ligand on the stationary phase, while other proteins and impurities pass through. The column is then washed with a suitable buffer to remove any unbound proteins and contaminants.
4. Elution of the bound protein: The target protein can be eluted from the column using various methods, such as changing the pH, ionic strength, or polarity of the buffer, or by introducing a competitive ligand that displaces the bound protein.
5. Collection and analysis: The eluted protein fraction is collected and analyzed for purity and identity, often through techniques like SDS-PAGE or mass spectrometry.

Affinity chromatography is a powerful tool in biochemistry and molecular biology due to its high selectivity and specificity, enabling the efficient isolation of target proteins from complex mixtures. However, it requires careful consideration of the binding affinity between the ligand and the protein, as well as optimization of the elution conditions to minimize potential damage or denaturation of the purified protein.

"Blood physiological phenomena" is a broad term that refers to various functions, processes, and characteristics related to the blood in the body. Here are some definitions of specific blood-related physiological phenomena:

1. Hematopoiesis: The process of producing blood cells in the bone marrow. This includes the production of red blood cells (erythropoiesis), white blood cells (leukopoiesis), and platelets (thrombopoiesis).
2. Hemostasis: The body's response to stop bleeding or prevent excessive blood loss after injury. It involves a complex interplay between blood vessels, platelets, and clotting factors that work together to form a clot.
3. Osmoregulation: The regulation of water and electrolyte balance in the blood. This is achieved through various mechanisms such as thirst, urine concentration, and hormonal control.
4. Acid-base balance: The maintenance of a stable pH level in the blood. This involves the balance between acidic and basic components in the blood, which can be affected by factors such as respiration, metabolism, and kidney function.
5. Hemoglobin function: The ability of hemoglobin molecules in red blood cells to bind and transport oxygen from the lungs to tissues throughout the body.
6. Blood viscosity: The thickness or flowability of blood, which can affect its ability to circulate through the body. Factors that can influence blood viscosity include hematocrit (the percentage of red blood cells in the blood), plasma proteins, and temperature.
7. Immunological function: The role of white blood cells and other components of the immune system in protecting the body against infection and disease. This includes the production of antibodies, phagocytosis (the engulfing and destruction of foreign particles), and inflammation.

Retrospective studies, also known as retrospective research or looking back studies, are a type of observational study that examines data from the past to draw conclusions about possible causal relationships between risk factors and outcomes. In these studies, researchers analyze existing records, medical charts, or previously collected data to test a hypothesis or answer a specific research question.

Retrospective studies can be useful for generating hypotheses and identifying trends, but they have limitations compared to prospective studies, which follow participants forward in time from exposure to outcome. Retrospective studies are subject to biases such as recall bias, selection bias, and information bias, which can affect the validity of the results. Therefore, retrospective studies should be interpreted with caution and used primarily to generate hypotheses for further testing in prospective studies.

Plasma substitutes are fluids that are used to replace the plasma volume in conditions such as hypovolemia (low blood volume) or plasma loss, for example due to severe burns, trauma, or major surgery. They do not contain cells or clotting factors, but they help to maintain intravascular volume and tissue perfusion. Plasma substitutes can be divided into two main categories: crystalloids and colloids.

Crystalloid solutions contain small molecules that can easily move between intracellular and extracellular spaces. Examples include normal saline (0.9% sodium chloride) and lactated Ringer's solution. They are less expensive and have a lower risk of allergic reactions compared to colloids, but they may require larger volumes to achieve the same effect due to their rapid distribution in the body.

Colloid solutions contain larger molecules that tend to stay within the intravascular space for longer periods, thus increasing the oncotic pressure and helping to maintain fluid balance. Examples include albumin, fresh frozen plasma, and synthetic colloids such as hydroxyethyl starch (HES) and gelatin. Colloids may be more effective in restoring intravascular volume, but they carry a higher risk of allergic reactions and anaphylaxis, and some types have been associated with adverse effects such as kidney injury and coagulopathy.

The choice of plasma substitute depends on various factors, including the patient's clinical condition, the underlying cause of plasma loss, and any contraindications or potential side effects of the available products. It is important to monitor the patient's hemodynamic status, electrolyte balance, and coagulation profile during and after the administration of plasma substitutes to ensure appropriate resuscitation and avoid complications.

Thyroxine (T4) is a type of hormone produced and released by the thyroid gland, a small butterfly-shaped endocrine gland located in the front of your neck. It is one of two major hormones produced by the thyroid gland, with the other being triiodothyronine (T3).

Thyroxine plays a crucial role in regulating various metabolic processes in the body, including growth, development, and energy expenditure. Specifically, T4 helps to control the rate at which your body burns calories for energy, regulates protein, fat, and carbohydrate metabolism, and influences the body's sensitivity to other hormones.

T4 is produced by combining iodine and tyrosine, an amino acid found in many foods. Once produced, T4 circulates in the bloodstream and gets converted into its active form, T3, in various tissues throughout the body. Thyroxine has a longer half-life than T3, which means it remains active in the body for a more extended period.

Abnormal levels of thyroxine can lead to various medical conditions, such as hypothyroidism (underactive thyroid) or hyperthyroidism (overactive thyroid). These conditions can cause a range of symptoms, including weight gain or loss, fatigue, mood changes, and changes in heart rate and blood pressure.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and grapeseed oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature. Oleic acid is an important component of human diet and has been shown to have potential health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other personal care products.

"Wistar rats" are a strain of albino rats that are widely used in laboratory research. They were developed at the Wistar Institute in Philadelphia, USA, and were first introduced in 1906. Wistar rats are outbred, which means that they are genetically diverse and do not have a fixed set of genetic characteristics like inbred strains.

Wistar rats are commonly used as animal models in biomedical research because of their size, ease of handling, and relatively low cost. They are used in a wide range of research areas, including toxicology, pharmacology, nutrition, cancer, cardiovascular disease, and behavioral studies. Wistar rats are also used in safety testing of drugs, medical devices, and other products.

Wistar rats are typically larger than many other rat strains, with males weighing between 500-700 grams and females weighing between 250-350 grams. They have a lifespan of approximately 2-3 years. Wistar rats are also known for their docile and friendly nature, making them easy to handle and work with in the laboratory setting.

Peritoneal dialysis, continuous ambulatory (CAPD), is a type of renal replacement therapy used to treat patients with end-stage kidney disease. It is a form of peritoneal dialysis that is performed continuously, without the need for machines or hospitalization. CAPD uses the patient's own peritoneum, a thin membrane that lines the abdominal cavity, as a natural filter to remove waste products and excess fluids from the bloodstream.

In CAPD, a sterile dialysis solution is introduced into the peritoneal cavity through a permanent catheter implanted in the patient's abdomen. The solution remains in the peritoneal cavity for a dwell time of several hours, during which diffusion occurs across the peritoneal membrane, allowing waste products and excess fluids to move from the bloodstream into the dialysis solution.

After the dwell time, the used dialysis solution is drained from the peritoneal cavity and discarded, and a fresh batch of dialysis solution is introduced. This process is typically repeated four to five times a day, with each exchange taking about 30 minutes to complete. Patients can perform CAPD exchanges while going about their daily activities, making it a convenient and flexible treatment option for many patients with end-stage kidney disease.

Overall, CAPD is a highly effective form of dialysis that offers several advantages over other types of renal replacement therapy, including improved quality of life, better preservation of residual kidney function, and lower costs. However, it does require careful attention to sterile technique and regular monitoring to ensure proper functioning of the peritoneal membrane and adequate clearance of waste products and fluids.

Sprague-Dawley rats are a strain of albino laboratory rats that are widely used in scientific research. They were first developed by researchers H.H. Sprague and R.C. Dawley in the early 20th century, and have since become one of the most commonly used rat strains in biomedical research due to their relatively large size, ease of handling, and consistent genetic background.

Sprague-Dawley rats are outbred, which means that they are genetically diverse and do not suffer from the same limitations as inbred strains, which can have reduced fertility and increased susceptibility to certain diseases. They are also characterized by their docile nature and low levels of aggression, making them easier to handle and study than some other rat strains.

These rats are used in a wide variety of research areas, including toxicology, pharmacology, nutrition, cancer, and behavioral studies. Because they are genetically diverse, Sprague-Dawley rats can be used to model a range of human diseases and conditions, making them an important tool in the development of new drugs and therapies.

Tryptophan is an essential amino acid, meaning it cannot be synthesized by the human body and must be obtained through dietary sources. Its chemical formula is C11H12N2O2. Tryptophan plays a crucial role in various biological processes as it serves as a precursor to several important molecules, including serotonin, melatonin, and niacin (vitamin B3). Serotonin is a neurotransmitter involved in mood regulation, appetite control, and sleep-wake cycles, while melatonin is a hormone that regulates sleep-wake patterns. Niacin is essential for energy production and DNA repair.

Foods rich in tryptophan include turkey, chicken, fish, eggs, cheese, milk, nuts, seeds, and whole grains. In some cases, tryptophan supplementation may be recommended to help manage conditions related to serotonin imbalances, such as depression or insomnia, but this should only be done under the guidance of a healthcare professional due to potential side effects and interactions with other medications.

Pregnancy is a physiological state or condition where a fertilized egg (zygote) successfully implants and grows in the uterus of a woman, leading to the development of an embryo and finally a fetus. This process typically spans approximately 40 weeks, divided into three trimesters, and culminates in childbirth. Throughout this period, numerous hormonal and physical changes occur to support the growing offspring, including uterine enlargement, breast development, and various maternal adaptations to ensure the fetus's optimal growth and well-being.

Recombinant proteins are artificially created proteins produced through the use of recombinant DNA technology. This process involves combining DNA molecules from different sources to create a new set of genes that encode for a specific protein. The resulting recombinant protein can then be expressed, purified, and used for various applications in research, medicine, and industry.

Recombinant proteins are widely used in biomedical research to study protein function, structure, and interactions. They are also used in the development of diagnostic tests, vaccines, and therapeutic drugs. For example, recombinant insulin is a common treatment for diabetes, while recombinant human growth hormone is used to treat growth disorders.

The production of recombinant proteins typically involves the use of host cells, such as bacteria, yeast, or mammalian cells, which are engineered to express the desired protein. The host cells are transformed with a plasmid vector containing the gene of interest, along with regulatory elements that control its expression. Once the host cells are cultured and the protein is expressed, it can be purified using various chromatography techniques.

Overall, recombinant proteins have revolutionized many areas of biology and medicine, enabling researchers to study and manipulate proteins in ways that were previously impossible.

In the context of pharmacology, "half-life" refers to the time it takes for the concentration or amount of a drug in the body to be reduced by half during its elimination phase. This is typically influenced by factors such as metabolism and excretion rates of the drug. It's a key factor in determining dosage intervals and therapeutic effectiveness of medications, as well as potential side effects or toxicity risks.

A case-control study is an observational research design used to identify risk factors or causes of a disease or health outcome. In this type of study, individuals with the disease or condition (cases) are compared with similar individuals who do not have the disease or condition (controls). The exposure history or other characteristics of interest are then compared between the two groups to determine if there is an association between the exposure and the disease.

Case-control studies are often used when it is not feasible or ethical to conduct a randomized controlled trial, as they can provide valuable insights into potential causes of diseases or health outcomes in a relatively short period of time and at a lower cost than other study designs. However, because case-control studies rely on retrospective data collection, they are subject to biases such as recall bias and selection bias, which can affect the validity of the results. Therefore, it is important to carefully design and conduct case-control studies to minimize these potential sources of bias.

Diabetic nephropathy is a kidney disease that occurs as a complication of diabetes. It is also known as diabetic kidney disease (DKD). This condition affects the ability of the kidneys to filter waste and excess fluids from the blood, leading to their accumulation in the body.

Diabetic nephropathy is caused by damage to the small blood vessels in the kidneys, which can occur over time due to high levels of glucose in the blood. This damage can lead to scarring and thickening of the kidney's filtering membranes, reducing their ability to function properly.

Symptoms of diabetic nephropathy may include proteinuria (the presence of protein in the urine), edema (swelling in the legs, ankles, or feet due to fluid retention), and hypertension (high blood pressure). Over time, if left untreated, diabetic nephropathy can progress to end-stage kidney disease, which requires dialysis or a kidney transplant.

Preventing or delaying the onset of diabetic nephropathy involves maintaining good control of blood sugar levels, keeping blood pressure under control, and making lifestyle changes such as quitting smoking, eating a healthy diet, and getting regular exercise. Regular monitoring of kidney function through urine tests and blood tests is also important for early detection and treatment of this condition.

Plasma volume refers to the total amount of plasma present in an individual's circulatory system. Plasma is the fluid component of blood, in which cells and chemical components are suspended. It is composed mainly of water, along with various dissolved substances such as nutrients, waste products, hormones, gases, and proteins.

Plasma volume is a crucial factor in maintaining proper blood flow, regulating body temperature, and facilitating the transportation of oxygen, carbon dioxide, and other essential components throughout the body. The average plasma volume for an adult human is approximately 3 liters, but it can vary depending on factors like age, sex, body weight, and overall health status.

Changes in plasma volume can have significant effects on an individual's cardiovascular function and fluid balance. For example, dehydration or blood loss can lead to a decrease in plasma volume, while conditions such as heart failure or liver cirrhosis may result in increased plasma volume due to fluid retention. Accurate measurement of plasma volume is essential for diagnosing various medical conditions and monitoring the effectiveness of treatments.

A peptide fragment is a short chain of amino acids that is derived from a larger peptide or protein through various biological or chemical processes. These fragments can result from the natural breakdown of proteins in the body during regular physiological processes, such as digestion, or they can be produced experimentally in a laboratory setting for research or therapeutic purposes.

Peptide fragments are often used in research to map the structure and function of larger peptides and proteins, as well as to study their interactions with other molecules. In some cases, peptide fragments may also have biological activity of their own and can be developed into drugs or diagnostic tools. For example, certain peptide fragments derived from hormones or neurotransmitters may bind to receptors in the body and mimic or block the effects of the full-length molecule.

Iodine isotopes are different forms of the chemical element iodine, which have different numbers of neutrons in their nuclei. Iodine has a total of 53 protons in its nucleus, and its stable isotope, iodine-127, has 74 neutrons, giving it a mass number of 127. However, there are also radioactive isotopes of iodine, which have different numbers of neutrons and are therefore unstable.

Radioactive isotopes of iodine emit radiation as they decay towards a stable state. For example, iodine-131 is a commonly used isotope in medical imaging and therapy, with a half-life of about 8 days. It decays by emitting beta particles and gamma rays, making it useful for treating thyroid cancer and other conditions that involve overactive thyroid glands.

Other radioactive iodine isotopes include iodine-123, which has a half-life of about 13 hours and is used in medical imaging, and iodine-125, which has a half-life of about 60 days and is used in brachytherapy (a type of radiation therapy that involves placing radioactive sources directly into or near tumors).

It's important to note that exposure to radioactive iodine isotopes can be harmful, especially if it occurs through inhalation or ingestion. This is because the iodine can accumulate in the thyroid gland and cause damage over time. Therefore, appropriate safety measures must be taken when handling or working with radioactive iodine isotopes.

Trypsin is a proteolytic enzyme, specifically a serine protease, that is secreted by the pancreas as an inactive precursor, trypsinogen. Trypsinogen is converted into its active form, trypsin, in the small intestine by enterokinase, which is produced by the intestinal mucosa.

Trypsin plays a crucial role in digestion by cleaving proteins into smaller peptides at specific arginine and lysine residues. This enzyme helps to break down dietary proteins into amino acids, allowing for their absorption and utilization by the body. Additionally, trypsin can activate other zymogenic pancreatic enzymes, such as chymotrypsinogen and procarboxypeptidases, thereby contributing to overall protein digestion.

A kidney glomerulus is a functional unit in the nephron of the kidney. It is a tuft of capillaries enclosed within a structure called Bowman's capsule, which filters waste and excess fluids from the blood. The glomerulus receives blood from an afferent arteriole and drains into an efferent arteriole.

The process of filtration in the glomerulus is called ultrafiltration, where the pressure within the glomerular capillaries drives plasma fluid and small molecules (such as ions, glucose, amino acids, and waste products) through the filtration membrane into the Bowman's space. Larger molecules, like proteins and blood cells, are retained in the blood due to their larger size. The filtrate then continues down the nephron for further processing, eventually forming urine.

"Swine" is a common term used to refer to even-toed ungulates of the family Suidae, including domestic pigs and wild boars. However, in a medical context, "swine" often appears in the phrase "swine flu," which is a strain of influenza virus that typically infects pigs but can also cause illness in humans. The 2009 H1N1 pandemic was caused by a new strain of swine-origin influenza A virus, which was commonly referred to as "swine flu." It's important to note that this virus is not transmitted through eating cooked pork products; it spreads from person to person, mainly through respiratory droplets produced when an infected person coughs or sneezes.

Hematocrit is a medical term that refers to the percentage of total blood volume that is made up of red blood cells. It is typically measured as part of a complete blood count (CBC) test. A high hematocrit may indicate conditions such as dehydration, polycythemia, or living at high altitudes, while a low hematocrit may be a sign of anemia, bleeding, or overhydration. It is important to note that hematocrit values can vary depending on factors such as age, gender, and pregnancy status.

Glycoproteins are complex proteins that contain oligosaccharide chains (glycans) covalently attached to their polypeptide backbone. These glycans are linked to the protein through asparagine residues (N-linked) or serine/threonine residues (O-linked). Glycoproteins play crucial roles in various biological processes, including cell recognition, cell-cell interactions, cell adhesion, and signal transduction. They are widely distributed in nature and can be found on the outer surface of cell membranes, in extracellular fluids, and as components of the extracellular matrix. The structure and composition of glycoproteins can vary significantly depending on their function and location within an organism.

"Competitive binding" is a term used in pharmacology and biochemistry to describe the behavior of two or more molecules (ligands) competing for the same binding site on a target protein or receptor. In this context, "binding" refers to the physical interaction between a ligand and its target.

When a ligand binds to a receptor, it can alter the receptor's function, either activating or inhibiting it. If multiple ligands compete for the same binding site, they will compete to bind to the receptor. The ability of each ligand to bind to the receptor is influenced by its affinity for the receptor, which is a measure of how strongly and specifically the ligand binds to the receptor.

In competitive binding, if one ligand is present in high concentrations, it can prevent other ligands with lower affinity from binding to the receptor. This is because the higher-affinity ligand will have a greater probability of occupying the binding site and blocking access to the other ligands. The competition between ligands can be described mathematically using equations such as the Langmuir isotherm, which describes the relationship between the concentration of ligand and the fraction of receptors that are occupied by the ligand.

Competitive binding is an important concept in drug development, as it can be used to predict how different drugs will interact with their targets and how they may affect each other's activity. By understanding the competitive binding properties of a drug, researchers can optimize its dosage and delivery to maximize its therapeutic effect while minimizing unwanted side effects.

Glomerular filtration rate (GFR) is a test used to check how well the kidneys are working. Specifically, it estimates how much blood passes through the glomeruli each minute. The glomeruli are the tiny fibers in the kidneys that filter waste from the blood. A lower GFR number means that the kidneys aren't working properly and may indicate kidney disease.

The GFR is typically calculated using a formula that takes into account the patient's serum creatinine level, age, sex, and race. The most commonly used formula is the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation. A normal GFR is usually above 90 mL/min/1.73m2, but this can vary depending on the individual's age and other factors.

Biological transport refers to the movement of molecules, ions, or solutes across biological membranes or through cells in living organisms. This process is essential for maintaining homeostasis, regulating cellular functions, and enabling communication between cells. There are two main types of biological transport: passive transport and active transport.

Passive transport does not require the input of energy and includes:

1. Diffusion: The random movement of molecules from an area of high concentration to an area of low concentration until equilibrium is reached.
2. Osmosis: The diffusion of solvent molecules (usually water) across a semi-permeable membrane from an area of lower solute concentration to an area of higher solute concentration.
3. Facilitated diffusion: The assisted passage of polar or charged substances through protein channels or carriers in the cell membrane, which increases the rate of diffusion without consuming energy.

Active transport requires the input of energy (in the form of ATP) and includes:

1. Primary active transport: The direct use of ATP to move molecules against their concentration gradient, often driven by specific transport proteins called pumps.
2. Secondary active transport: The coupling of the movement of one substance down its electrochemical gradient with the uphill transport of another substance, mediated by a shared transport protein. This process is also known as co-transport or counter-transport.

Immunization is defined medically as the process where an individual is made immune or resistant to an infectious disease, typically through the administration of a vaccine. The vaccine stimulates the body's own immune system to recognize and fight off the specific disease-causing organism, thereby preventing or reducing the severity of future infections with that organism.

Immunization can be achieved actively, where the person is given a vaccine to trigger an immune response, or passively, where antibodies are transferred to the person through immunoglobulin therapy. Immunizations are an important part of preventive healthcare and have been successful in controlling and eliminating many infectious diseases worldwide.

Kidney disease, also known as nephropathy or renal disease, refers to any functional or structural damage to the kidneys that impairs their ability to filter blood, regulate electrolytes, produce hormones, and maintain fluid balance. This damage can result from a wide range of causes, including diabetes, hypertension, glomerulonephritis, polycystic kidney disease, lupus, infections, drugs, toxins, and congenital or inherited disorders.

Depending on the severity and progression of the kidney damage, kidney diseases can be classified into two main categories: acute kidney injury (AKI) and chronic kidney disease (CKD). AKI is a sudden and often reversible loss of kidney function that occurs over hours to days, while CKD is a progressive and irreversible decline in kidney function that develops over months or years.

Symptoms of kidney diseases may include edema, proteinuria, hematuria, hypertension, electrolyte imbalances, metabolic acidosis, anemia, and decreased urine output. Treatment options depend on the underlying cause and severity of the disease and may include medications, dietary modifications, dialysis, or kidney transplantation.

Serum Response Factor (SRF) is a transcription factor that binds to the serum response element (SRE) in the promoter region of many immediate early genes and some cell type-specific genes. SRF plays a crucial role in regulating various cellular processes, including gene expression related to differentiation, proliferation, and survival of cells. It is activated by various signals such as growth factors, cytokines, and mechanical stress, which leads to changes in the actin cytoskeleton and gene transcription. SRF also interacts with other cofactors to modulate its transcriptional activity, contributing to the specificity of gene regulation in different cell types.

The medical definition of 'charcoal' is referred to as activated charcoal, which is a fine, black powder made from coconut shells, wood, or other natural substances. It is used in medical situations to absorb poison or drugs in the stomach, thereby preventing their absorption into the body and reducing their toxic effects. Activated charcoal works by binding to certain chemicals and preventing them from being absorbed through the digestive tract.

Activated charcoal is generally safe for most people when taken as directed, but it can cause side effects such as black stools, constipation, and regurgitation of the charcoal. It should be used under medical supervision and not as a substitute for seeking immediate medical attention in case of poisoning or overdose.

It's important to note that activated charcoal is different from regular charcoal, which is not safe to consume and can contain harmful chemicals or substances.

Aspartate aminotransferases (ASTs) are a group of enzymes found in various tissues throughout the body, including the heart, liver, and muscles. They play a crucial role in the metabolic process of transferring amino groups between different molecules.

In medical terms, AST is often used as a blood test to measure the level of this enzyme in the serum. Elevated levels of AST can indicate damage or injury to tissues that contain this enzyme, such as the liver or heart. For example, liver disease, including hepatitis and cirrhosis, can cause elevated AST levels due to damage to liver cells. Similarly, heart attacks can also result in increased AST levels due to damage to heart muscle tissue.

It is important to note that an AST test alone cannot diagnose a specific medical condition, but it can provide valuable information when used in conjunction with other diagnostic tests and clinical evaluation.

Oxidation-Reduction (redox) reactions are a type of chemical reaction involving a transfer of electrons between two species. The substance that loses electrons in the reaction is oxidized, and the substance that gains electrons is reduced. Oxidation and reduction always occur together in a redox reaction, hence the term "oxidation-reduction."

In biological systems, redox reactions play a crucial role in many cellular processes, including energy production, metabolism, and signaling. The transfer of electrons in these reactions is often facilitated by specialized molecules called electron carriers, such as nicotinamide adenine dinucleotide (NAD+/NADH) and flavin adenine dinucleotide (FAD/FADH2).

The oxidation state of an element in a compound is a measure of the number of electrons that have been gained or lost relative to its neutral state. In redox reactions, the oxidation state of one or more elements changes as they gain or lose electrons. The substance that is oxidized has a higher oxidation state, while the substance that is reduced has a lower oxidation state.

Overall, oxidation-reduction reactions are fundamental to the functioning of living organisms and are involved in many important biological processes.

Coloring agents, also known as food dyes or color additives, are substances that are added to foods, medications, and cosmetics to improve their appearance by giving them a specific color. These agents can be made from both synthetic and natural sources. They must be approved by regulatory agencies such as the U.S. Food and Drug Administration (FDA) before they can be used in products intended for human consumption.

Coloring agents are used for various reasons, including:

* To replace color lost during food processing or preparation
* To make foods more visually appealing
* To help consumers easily identify certain types of food
* To indicate the flavor of a product (e.g., fruit-flavored candies)

It's important to note that while coloring agents can enhance the appearance of products, they do not affect their taste or nutritional value. Some people may have allergic reactions to certain coloring agents, so it's essential to check product labels if you have any known allergies. Additionally, excessive consumption of some synthetic coloring agents has been linked to health concerns, so moderation is key.

Bacterial antibodies are a type of antibodies produced by the immune system in response to an infection caused by bacteria. These antibodies are proteins that recognize and bind to specific antigens on the surface of the bacterial cells, marking them for destruction by other immune cells. Bacterial antibodies can be classified into several types based on their structure and function, including IgG, IgM, IgA, and IgE. They play a crucial role in the body's defense against bacterial infections and provide immunity to future infections with the same bacteria.

Messenger RNA (mRNA) is a type of RNA (ribonucleic acid) that carries genetic information copied from DNA in the form of a series of three-base code "words," each of which specifies a particular amino acid. This information is used by the cell's machinery to construct proteins, a process known as translation. After being transcribed from DNA, mRNA travels out of the nucleus to the ribosomes in the cytoplasm where protein synthesis occurs. Once the protein has been synthesized, the mRNA may be degraded and recycled. Post-transcriptional modifications can also occur to mRNA, such as alternative splicing and addition of a 5' cap and a poly(A) tail, which can affect its stability, localization, and translation efficiency.

Dextrans are a type of complex glucose polymers that are formed by the action of certain bacteria on sucrose. They are branched polysaccharides consisting of linear chains of α-1,6 linked D-glucopyranosyl units with occasional α-1,3 branches.

Dextrans have a wide range of applications in medicine and industry. In medicine, dextrans are used as plasma substitutes, volume expanders, and anticoagulants. They are also used as carriers for drugs and diagnostic agents, and in the manufacture of immunoadsorbents for the removal of toxins and pathogens from blood.

Dextrans can be derived from various bacterial sources, but the most common commercial source is Leuconostoc mesenteroides B-512(F) or L. dextranicum. The molecular weight of dextrans can vary widely, ranging from a few thousand to several million Daltons, depending on the method of preparation and purification.

Dextrans are generally biocompatible and non-toxic, but they can cause allergic reactions in some individuals. Therefore, their use as medical products requires careful monitoring and testing for safety and efficacy.

Erythrocytes, also known as red blood cells (RBCs), are the most common type of blood cell in circulating blood in mammals. They are responsible for transporting oxygen from the lungs to the body's tissues and carbon dioxide from the tissues to the lungs.

Erythrocytes are formed in the bone marrow and have a biconcave shape, which allows them to fold and bend easily as they pass through narrow blood vessels. They do not have a nucleus or mitochondria, which makes them more flexible but also limits their ability to reproduce or repair themselves.

In humans, erythrocytes are typically disc-shaped and measure about 7 micrometers in diameter. They contain the protein hemoglobin, which binds to oxygen and gives blood its red color. The lifespan of an erythrocyte is approximately 120 days, after which it is broken down in the liver and spleen.

Abnormalities in erythrocyte count or function can lead to various medical conditions, such as anemia, polycythemia, and sickle cell disease.

Treatment outcome is a term used to describe the result or effect of medical treatment on a patient's health status. It can be measured in various ways, such as through symptoms improvement, disease remission, reduced disability, improved quality of life, or survival rates. The treatment outcome helps healthcare providers evaluate the effectiveness of a particular treatment plan and make informed decisions about future care. It is also used in clinical research to compare the efficacy of different treatments and improve patient care.

Uremia is not a disease itself, but rather it's a condition that results from the buildup of waste products in the blood due to kidney failure. The term "uremia" comes from the word "urea," which is one of the waste products that accumulate when the kidneys are not functioning properly.

In uremia, the kidneys are unable to effectively filter waste and excess fluids from the blood, leading to a variety of symptoms such as nausea, vomiting, fatigue, itching, mental confusion, and ultimately, if left untreated, can lead to coma and death. It is a serious condition that requires immediate medical attention, often involving dialysis or a kidney transplant to manage the underlying kidney dysfunction.

Osmolar concentration is a measure of the total number of solute particles (such as ions or molecules) dissolved in a solution per liter of solvent (usually water), which affects the osmotic pressure. It is expressed in units of osmoles per liter (osmol/L). Osmolarity and osmolality are related concepts, with osmolarity referring to the number of osmoles per unit volume of solution, typically measured in liters, while osmolality refers to the number of osmoles per kilogram of solvent. In clinical contexts, osmolar concentration is often used to describe the solute concentration of bodily fluids such as blood or urine.

I'm sorry for any confusion, but "Phthalic Anhydrides" is not a medical term. It is a chemical compound with the formula C6H4(CO)2O. Phthalic anhydride is a white crystalline powder used in the industrial synthesis of plasticizers, resins, and dyes.

If you have any questions about medical terminology or concepts, please don't hesitate to ask!

Sulfhydryl compounds, also known as thiol compounds, are organic compounds that contain a functional group consisting of a sulfur atom bonded to a hydrogen atom (-SH). This functional group is also called a sulfhydryl group. Sulfhydryl compounds can be found in various biological systems and play important roles in maintaining the structure and function of proteins, enzymes, and other biomolecules. They can also act as antioxidants and help protect cells from damage caused by reactive oxygen species. Examples of sulfhydryl compounds include cysteine, glutathione, and coenzyme A.

Liver cirrhosis is a chronic, progressive disease characterized by the replacement of normal liver tissue with scarred (fibrotic) tissue, leading to loss of function. The scarring is caused by long-term damage from various sources such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, and other causes. As the disease advances, it can lead to complications like portal hypertension, fluid accumulation in the abdomen (ascites), impaired brain function (hepatic encephalopathy), and increased risk of liver cancer. It is generally irreversible, but early detection and treatment of underlying causes may help slow down its progression.

Follow-up studies are a type of longitudinal research that involve repeated observations or measurements of the same variables over a period of time, in order to understand their long-term effects or outcomes. In medical context, follow-up studies are often used to evaluate the safety and efficacy of medical treatments, interventions, or procedures.

In a typical follow-up study, a group of individuals (called a cohort) who have received a particular treatment or intervention are identified and then followed over time through periodic assessments or data collection. The data collected may include information on clinical outcomes, adverse events, changes in symptoms or functional status, and other relevant measures.

The results of follow-up studies can provide important insights into the long-term benefits and risks of medical interventions, as well as help to identify factors that may influence treatment effectiveness or patient outcomes. However, it is important to note that follow-up studies can be subject to various biases and limitations, such as loss to follow-up, recall bias, and changes in clinical practice over time, which must be carefully considered when interpreting the results.

Oleic acid is a monounsaturated fatty acid that is commonly found in various natural oils such as olive oil, sunflower oil, and peanut oil. Its chemical formula is cis-9-octadecenoic acid, and it is a colorless liquid at room temperature with a slight odor. Oleic acid is an important component of human diet and has been shown to have various health benefits, including reducing the risk of heart disease and improving immune function. It is also used in the manufacture of soaps, cosmetics, and other industrial products.

Fibrinogen is a soluble protein present in plasma, synthesized by the liver. It plays an essential role in blood coagulation. When an injury occurs, fibrinogen gets converted into insoluble fibrin by the action of thrombin, forming a fibrin clot that helps to stop bleeding from the injured site. Therefore, fibrinogen is crucial for hemostasis, which is the process of stopping bleeding and starting the healing process after an injury.

Spectrophotometry is a technical analytical method used in the field of medicine and science to measure the amount of light absorbed or transmitted by a substance at specific wavelengths. This technique involves the use of a spectrophotometer, an instrument that measures the intensity of light as it passes through a sample.

In medical applications, spectrophotometry is often used in laboratory settings to analyze various biological samples such as blood, urine, and tissues. For example, it can be used to measure the concentration of specific chemicals or compounds in a sample by measuring the amount of light that is absorbed or transmitted at specific wavelengths.

In addition, spectrophotometry can also be used to assess the properties of biological tissues, such as their optical density and thickness. This information can be useful in the diagnosis and treatment of various medical conditions, including skin disorders, eye diseases, and cancer.

Overall, spectrophotometry is a valuable tool for medical professionals and researchers seeking to understand the composition and properties of various biological samples and tissues.

A gold colloid is not a medical term per se, but it is often used in the context of medical applications. It refers to a suspension of sub-nanometer to nanometer-sized gold particles in a fluid, usually water. These particles are small enough to remain suspended and not settle at the bottom due to Brownian motion. Gold colloids have been used in various medical applications, such as diagnostic tests, drug delivery systems, and photothermal therapies, due to their unique optical properties and biocompatibility.

I'm sorry for any confusion, but the term "Maillard reaction" is not a medical definition, but rather a chemical one. It refers to a specific type of chemical reaction between amino acids and reducing sugars that gives browned food its distinctive flavor. This reaction is named after French chemist Louis-Camille Maillard, who first described it in the early 20th century.

In culinary terms, the Maillard reaction is responsible for the browning of many foods, such as the crust of bread, the surface of roasted meats, and the flavor of seared vegetables. The reaction occurs when food is cooked or heated at high temperatures, causing amino acids and sugars to react and form new compounds that contribute to the food's color, taste, and aroma.

While the Maillard reaction is not a medical term, it is worth noting that some of the compounds formed during this reaction have been linked to potential health effects. For example, acrylamide, a compound that can form during high-temperature cooking of certain foods, has been classified as a probable human carcinogen by the International Agency for Research on Cancer (IARC). However, more research is needed to fully understand the health implications of these compounds and their role in the diet.

Monoclonal antibodies are a type of antibody that are identical because they are produced by a single clone of cells. They are laboratory-produced molecules that act like human antibodies in the immune system. They can be designed to attach to specific proteins found on the surface of cancer cells, making them useful for targeting and treating cancer. Monoclonal antibodies can also be used as a therapy for other diseases, such as autoimmune disorders and inflammatory conditions.

Monoclonal antibodies are produced by fusing a single type of immune cell, called a B cell, with a tumor cell to create a hybrid cell, or hybridoma. This hybrid cell is then able to replicate indefinitely, producing a large number of identical copies of the original antibody. These antibodies can be further modified and engineered to enhance their ability to bind to specific targets, increase their stability, and improve their effectiveness as therapeutic agents.

Monoclonal antibodies have several mechanisms of action in cancer therapy. They can directly kill cancer cells by binding to them and triggering an immune response. They can also block the signals that promote cancer growth and survival. Additionally, monoclonal antibodies can be used to deliver drugs or radiation directly to cancer cells, increasing the effectiveness of these treatments while minimizing their side effects on healthy tissues.

Monoclonal antibodies have become an important tool in modern medicine, with several approved for use in cancer therapy and other diseases. They are continuing to be studied and developed as a promising approach to treating a wide range of medical conditions.

BALB/c is an inbred strain of laboratory mouse that is widely used in biomedical research. The strain was developed at the Institute of Cancer Research in London by Henry Baldwin and his colleagues in the 1920s, and it has since become one of the most commonly used inbred strains in the world.

BALB/c mice are characterized by their black coat color, which is determined by a recessive allele at the tyrosinase locus. They are also known for their docile and friendly temperament, making them easy to handle and work with in the laboratory.

One of the key features of BALB/c mice that makes them useful for research is their susceptibility to certain types of tumors and immune responses. For example, they are highly susceptible to developing mammary tumors, which can be induced by chemical carcinogens or viral infection. They also have a strong Th2-biased immune response, which makes them useful models for studying allergic diseases and asthma.

BALB/c mice are also commonly used in studies of genetics, neuroscience, behavior, and infectious diseases. Because they are an inbred strain, they have a uniform genetic background, which makes it easier to control for genetic factors in experiments. Additionally, because they have been bred in the laboratory for many generations, they are highly standardized and reproducible, making them ideal subjects for scientific research.

Drug stability refers to the ability of a pharmaceutical drug product to maintain its physical, chemical, and biological properties during storage and use, under specified conditions. A stable drug product retains its desired quality, purity, strength, and performance throughout its shelf life. Factors that can affect drug stability include temperature, humidity, light exposure, and container compatibility. Maintaining drug stability is crucial to ensure the safety and efficacy of medications for patients.

A cell line is a culture of cells that are grown in a laboratory for use in research. These cells are usually taken from a single cell or group of cells, and they are able to divide and grow continuously in the lab. Cell lines can come from many different sources, including animals, plants, and humans. They are often used in scientific research to study cellular processes, disease mechanisms, and to test new drugs or treatments. Some common types of human cell lines include HeLa cells (which come from a cancer patient named Henrietta Lacks), HEK293 cells (which come from embryonic kidney cells), and HUVEC cells (which come from umbilical vein endothelial cells). It is important to note that cell lines are not the same as primary cells, which are cells that are taken directly from a living organism and have not been grown in the lab.

Alkaline phosphatase (ALP) is an enzyme found in various body tissues, including the liver, bile ducts, digestive system, bones, and kidneys. It plays a role in breaking down proteins and minerals, such as phosphate, in the body.

The medical definition of alkaline phosphatase refers to its function as a hydrolase enzyme that removes phosphate groups from molecules at an alkaline pH level. In clinical settings, ALP is often measured through blood tests as a biomarker for various health conditions.

Elevated levels of ALP in the blood may indicate liver or bone diseases, such as hepatitis, cirrhosis, bone fractures, or cancer. Therefore, physicians may order an alkaline phosphatase test to help diagnose and monitor these conditions. However, it is essential to interpret ALP results in conjunction with other diagnostic tests and clinical findings for accurate diagnosis and treatment.

Triglycerides are the most common type of fat in the body, and they're found in the food we eat. They're carried in the bloodstream to provide energy to the cells in our body. High levels of triglycerides in the blood can increase the risk of heart disease, especially in combination with other risk factors such as high LDL (bad) cholesterol, low HDL (good) cholesterol, and high blood pressure.

It's important to note that while triglycerides are a type of fat, they should not be confused with cholesterol, which is a waxy substance found in the cells of our body. Both triglycerides and cholesterol are important for maintaining good health, but high levels of either can increase the risk of heart disease.

Triglyceride levels are measured through a blood test called a lipid panel or lipid profile. A normal triglyceride level is less than 150 mg/dL. Borderline-high levels range from 150 to 199 mg/dL, high levels range from 200 to 499 mg/dL, and very high levels are 500 mg/dL or higher.

Elevated triglycerides can be caused by various factors such as obesity, physical inactivity, excessive alcohol consumption, smoking, and certain medical conditions like diabetes, hypothyroidism, and kidney disease. Medications such as beta-blockers, steroids, and diuretics can also raise triglyceride levels.

Lifestyle changes such as losing weight, exercising regularly, eating a healthy diet low in saturated and trans fats, avoiding excessive alcohol consumption, and quitting smoking can help lower triglyceride levels. In some cases, medication may be necessary to reduce triglycerides to recommended levels.

A cohort study is a type of observational study in which a group of individuals who share a common characteristic or exposure are followed up over time to determine the incidence of a specific outcome or outcomes. The cohort, or group, is defined based on the exposure status (e.g., exposed vs. unexposed) and then monitored prospectively to assess for the development of new health events or conditions.

Cohort studies can be either prospective or retrospective in design. In a prospective cohort study, participants are enrolled and followed forward in time from the beginning of the study. In contrast, in a retrospective cohort study, researchers identify a cohort that has already been assembled through medical records, insurance claims, or other sources and then look back in time to assess exposure status and health outcomes.

Cohort studies are useful for establishing causality between an exposure and an outcome because they allow researchers to observe the temporal relationship between the two. They can also provide information on the incidence of a disease or condition in different populations, which can be used to inform public health policy and interventions. However, cohort studies can be expensive and time-consuming to conduct, and they may be subject to bias if participants are not representative of the population or if there is loss to follow-up.

Protein conformation refers to the specific three-dimensional shape that a protein molecule assumes due to the spatial arrangement of its constituent amino acid residues and their associated chemical groups. This complex structure is determined by several factors, including covalent bonds (disulfide bridges), hydrogen bonds, van der Waals forces, and ionic bonds, which help stabilize the protein's unique conformation.

Protein conformations can be broadly classified into two categories: primary, secondary, tertiary, and quaternary structures. The primary structure represents the linear sequence of amino acids in a polypeptide chain. The secondary structure arises from local interactions between adjacent amino acid residues, leading to the formation of recurring motifs such as α-helices and β-sheets. Tertiary structure refers to the overall three-dimensional folding pattern of a single polypeptide chain, while quaternary structure describes the spatial arrangement of multiple folded polypeptide chains (subunits) that interact to form a functional protein complex.

Understanding protein conformation is crucial for elucidating protein function, as the specific three-dimensional shape of a protein directly influences its ability to interact with other molecules, such as ligands, nucleic acids, or other proteins. Any alterations in protein conformation due to genetic mutations, environmental factors, or chemical modifications can lead to loss of function, misfolding, aggregation, and disease states like neurodegenerative disorders and cancer.

Animal disease models are specialized animals, typically rodents such as mice or rats, that have been genetically engineered or exposed to certain conditions to develop symptoms and physiological changes similar to those seen in human diseases. These models are used in medical research to study the pathophysiology of diseases, identify potential therapeutic targets, test drug efficacy and safety, and understand disease mechanisms.

The genetic modifications can include knockout or knock-in mutations, transgenic expression of specific genes, or RNA interference techniques. The animals may also be exposed to environmental factors such as chemicals, radiation, or infectious agents to induce the disease state.

Examples of animal disease models include:

1. Mouse models of cancer: Genetically engineered mice that develop various types of tumors, allowing researchers to study cancer initiation, progression, and metastasis.
2. Alzheimer's disease models: Transgenic mice expressing mutant human genes associated with Alzheimer's disease, which exhibit amyloid plaque formation and cognitive decline.
3. Diabetes models: Obese and diabetic mouse strains like the NOD (non-obese diabetic) or db/db mice, used to study the development of type 1 and type 2 diabetes, respectively.
4. Cardiovascular disease models: Atherosclerosis-prone mice, such as ApoE-deficient or LDLR-deficient mice, that develop plaque buildup in their arteries when fed a high-fat diet.
5. Inflammatory bowel disease models: Mice with genetic mutations affecting intestinal barrier function and immune response, such as IL-10 knockout or SAMP1/YitFc mice, which develop colitis.

Animal disease models are essential tools in preclinical research, but it is important to recognize their limitations. Differences between species can affect the translatability of results from animal studies to human patients. Therefore, researchers must carefully consider the choice of model and interpret findings cautiously when applying them to human diseases.

Immunoglobulin E (IgE) is a type of antibody that plays a key role in the immune response to parasitic infections and allergies. It is produced by B cells in response to stimulation by antigens, such as pollen, pet dander, or certain foods. Once produced, IgE binds to receptors on the surface of mast cells and basophils, which are immune cells found in tissues and blood respectively. When an individual with IgE antibodies encounters the allergen again, the cross-linking of IgE molecules bound to the FcεRI receptor triggers the release of mediators such as histamine, leukotrienes, prostaglandins, and various cytokines from these cells. These mediators cause the symptoms of an allergic reaction, such as itching, swelling, and redness. IgE also plays a role in protecting against certain parasitic infections by activating eosinophils, which can kill the parasites.

In summary, Immunoglobulin E (IgE) is a type of antibody that plays a crucial role in the immune response to allergens and parasitic infections, it binds to receptors on the surface of mast cells and basophils, when an individual with IgE antibodies encounters the allergen again, it triggers the release of mediators from these cells causing the symptoms of an allergic reaction.

Ferritin is a protein in iron-metabolizing cells that stores iron in a water-soluble form. It is found inside the cells (intracellular) and is released into the bloodstream when the cells break down or die. Measuring the level of ferritin in the blood can help determine the amount of iron stored in the body. High levels of ferritin may indicate hemochromatosis, inflammation, liver disease, or other conditions. Low levels of ferritin may indicate anemia, iron deficiency, or other conditions.

Immunosorbents are materials or substances that have the ability to bind specifically to certain components of the immune system, such as antibodies or antigens. They are often used in medical testing and treatment to selectively remove or detect specific immune components from a sample or solution. Examples of immunosorbents include protein A or G columns, which can be used to purify antibodies, and magnetic beads coated with antigens, which can be used to capture and detect specific antibodies in a sample.

Fluorescein-5-isothiocyanate (FITC) is not a medical term per se, but a chemical compound commonly used in biomedical research and clinical diagnostics. Therefore, I will provide a general definition of this term:

Fluorescein-5-isothiocyanate (FITC) is a fluorescent dye with an absorption maximum at approximately 492-495 nm and an emission maximum at around 518-525 nm. It is widely used as a labeling reagent for various biological molecules, such as antibodies, proteins, and nucleic acids, to study their structure, function, and interactions in techniques like flow cytometry, immunofluorescence microscopy, and western blotting. The isothiocyanate group (-N=C=S) in the FITC molecule reacts with primary amines (-NH2) present in biological molecules to form a stable thiourea bond, enabling specific labeling of target molecules for detection and analysis.

Body fluids refer to the various liquids that can be found within and circulating throughout the human body. These fluids include, but are not limited to:

1. Blood: A fluid that carries oxygen, nutrients, hormones, and waste products throughout the body via the cardiovascular system. It is composed of red and white blood cells suspended in plasma.
2. Lymph: A clear-to-white fluid that circulates through the lymphatic system, helping to remove waste products, bacteria, and damaged cells from tissues while also playing a crucial role in the immune system.
3. Interstitial fluid: Also known as tissue fluid or extracellular fluid, it is the fluid that surrounds the cells in the body's tissues, allowing for nutrient exchange and waste removal between cells and blood vessels.
4. Cerebrospinal fluid (CSF): A clear, colorless fluid that circulates around the brain and spinal cord, providing protection, cushioning, and nutrients to these delicate structures while also removing waste products.
5. Pleural fluid: A small amount of lubricating fluid found in the pleural space between the lungs and the chest wall, allowing for smooth movement during respiration.
6. Pericardial fluid: A small amount of lubricating fluid found within the pericardial sac surrounding the heart, reducing friction during heart contractions.
7. Synovial fluid: A viscous, lubricating fluid found in joint spaces, allowing for smooth movement and protecting the articular cartilage from wear and tear.
8. Urine: A waste product produced by the kidneys, consisting of water, urea, creatinine, and various ions, which is excreted through the urinary system.
9. Gastrointestinal secretions: Fluids produced by the digestive system, including saliva, gastric juice, bile, pancreatic juice, and intestinal secretions, which aid in digestion, absorption, and elimination of food particles.
10. Reproductive fluids: Secretions from the male (semen) and female (cervical mucus, vaginal lubrication) reproductive systems that facilitate fertilization and reproduction.

A Nutrition Assessment is a systematic and comprehensive evaluation of an individual's nutritional status, which is carried out by healthcare professionals such as registered dietitians or nutritionists. The assessment typically involves collecting and analyzing data related to various factors that influence nutritional health, including:

1. Anthropometric measurements: These include height, weight, waist circumference, blood pressure, and other physical measures that can provide insights into an individual's overall health status and risk of chronic diseases.
2. Dietary intake assessment: This involves evaluating an individual's dietary patterns, food preferences, and eating habits to determine whether they are meeting their nutritional needs through their diet.
3. Biochemical assessments: These include blood tests and other laboratory measures that can provide information about an individual's nutrient status, such as serum levels of vitamins, minerals, and other nutrients.
4. Clinical assessment: This involves reviewing an individual's medical history, current medications, and any symptoms or health conditions that may be impacting their nutritional health.
5. Social and economic assessment: This includes evaluating an individual's access to food, income, education level, and other social determinants of health that can affect their ability to obtain and consume a healthy diet.

The goal of a Nutrition Assessment is to identify any nutritional risks or deficiencies and develop a personalized nutrition plan to address them. This may involve making dietary recommendations, providing education and counseling, or referring the individual to other healthcare professionals for further evaluation and treatment.

Polyethylene glycols (PEGs) are a family of synthetic, water-soluble polymers with a wide range of molecular weights. They are commonly used in the medical field as excipients in pharmaceutical formulations due to their ability to improve drug solubility, stability, and bioavailability. PEGs can also be used as laxatives to treat constipation or as bowel cleansing agents prior to colonoscopy examinations. Additionally, some PEG-conjugated drugs have been developed for use in targeted cancer therapies.

In a medical context, PEGs are often referred to by their average molecular weight, such as PEG 300, PEG 400, PEG 1500, and so on. Higher molecular weight PEGs tend to be more viscous and have longer-lasting effects in the body.

It's worth noting that while PEGs are generally considered safe for use in medical applications, some people may experience allergic reactions or hypersensitivity to these compounds. Prolonged exposure to high molecular weight PEGs has also been linked to potential adverse effects, such as decreased fertility and developmental toxicity in animal studies. However, more research is needed to fully understand the long-term safety of PEGs in humans.

Liver function tests (LFTs) are a group of blood tests that are used to assess the functioning and health of the liver. These tests measure the levels of various enzymes, proteins, and waste products that are produced or metabolized by the liver. Some common LFTs include:

1. Alanine aminotransferase (ALT): An enzyme found primarily in the liver, ALT is released into the bloodstream in response to liver cell damage. Elevated levels of ALT may indicate liver injury or disease.
2. Aspartate aminotransferase (AST): Another enzyme found in various tissues, including the liver, heart, and muscles. Like ALT, AST is released into the bloodstream following tissue damage. High AST levels can be a sign of liver damage or other medical conditions.
3. Alkaline phosphatase (ALP): An enzyme found in several organs, including the liver, bile ducts, and bones. Elevated ALP levels may indicate a blockage in the bile ducts, liver disease, or bone disorders.
4. Gamma-glutamyl transferase (GGT): An enzyme found mainly in the liver, pancreas, and biliary system. Increased GGT levels can suggest liver disease, alcohol consumption, or the use of certain medications.
5. Bilirubin: A yellowish pigment produced when hemoglobin from red blood cells is broken down. Bilirubin is processed by the liver and excreted through bile. High bilirubin levels can indicate liver dysfunction, bile duct obstruction, or certain types of anemia.
6. Albumin: A protein produced by the liver that helps maintain fluid balance in the body and transports various substances in the blood. Low albumin levels may suggest liver damage, malnutrition, or kidney disease.
7. Total protein: A measure of all proteins present in the blood, including albumin and other types of proteins produced by the liver. Decreased total protein levels can indicate liver dysfunction or other medical conditions.

These tests are often ordered together as part of a routine health checkup or when evaluating symptoms related to liver function or disease. The results should be interpreted in conjunction with clinical findings, medical history, and other diagnostic tests.

Colloids are a type of mixture that contains particles that are intermediate in size between those found in solutions and suspensions. These particles range in size from about 1 to 1000 nanometers in diameter, which is smaller than what can be seen with the naked eye, but larger than the molecules in a solution.

Colloids are created when one substance, called the dispersed phase, is dispersed in another substance, called the continuous phase. The dispersed phase can consist of particles such as proteins, emulsified fats, or finely divided solids, while the continuous phase is usually a liquid, but can also be a gas or a solid.

Colloids are important in many areas of medicine and biology, including drug delivery, diagnostic imaging, and tissue engineering. They are also found in nature, such as in milk, blood, and fog. The properties of colloids can be affected by factors such as pH, temperature, and the presence of other substances, which can influence their stability and behavior.

A cross-sectional study is a type of observational research design that examines the relationship between variables at one point in time. It provides a snapshot or a "cross-section" of the population at a particular moment, allowing researchers to estimate the prevalence of a disease or condition and identify potential risk factors or associations.

In a cross-sectional study, data is collected from a sample of participants at a single time point, and the variables of interest are measured simultaneously. This design can be used to investigate the association between exposure and outcome, but it cannot establish causality because it does not follow changes over time.

Cross-sectional studies can be conducted using various data collection methods, such as surveys, interviews, or medical examinations. They are often used in epidemiology to estimate the prevalence of a disease or condition in a population and to identify potential risk factors that may contribute to its development. However, because cross-sectional studies only provide a snapshot of the population at one point in time, they cannot account for changes over time or determine whether exposure preceded the outcome.

Therefore, while cross-sectional studies can be useful for generating hypotheses and identifying potential associations between variables, further research using other study designs, such as cohort or case-control studies, is necessary to establish causality and confirm any findings.

Regression analysis is a statistical technique used in medicine, as well as in other fields, to examine the relationship between one or more independent variables (predictors) and a dependent variable (outcome). It allows for the estimation of the average change in the outcome variable associated with a one-unit change in an independent variable, while controlling for the effects of other independent variables. This technique is often used to identify risk factors for diseases or to evaluate the effectiveness of medical interventions. In medical research, regression analysis can be used to adjust for potential confounding variables and to quantify the relationship between exposures and health outcomes. It can also be used in predictive modeling to estimate the probability of a particular outcome based on multiple predictors.

Peptides are short chains of amino acid residues linked by covalent bonds, known as peptide bonds. They are formed when two or more amino acids are joined together through a condensation reaction, which results in the elimination of a water molecule and the formation of an amide bond between the carboxyl group of one amino acid and the amino group of another.

Peptides can vary in length from two to about fifty amino acids, and they are often classified based on their size. For example, dipeptides contain two amino acids, tripeptides contain three, and so on. Oligopeptides typically contain up to ten amino acids, while polypeptides can contain dozens or even hundreds of amino acids.

Peptides play many important roles in the body, including serving as hormones, neurotransmitters, enzymes, and antibiotics. They are also used in medical research and therapeutic applications, such as drug delivery and tissue engineering.

Lysine is an essential amino acid, which means that it cannot be synthesized by the human body and must be obtained through the diet. Its chemical formula is (2S)-2,6-diaminohexanoic acid. Lysine is necessary for the growth and maintenance of tissues in the body, and it plays a crucial role in the production of enzymes, hormones, and antibodies. It is also essential for the absorption of calcium and the formation of collagen, which is an important component of bones and connective tissue. Foods that are good sources of lysine include meat, poultry, fish, eggs, and dairy products.

I'm sorry for any confusion, but "horses" is not a medical term. It is the common name given to the species *Equus ferus caballus*, which are large domesticated mammals used for transportation, work, and recreation. If you have any questions about horses or a related topic that you would like a medical perspective on, please let me know and I'd be happy to help!

Multivariate analysis is a statistical method used to examine the relationship between multiple independent variables and a dependent variable. It allows for the simultaneous examination of the effects of two or more independent variables on an outcome, while controlling for the effects of other variables in the model. This technique can be used to identify patterns, associations, and interactions among multiple variables, and is commonly used in medical research to understand complex health outcomes and disease processes. Examples of multivariate analysis methods include multiple regression, factor analysis, cluster analysis, and discriminant analysis.

Inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. It is characterized by the following signs: rubor (redness), tumor (swelling), calor (heat), dolor (pain), and functio laesa (loss of function). The process involves the activation of the immune system, recruitment of white blood cells, and release of inflammatory mediators, which contribute to the elimination of the injurious stimuli and initiation of the healing process. However, uncontrolled or chronic inflammation can also lead to tissue damage and diseases.

Digitoxin is a cardiac glycoside drug that is derived from the foxglove plant (Digitalis lanata). It is used in the treatment of various heart conditions, particularly congestive heart failure and certain types of arrhythmias. Digitoxin works by increasing the force of heart muscle contractions and slowing the heart rate, which helps to improve the efficiency of the heart's pumping action.

Like other cardiac glycosides, digitoxin inhibits the sodium-potassium pump in heart muscle cells, leading to an increase in intracellular calcium levels and a strengthening of heart muscle contractions. However, digitoxin has a longer half-life than other cardiac glycosides such as digoxin, which means that it stays in the body for a longer period of time and may require less frequent dosing.

Digitoxin is available in tablet form and is typically prescribed at a low dose, with regular monitoring of blood levels to ensure safe and effective use. Common side effects of digitoxin include nausea, vomiting, diarrhea, and dizziness. In rare cases, it can cause more serious side effects such as arrhythmias or toxicity, which may require hospitalization and treatment with medications or other interventions.

Palmitic acid is a type of saturated fatty acid, which is a common component in many foods and also produced by the body. Its chemical formula is C16:0, indicating that it contains 16 carbon atoms and no double bonds. Palmitic acid is found in high concentrations in animal fats, such as butter, lard, and beef tallow, as well as in some vegetable oils, like palm kernel oil and coconut oil.

In the human body, palmitic acid can be synthesized from other substances or absorbed through the diet. It plays a crucial role in various biological processes, including energy storage, membrane structure formation, and signaling pathways regulation. However, high intake of palmitic acid has been linked to an increased risk of developing cardiovascular diseases due to its potential to raise low-density lipoprotein (LDL) cholesterol levels in the blood.

It is essential to maintain a balanced diet and consume palmitic acid-rich foods in moderation, along with regular exercise and a healthy lifestyle, to reduce the risk of chronic diseases.

In a medical context, "hot temperature" is not a standard medical term with a specific definition. However, it is often used in relation to fever, which is a common symptom of illness. A fever is typically defined as a body temperature that is higher than normal, usually above 38°C (100.4°F) for adults and above 37.5-38°C (99.5-101.3°F) for children, depending on the source.

Therefore, when a medical professional talks about "hot temperature," they may be referring to a body temperature that is higher than normal due to fever or other causes. It's important to note that a high environmental temperature can also contribute to an elevated body temperature, so it's essential to consider both the body temperature and the environmental temperature when assessing a patient's condition.

Metabolic clearance rate is a term used in pharmacology to describe the volume of blood or plasma from which a drug is completely removed per unit time by metabolic processes. It is a measure of the body's ability to eliminate a particular substance and is usually expressed in units of volume (e.g., milliliters or liters) per time (e.g., minutes, hours, or days).

The metabolic clearance rate can be calculated by dividing the total amount of drug eliminated by the plasma concentration of the drug and the time over which it was eliminated. It provides important information about the pharmacokinetics of a drug, including its rate of elimination and the potential for drug-drug interactions that may affect metabolism.

It is worth noting that there are different types of clearance rates, such as renal clearance rate (which refers to the removal of a drug by the kidneys) or hepatic clearance rate (which refers to the removal of a drug by the liver). Metabolic clearance rate specifically refers to the elimination of a drug through metabolic processes, which can occur in various organs throughout the body.

Hyperthyroxinemia is a condition characterized by an elevated level of thyroxine (T4) in the blood. Thyroxine is a hormone produced by the thyroid gland, and its levels are regulated by another hormone called thyroid-stimulating hormone (TSH). Hyperthyroxinemia can be caused by various factors, including overactive thyroid gland (hyperthyroidism), excessive intake of thyroid hormones, or genetic disorders affecting thyroid hormone metabolism.

It is important to note that hyperthyroxinemia may not always result in symptoms or clinical manifestations of hyperthyroidism, as T4 levels must be converted to the active form of the hormone, triiodothyronine (T3), to exert its effects on various organs and tissues. Therefore, additional tests, such as measuring free T3 and TSH levels, may be necessary to confirm the diagnosis of hyperthyroidism.

Chemical precipitation is a process in which a chemical compound becomes a solid, insoluble form, known as a precipitate, from a liquid solution. This occurs when the concentration of the compound in the solution exceeds its solubility limit and forms a separate phase. The reaction that causes the formation of the precipitate can be a result of various factors such as changes in temperature, pH, or the addition of another chemical reagent.

In the medical field, chemical precipitation is used in diagnostic tests to detect and measure the presence of certain substances in body fluids, such as blood or urine. For example, a common test for kidney function involves adding a chemical reagent to a urine sample, which causes the excess protein in the urine to precipitate out of solution. The amount of precipitate formed can then be measured and used to diagnose and monitor kidney disease.

Chemical precipitation is also used in the treatment of certain medical conditions, such as heavy metal poisoning. In this case, a chelating agent is administered to bind with the toxic metal ions in the body, forming an insoluble compound that can be excreted through the urine or feces. This process helps to reduce the amount of toxic metals in the body and alleviate symptoms associated with poisoning.

Immunoglobulins (Igs), also known as antibodies, are glycoprotein molecules produced by the immune system's B cells in response to the presence of foreign substances, such as bacteria, viruses, and toxins. These Y-shaped proteins play a crucial role in identifying and neutralizing pathogens and other antigens, thereby protecting the body against infection and disease.

Immunoglobulins are composed of four polypeptide chains: two identical heavy chains and two identical light chains, held together by disulfide bonds. The variable regions of these chains form the antigen-binding sites, which recognize and bind to specific epitopes on antigens. Based on their heavy chain type, immunoglobulins are classified into five main isotypes or classes: IgA, IgD, IgE, IgG, and IgM. Each class has distinct functions in the immune response, such as providing protection in different body fluids and tissues, mediating hypersensitivity reactions, and aiding in the development of immunological memory.

In medical settings, immunoglobulins can be administered therapeutically to provide passive immunity against certain diseases or to treat immune deficiencies, autoimmune disorders, and other conditions that may benefit from immunomodulation.

Thyroxine-binding proteins (TBPs) are specialized transport proteins in the blood that bind and carry thyroid hormones, primarily Thyroxine (T4), but also Triiodothyronine (T3) to a lesser extent. The majority of T4 and T3 in the blood are bound to these proteins, while only a small fraction (0.03% of T4 and 0.3% of T3) remains unbound or free, which is the biologically active form that can enter cells and tissues to exert its physiological effects.

There are three main types of thyroxine-binding proteins:

1. Thyroxine-binding globulin (TBG): This is the major thyroid hormone transport protein, synthesized in the liver and accounting for approximately 70-80% of T4 and T3 binding. TBG has a high affinity but low capacity for thyroid hormones.
2. Transthyretin (TTR), also known as prealbumin: This protein accounts for around 10-20% of T4 and T3 binding. It has a lower affinity but higher capacity for thyroid hormones compared to TBG.
3. Albumin: This is the most abundant protein in the blood and binds approximately 15-20% of T4 and a smaller fraction of T3. Although albumin has a low affinity for thyroid hormones, its high concentration allows it to contribute significantly to their transport.

The binding of thyroid hormones to these proteins helps maintain stable levels in the blood and ensures a steady supply to tissues. Additionally, TBPs protect thyroid hormones from degradation and rapid clearance by the kidneys, thereby extending their half-life in the circulation.

The Fluorescent Antibody Technique (FAT) is a type of immunofluorescence assay used in laboratory medicine and pathology for the detection and localization of specific antigens or antibodies in tissues, cells, or microorganisms. In this technique, a fluorescein-labeled antibody is used to selectively bind to the target antigen or antibody, forming an immune complex. When excited by light of a specific wavelength, the fluorescein label emits light at a longer wavelength, typically visualized as green fluorescence under a fluorescence microscope.

The FAT is widely used in diagnostic microbiology for the identification and characterization of various bacteria, viruses, fungi, and parasites. It has also been applied in the diagnosis of autoimmune diseases and certain cancers by detecting specific antibodies or antigens in patient samples. The main advantage of FAT is its high sensitivity and specificity, allowing for accurate detection and differentiation of various pathogens and disease markers. However, it requires specialized equipment and trained personnel to perform and interpret the results.

Tissue distribution, in the context of pharmacology and toxicology, refers to the way that a drug or xenobiotic (a chemical substance found within an organism that is not naturally produced by or expected to be present within that organism) is distributed throughout the body's tissues after administration. It describes how much of the drug or xenobiotic can be found in various tissues and organs, and is influenced by factors such as blood flow, lipid solubility, protein binding, and the permeability of cell membranes. Understanding tissue distribution is important for predicting the potential effects of a drug or toxin on different parts of the body, and for designing drugs with improved safety and efficacy profiles.

Uric acid is a chemical compound that is formed when the body breaks down purines, which are substances that are found naturally in certain foods such as steak, organ meats and seafood, as well as in our own cells. After purines are broken down, they turn into uric acid and then get excreted from the body in the urine.

However, if there is too much uric acid in the body, it can lead to a condition called hyperuricemia. High levels of uric acid can cause gout, which is a type of arthritis that causes painful swelling and inflammation in the joints, especially in the big toe. Uric acid can also form crystals that can collect in the kidneys and lead to kidney stones.

It's important for individuals with gout or recurrent kidney stones to monitor their uric acid levels and follow a treatment plan prescribed by their healthcare provider, which may include medications to lower uric acid levels and dietary modifications.

Reproducibility of results in a medical context refers to the ability to obtain consistent and comparable findings when a particular experiment or study is repeated, either by the same researcher or by different researchers, following the same experimental protocol. It is an essential principle in scientific research that helps to ensure the validity and reliability of research findings.

In medical research, reproducibility of results is crucial for establishing the effectiveness and safety of new treatments, interventions, or diagnostic tools. It involves conducting well-designed studies with adequate sample sizes, appropriate statistical analyses, and transparent reporting of methods and findings to allow other researchers to replicate the study and confirm or refute the results.

The lack of reproducibility in medical research has become a significant concern in recent years, as several high-profile studies have failed to produce consistent findings when replicated by other researchers. This has led to increased scrutiny of research practices and a call for greater transparency, rigor, and standardization in the conduct and reporting of medical research.

L-Lactate Dehydrogenase (LDH) is an enzyme found in various tissues within the body, including the heart, liver, kidneys, muscles, and brain. It plays a crucial role in the process of energy production, particularly during anaerobic conditions when oxygen levels are low.

In the presence of the coenzyme NADH, LDH catalyzes the conversion of pyruvate to lactate, generating NAD+ as a byproduct. Conversely, in the presence of NAD+, LDH can convert lactate back to pyruvate using NADH. This reversible reaction is essential for maintaining the balance between lactate and pyruvate levels within cells.

Elevated blood levels of LDH may indicate tissue damage or injury, as this enzyme can be released into the circulation following cellular breakdown. As a result, LDH is often used as a nonspecific biomarker for various medical conditions, such as myocardial infarction (heart attack), liver disease, muscle damage, and certain types of cancer. However, it's important to note that an isolated increase in LDH does not necessarily pinpoint the exact location or cause of tissue damage, and further diagnostic tests are usually required for confirmation.

Species specificity is a term used in the field of biology, including medicine, to refer to the characteristic of a biological entity (such as a virus, bacterium, or other microorganism) that allows it to interact exclusively or preferentially with a particular species. This means that the biological entity has a strong affinity for, or is only able to infect, a specific host species.

For example, HIV is specifically adapted to infect human cells and does not typically infect other animal species. Similarly, some bacterial toxins are species-specific and can only affect certain types of animals or humans. This concept is important in understanding the transmission dynamics and host range of various pathogens, as well as in developing targeted therapies and vaccines.

Alanine transaminase (ALT) is a type of enzyme found primarily in the cells of the liver and, to a lesser extent, in the cells of other tissues such as the heart, muscles, and kidneys. Its primary function is to catalyze the reversible transfer of an amino group from alanine to another alpha-keto acid, usually pyruvate, to form pyruvate and another amino acid, usually glutamate. This process is known as the transamination reaction.

When liver cells are damaged or destroyed due to various reasons such as hepatitis, alcohol abuse, nonalcoholic fatty liver disease, or drug-induced liver injury, ALT is released into the bloodstream. Therefore, measuring the level of ALT in the blood is a useful diagnostic tool for evaluating liver function and detecting liver damage. Normal ALT levels vary depending on the laboratory, but typically range from 7 to 56 units per liter (U/L) for men and 6 to 45 U/L for women. Elevated ALT levels may indicate liver injury or disease, although other factors such as muscle damage or heart disease can also cause elevations in ALT.

Parathyroid hormone (PTH) is a polypeptide hormone that plays a crucial role in the regulation of calcium and phosphate levels in the body. It is produced and secreted by the parathyroid glands, which are four small endocrine glands located on the back surface of the thyroid gland.

The primary function of PTH is to maintain normal calcium levels in the blood by increasing calcium absorption from the gut, mobilizing calcium from bones, and decreasing calcium excretion by the kidneys. PTH also increases phosphate excretion by the kidneys, which helps to lower serum phosphate levels.

In addition to its role in calcium and phosphate homeostasis, PTH has been shown to have anabolic effects on bone tissue, stimulating bone formation and preventing bone loss. However, chronic elevations in PTH levels can lead to excessive bone resorption and osteoporosis.

Overall, Parathyroid Hormone is a critical hormone that helps maintain mineral homeostasis and supports healthy bone metabolism.

Dansyl compounds are fluorescent compounds that contain a dansyl group, which is a chemical group made up of a sulfonated derivative of dimethylaminonaphthalene. These compounds are often used as tracers in biochemical and medical research because they emit bright fluorescence when excited by ultraviolet or visible light. This property makes them useful for detecting and quantifying various biological molecules, such as amino acids, peptides, and proteins, in a variety of assays and techniques, including high-performance liquid chromatography (HPLC), thin-layer chromatography (TLC), and fluorescence microscopy.

The dansyl group can be attached to biological molecules through chemical reactions that involve the formation of covalent bonds between the sulfonate group in the dansyl compound and amino, thiol, or hydroxyl groups in the target molecule. The resulting dansylated molecules can then be detected and analyzed using various techniques.

Dansyl compounds are known for their high sensitivity, stability, and versatility, making them valuable tools in a wide range of research applications. However, it is important to note that the use of dansyl compounds requires careful handling and appropriate safety precautions, as they can be hazardous if mishandled or ingested.

Sepharose is not a medical term itself, but it is a trade name for a type of gel that is often used in medical and laboratory settings. Sepharose is a type of cross-linked agarose gel, which is derived from seaweed. It is commonly used in chromatography, a technique used to separate and purify different components of a mixture based on their physical or chemical properties.

Sepharose gels are available in various forms, including beads and sheets, and they come in different sizes and degrees of cross-linking. These variations allow for the separation and purification of molecules with different sizes, charges, and other properties. Sepharose is known for its high porosity, mechanical stability, and low non-specific binding, making it a popular choice for many laboratory applications.

Dietary proteins are sources of protein that come from the foods we eat. Protein is an essential nutrient for the human body, required for various bodily functions such as growth, repair, and immune function. Dietary proteins are broken down into amino acids during digestion, which are then absorbed and used to synthesize new proteins in the body.

Dietary proteins can be classified as complete or incomplete based on their essential amino acid content. Complete proteins contain all nine essential amino acids that cannot be produced by the human body and must be obtained through the diet. Examples of complete protein sources include meat, poultry, fish, eggs, dairy products, soy, and quinoa.

Incomplete proteins lack one or more essential amino acids and are typically found in plant-based foods such as grains, legumes, nuts, and seeds. However, by combining different incomplete protein sources, it is possible to obtain all the essential amino acids needed for a complete protein diet. This concept is known as complementary proteins.

It's important to note that while dietary proteins are essential for good health, excessive protein intake can have negative effects on the body, such as increased stress on the kidneys and bones. Therefore, it's recommended to consume protein in moderation as part of a balanced and varied diet.

"Age factors" refer to the effects, changes, or differences that age can have on various aspects of health, disease, and medical care. These factors can encompass a wide range of issues, including:

1. Physiological changes: As people age, their bodies undergo numerous physical changes that can affect how they respond to medications, illnesses, and medical procedures. For example, older adults may be more sensitive to certain drugs or have weaker immune systems, making them more susceptible to infections.
2. Chronic conditions: Age is a significant risk factor for many chronic diseases, such as heart disease, diabetes, cancer, and arthritis. As a result, age-related medical issues are common and can impact treatment decisions and outcomes.
3. Cognitive decline: Aging can also lead to cognitive changes, including memory loss and decreased decision-making abilities. These changes can affect a person's ability to understand and comply with medical instructions, leading to potential complications in their care.
4. Functional limitations: Older adults may experience physical limitations that impact their mobility, strength, and balance, increasing the risk of falls and other injuries. These limitations can also make it more challenging for them to perform daily activities, such as bathing, dressing, or cooking.
5. Social determinants: Age-related factors, such as social isolation, poverty, and lack of access to transportation, can impact a person's ability to obtain necessary medical care and affect their overall health outcomes.

Understanding age factors is critical for healthcare providers to deliver high-quality, patient-centered care that addresses the unique needs and challenges of older adults. By taking these factors into account, healthcare providers can develop personalized treatment plans that consider a person's age, physical condition, cognitive abilities, and social circumstances.

Complement C3 is a protein that plays a central role in the complement system, which is a part of the immune system that helps to clear pathogens and damaged cells from the body. Complement C3 can be activated through three different pathways: the classical pathway, the lectin pathway, and the alternative pathway. Once activated, it breaks down into two fragments, C3a and C3b.

C3a is an anaphylatoxin that helps to recruit immune cells to the site of infection or injury, while C3b plays a role in opsonization, which is the process of coating pathogens or damaged cells with proteins to make them more recognizable to the immune system. Additionally, C3b can also activate the membrane attack complex (MAC), which forms a pore in the membrane of target cells leading to their lysis or destruction.

In summary, Complement C3 is an important protein in the complement system that helps to identify and eliminate pathogens and damaged cells from the body through various mechanisms.

Blood Urea Nitrogen (BUN) is a laboratory value that measures the amount of urea nitrogen in the blood. Urea nitrogen is a waste product that is formed when proteins are broken down in the liver. The kidneys filter urea nitrogen from the blood and excrete it as urine.

A high BUN level may indicate impaired kidney function, as the kidneys are not effectively removing urea nitrogen from the blood. However, BUN levels can also be affected by other factors such as dehydration, heart failure, or gastrointestinal bleeding. Therefore, BUN should be interpreted in conjunction with other laboratory values and clinical findings.

The normal range for BUN is typically between 7-20 mg/dL (milligrams per deciliter) or 2.5-7.1 mmol/L (millimoles per liter), but the reference range may vary depending on the laboratory.

Copper is a chemical element with the symbol Cu (from Latin: *cuprum*) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. Copper is found as a free element in nature, and it is also a constituent of many minerals such as chalcopyrite and bornite.

In the human body, copper is an essential trace element that plays a role in various physiological processes, including iron metabolism, energy production, antioxidant defense, and connective tissue synthesis. Copper is found in a variety of foods, such as shellfish, nuts, seeds, whole grains, and organ meats. The recommended daily intake of copper for adults is 900 micrograms (mcg) per day.

Copper deficiency can lead to anemia, neutropenia, impaired immune function, and abnormal bone development. Copper toxicity, on the other hand, can cause nausea, vomiting, abdominal pain, diarrhea, and in severe cases, liver damage and neurological symptoms. Therefore, it is important to maintain a balanced copper intake through diet and supplements if necessary.

I apologize, but "sheep" is not a term that has a medical definition. It is a common animal with the scientific name Ovis aries. If you have any medical or health-related questions, I would be happy to try and help answer those for you.

Lipoproteins are complex particles composed of multiple proteins and lipids (fats) that play a crucial role in the transport and metabolism of fat molecules in the body. They consist of an outer shell of phospholipids, free cholesterols, and apolipoproteins, enclosing a core of triglycerides and cholesteryl esters.

There are several types of lipoproteins, including:

1. Chylomicrons: These are the largest lipoproteins and are responsible for transporting dietary lipids from the intestines to other parts of the body.
2. Very-low-density lipoproteins (VLDL): Produced by the liver, VLDL particles carry triglycerides to peripheral tissues for energy storage or use.
3. Low-density lipoproteins (LDL): Often referred to as "bad cholesterol," LDL particles transport cholesterol from the liver to cells throughout the body. High levels of LDL in the blood can lead to plaque buildup in artery walls and increase the risk of heart disease.
4. High-density lipoproteins (HDL): Known as "good cholesterol," HDL particles help remove excess cholesterol from cells and transport it back to the liver for excretion or recycling. Higher levels of HDL are associated with a lower risk of heart disease.

Understanding lipoproteins and their roles in the body is essential for assessing cardiovascular health and managing risks related to heart disease and stroke.

Caseins are a group of phosphoproteins found in the milk of mammals, including cows and humans. They are the major proteins in milk, making up about 80% of the total protein content. Caseins are characterized by their ability to form micelles, or tiny particles, in milk when it is mixed with calcium. This property allows caseins to help transport calcium and other minerals throughout the body.

Caseins are also known for their nutritional value, as they provide essential amino acids and are easily digestible. They are often used as ingredients in infant formula and other food products. Additionally, caseins have been studied for their potential health benefits, such as reducing the risk of cardiovascular disease and improving bone health. However, more research is needed to confirm these potential benefits.

C57BL/6 (C57 Black 6) is an inbred strain of laboratory mouse that is widely used in biomedical research. The term "inbred" refers to a strain of animals where matings have been carried out between siblings or other closely related individuals for many generations, resulting in a population that is highly homozygous at most genetic loci.

The C57BL/6 strain was established in 1920 by crossing a female mouse from the dilute brown (DBA) strain with a male mouse from the black strain. The resulting offspring were then interbred for many generations to create the inbred C57BL/6 strain.

C57BL/6 mice are known for their robust health, longevity, and ease of handling, making them a popular choice for researchers. They have been used in a wide range of biomedical research areas, including studies of cancer, immunology, neuroscience, cardiovascular disease, and metabolism.

One of the most notable features of the C57BL/6 strain is its sensitivity to certain genetic modifications, such as the introduction of mutations that lead to obesity or impaired glucose tolerance. This has made it a valuable tool for studying the genetic basis of complex diseases and traits.

Overall, the C57BL/6 inbred mouse strain is an important model organism in biomedical research, providing a valuable resource for understanding the genetic and molecular mechanisms underlying human health and disease.

Solubility is a fundamental concept in pharmaceutical sciences and medicine, which refers to the maximum amount of a substance (solute) that can be dissolved in a given quantity of solvent (usually water) at a specific temperature and pressure. Solubility is typically expressed as mass of solute per volume or mass of solvent (e.g., grams per liter, milligrams per milliliter). The process of dissolving a solute in a solvent results in a homogeneous solution where the solute particles are dispersed uniformly throughout the solvent.

Understanding the solubility of drugs is crucial for their formulation, administration, and therapeutic effectiveness. Drugs with low solubility may not dissolve sufficiently to produce the desired pharmacological effect, while those with high solubility might lead to rapid absorption and short duration of action. Therefore, optimizing drug solubility through various techniques like particle size reduction, salt formation, or solubilization is an essential aspect of drug development and delivery.

Nonesterified fatty acids (NEFA), also known as free fatty acids (FFA), refer to fatty acid molecules that are not bound to glycerol in the form of triglycerides or other esters. In the bloodstream, NEFAs are transported while bound to albumin and can serve as a source of energy for peripheral tissues. Under normal physiological conditions, NEFA levels are tightly regulated by the body; however, elevated NEFA levels have been associated with various metabolic disorders such as insulin resistance, obesity, and type 2 diabetes.

Analysis of Variance (ANOVA) is a statistical technique used to compare the means of two or more groups and determine whether there are any significant differences between them. It is a way to analyze the variance in a dataset to determine whether the variability between groups is greater than the variability within groups, which can indicate that the groups are significantly different from one another.

ANOVA is based on the concept of partitioning the total variance in a dataset into two components: variance due to differences between group means (also known as "between-group variance") and variance due to differences within each group (also known as "within-group variance"). By comparing these two sources of variance, ANOVA can help researchers determine whether any observed differences between groups are statistically significant, or whether they could have occurred by chance.

ANOVA is a widely used technique in many areas of research, including biology, psychology, engineering, and business. It is often used to compare the means of two or more experimental groups, such as a treatment group and a control group, to determine whether the treatment had a significant effect. ANOVA can also be used to compare the means of different populations or subgroups within a population, to identify any differences that may exist between them.

Lauric acid is a type of saturated fatty acid, meaning it contains only single bonds between its carbon atoms. It is named after the laurel tree, from which it was originally isolated, and has the chemical formula CH3(CH2)10COOH.

In a medical context, lauric acid is often discussed in relation to its presence in certain foods and its potential effects on health. For example, lauric acid is the primary fatty acid found in coconut oil, making up about 50% of its total fat content. It is also found in smaller amounts in other foods such as palm kernel oil, dairy products, and human breast milk.

Some studies have suggested that lauric acid may have beneficial effects on health, such as raising levels of "good" HDL cholesterol and having antimicrobial properties. However, it is also high in calories and can contribute to weight gain if consumed in excess. Additionally, like other saturated fats, it can raise levels of "bad" LDL cholesterol when consumed in large amounts, which may increase the risk of heart disease over time.

Overall, while lauric acid may have some potential health benefits, it is important to consume it in moderation as part of a balanced diet.

Ascites is an abnormal accumulation of fluid in the peritoneal cavity, which is the space between the lining of the abdominal wall and the organs within it. This buildup of fluid can cause the belly to swell and become distended. Ascites can be caused by various medical conditions, including liver cirrhosis, cancer, heart failure, and kidney disease. The accumulation of fluid in the peritoneal cavity can lead to complications such as infection, reduced mobility, and difficulty breathing. Treatment for ascites depends on the underlying cause and may include diuretics, paracentesis (a procedure to remove excess fluid from the abdomen), or treatment of the underlying medical condition.

"Autoanalysis" is not a term that is widely used in the medical field. However, in psychology and psychotherapy, "autoanalysis" refers to the process of self-analysis or self-examination, where an individual analyzes their own thoughts, feelings, behaviors, and experiences to gain insight into their unconscious mind and understand their motivations, conflicts, and emotional patterns.

Self-analysis can involve various techniques such as introspection, journaling, meditation, dream analysis, and reflection on past experiences. While autoanalysis can be a useful tool for personal growth and self-awareness, it is generally considered less reliable and comprehensive than professional psychotherapy or psychoanalysis, which involves a trained therapist or analyst who can provide objective feedback, interpretation, and guidance.

Caprylates are the salts or esters of capric acid, a saturated fatty acid with a chain length of 8 carbon atoms. In medical and biological contexts, caprylate refers to the anion (negatively charged ion) form of capric acid, which has the chemical formula C8H17O2-. Caprylates are used in various applications, including as food additives, pharmaceuticals, and personal care products.

Some examples of caprylate compounds include:

* Sodium caprylate (sodium octanoate): a sodium salt commonly used as a preservative and flavor enhancer in foods.
* Calcium caprylate (calcium octanoate): a calcium salt used as an emulsifier in food products and as a stabilizer in cosmetics.
* Caprylic acid/caprylate triglycerides: esters of glycerin with caprylic acid, used as emollients and solvents in skin care products and pharmaceuticals.

Caprylates have antimicrobial properties against certain bacteria, fungi, and viruses, making them useful in various medical applications. For instance, sodium caprylate is sometimes used as an antifungal agent to treat conditions like candidiasis (yeast infections). However, more research is needed to fully understand the potential benefits and risks of using caprylates for medicinal purposes.

Immunoenzyme techniques are a group of laboratory methods used in immunology and clinical chemistry that combine the specificity of antibody-antigen reactions with the sensitivity and amplification capabilities of enzyme reactions. These techniques are primarily used for the detection, quantitation, or identification of various analytes (such as proteins, hormones, drugs, viruses, or bacteria) in biological samples.

In immunoenzyme techniques, an enzyme is linked to an antibody or antigen, creating a conjugate. This conjugate then interacts with the target analyte in the sample, forming an immune complex. The presence and amount of this immune complex can be visualized or measured by detecting the enzymatic activity associated with it.

There are several types of immunoenzyme techniques, including:

1. Enzyme-linked Immunosorbent Assay (ELISA): A widely used method for detecting and quantifying various analytes in a sample. In ELISA, an enzyme is attached to either the capture antibody or the detection antibody. After the immune complex formation, a substrate is added that reacts with the enzyme, producing a colored product that can be measured spectrophotometrically.
2. Immunoblotting (Western blot): A method used for detecting specific proteins in a complex mixture, such as a protein extract from cells or tissues. In this technique, proteins are separated by gel electrophoresis and transferred to a membrane, where they are probed with an enzyme-conjugated antibody directed against the target protein.
3. Immunohistochemistry (IHC): A method used for detecting specific antigens in tissue sections or cells. In IHC, an enzyme-conjugated primary or secondary antibody is applied to the sample, and the presence of the antigen is visualized using a chromogenic substrate that produces a colored product at the site of the antigen-antibody interaction.
4. Immunofluorescence (IF): A method used for detecting specific antigens in cells or tissues by employing fluorophore-conjugated antibodies. The presence of the antigen is visualized using a fluorescence microscope.
5. Enzyme-linked immunosorbent assay (ELISA): A method used for detecting and quantifying specific antigens or antibodies in liquid samples, such as serum or culture supernatants. In ELISA, an enzyme-conjugated detection antibody is added after the immune complex formation, and a substrate is added that reacts with the enzyme to produce a colored product that can be measured spectrophotometrically.

These techniques are widely used in research and diagnostic laboratories for various applications, including protein characterization, disease diagnosis, and monitoring treatment responses.

Protein denaturation is a process in which the native structure of a protein is altered, leading to loss of its biological activity. This can be caused by various factors such as changes in temperature, pH, or exposure to chemicals or radiation. The three-dimensional shape of a protein is crucial for its function, and denaturation causes the protein to lose this shape, resulting in impaired or complete loss of function. Denaturation is often irreversible and can lead to the aggregation of proteins, which can have negative effects on cellular function and can contribute to diseases such as Alzheimer's and Parkinson's.

Fluorescent dyes are substances that emit light upon excitation by absorbing light of a shorter wavelength. In a medical context, these dyes are often used in various diagnostic tests and procedures to highlight or mark certain structures or substances within the body. For example, fluorescent dyes may be used in imaging techniques such as fluorescence microscopy or fluorescence angiography to help visualize cells, tissues, or blood vessels. These dyes can also be used in flow cytometry to identify and sort specific types of cells. The choice of fluorescent dye depends on the specific application and the desired properties, such as excitation and emission spectra, quantum yield, and photostability.

Membranous glomerulonephritis (MGN) is a kidney disorder that leads to the inflammation and damage of the glomeruli, which are the tiny blood vessels in the kidneys responsible for filtering waste and excess fluids from the blood. In MGN, the membrane that surrounds the glomerular capillaries becomes thickened and damaged due to the deposit of immune complexes, primarily composed of antibodies and antigens.

The onset of membranous glomerulonephritis can be either primary (idiopathic) or secondary to various underlying conditions such as autoimmune diseases (like systemic lupus erythematosus), infections (hepatitis B or C, syphilis, endocarditis), medications, or malignancies.

The symptoms of membranous glomerulonephritis may include:

1. Proteinuria - the presence of excess protein, specifically albumin, in the urine. This can lead to nephrotic syndrome, characterized by heavy protein loss in urine, edema (swelling), hypoalbuminemia (low blood albumin levels), and hyperlipidemia (high blood lipid levels).
2. Hematuria - the presence of red blood cells in the urine, which can be visible or microscopic.
3. Hypertension - high blood pressure.
4. Edema - swelling in various body parts due to fluid retention.
5. Nephrotic range proteinuria (protein loss greater than 3.5 grams per day) and/or nephritic syndrome (a combination of hematuria, proteinuria, hypertension, and kidney dysfunction) can be observed in some cases.

The diagnosis of membranous glomerulonephritis typically involves a thorough medical history, physical examination, urinalysis, blood tests, and imaging studies. A definitive diagnosis often requires a kidney biopsy to assess the glomerular structure and the nature of the immune complex deposits. Treatment depends on the underlying cause and severity of the disease and may include corticosteroids, immunosuppressants, blood pressure management, and supportive care for symptoms like edema and proteinuria.

Autoantibodies are defined as antibodies that are produced by the immune system and target the body's own cells, tissues, or organs. These antibodies mistakenly identify certain proteins or molecules in the body as foreign invaders and attack them, leading to an autoimmune response. Autoantibodies can be found in various autoimmune diseases such as rheumatoid arthritis, lupus, and thyroiditis. The presence of autoantibodies can also be used as a diagnostic marker for certain conditions.

Isoelectric focusing (IEF) is a technique used in electrophoresis, which is a method for separating proteins or other molecules based on their electrical charges. In IEF, a mixture of ampholytes (molecules that can carry both positive and negative charges) is used to create a pH gradient within a gel matrix. When an electric field is applied, the proteins or molecules migrate through the gel until they reach the point in the gradient where their net charge is zero, known as their isoelectric point (pI). At this point, they focus into a sharp band and stop moving, resulting in a highly resolved separation of the different components based on their pI. This technique is widely used in protein research for applications such as protein identification, characterization, and purification.

Intravenous injections are a type of medical procedure where medication or fluids are administered directly into a vein using a needle and syringe. This route of administration is also known as an IV injection. The solution injected enters the patient's bloodstream immediately, allowing for rapid absorption and onset of action. Intravenous injections are commonly used to provide quick relief from symptoms, deliver medications that are not easily absorbed by other routes, or administer fluids and electrolytes in cases of dehydration or severe illness. It is important that intravenous injections are performed using aseptic technique to minimize the risk of infection.

Microspheres are tiny, spherical particles that range in size from 1 to 1000 micrometers in diameter. They are made of biocompatible and biodegradable materials such as polymers, glass, or ceramics. In medical terms, microspheres have various applications, including drug delivery systems, medical imaging, and tissue engineering.

In drug delivery, microspheres can be used to encapsulate drugs and release them slowly over time, improving the efficacy of the treatment while reducing side effects. They can also be used for targeted drug delivery, where the microspheres are designed to accumulate in specific tissues or organs.

In medical imaging, microspheres can be labeled with radioactive isotopes or magnetic materials and used as contrast agents to enhance the visibility of tissues or organs during imaging procedures such as X-ray, CT, MRI, or PET scans.

In tissue engineering, microspheres can serve as a scaffold for cell growth and differentiation, promoting the regeneration of damaged tissues or organs. Overall, microspheres have great potential in various medical applications due to their unique properties and versatility.

A Severity of Illness Index is a measurement tool used in healthcare to assess the severity of a patient's condition and the risk of mortality or other adverse outcomes. These indices typically take into account various physiological and clinical variables, such as vital signs, laboratory values, and co-morbidities, to generate a score that reflects the patient's overall illness severity.

Examples of Severity of Illness Indices include the Acute Physiology and Chronic Health Evaluation (APACHE) system, the Simplified Acute Physiology Score (SAPS), and the Mortality Probability Model (MPM). These indices are often used in critical care settings to guide clinical decision-making, inform prognosis, and compare outcomes across different patient populations.

It is important to note that while these indices can provide valuable information about a patient's condition, they should not be used as the sole basis for clinical decision-making. Rather, they should be considered in conjunction with other factors, such as the patient's overall clinical presentation, treatment preferences, and goals of care.

Blood glucose, also known as blood sugar, is the concentration of glucose in the blood. Glucose is a simple sugar that serves as the main source of energy for the body's cells. It is carried to each cell through the bloodstream and is absorbed into the cells with the help of insulin, a hormone produced by the pancreas.

The normal range for blood glucose levels in humans is typically between 70 and 130 milligrams per deciliter (mg/dL) when fasting, and less than 180 mg/dL after meals. Levels that are consistently higher than this may indicate diabetes or other metabolic disorders.

Blood glucose levels can be measured through a variety of methods, including fingerstick blood tests, continuous glucose monitoring systems, and laboratory tests. Regular monitoring of blood glucose levels is important for people with diabetes to help manage their condition and prevent complications.

Zinc is an essential mineral that is vital for the functioning of over 300 enzymes and involved in various biological processes in the human body, including protein synthesis, DNA synthesis, immune function, wound healing, and cell division. It is a component of many proteins and participates in the maintenance of structural integrity and functionality of proteins. Zinc also plays a crucial role in maintaining the sense of taste and smell.

The recommended daily intake of zinc varies depending on age, sex, and life stage. Good dietary sources of zinc include red meat, poultry, seafood, beans, nuts, dairy products, and fortified cereals. Zinc deficiency can lead to various health problems, including impaired immune function, growth retardation, and developmental delays in children. On the other hand, excessive intake of zinc can also have adverse effects on health, such as nausea, vomiting, and impaired immune function.

Interleukin-6 (IL-6) is a cytokine, a type of protein that plays a crucial role in communication between cells, especially in the immune system. It is produced by various cells including T-cells, B-cells, fibroblasts, and endothelial cells in response to infection, injury, or inflammation.

IL-6 has diverse effects on different cell types. In the immune system, it stimulates the growth and differentiation of B-cells into plasma cells that produce antibodies. It also promotes the activation and survival of T-cells. Moreover, IL-6 plays a role in fever induction by acting on the hypothalamus to raise body temperature during an immune response.

In addition to its functions in the immune system, IL-6 has been implicated in various physiological processes such as hematopoiesis (the formation of blood cells), bone metabolism, and neural development. However, abnormal levels of IL-6 have also been associated with several diseases, including autoimmune disorders, chronic inflammation, and cancer.

Calcium is an essential mineral that is vital for various physiological processes in the human body. The medical definition of calcium is as follows:

Calcium (Ca2+) is a crucial cation and the most abundant mineral in the human body, with approximately 99% of it found in bones and teeth. It plays a vital role in maintaining structural integrity, nerve impulse transmission, muscle contraction, hormonal secretion, blood coagulation, and enzyme activation.

Calcium homeostasis is tightly regulated through the interplay of several hormones, including parathyroid hormone (PTH), calcitonin, and vitamin D. Dietary calcium intake, absorption, and excretion are also critical factors in maintaining optimal calcium levels in the body.

Hypocalcemia refers to low serum calcium levels, while hypercalcemia indicates high serum calcium levels. Both conditions can have detrimental effects on various organ systems and require medical intervention to correct.

The spleen is an organ in the upper left side of the abdomen, next to the stomach and behind the ribs. It plays multiple supporting roles in the body:

1. It fights infection by acting as a filter for the blood. Old red blood cells are recycled in the spleen, and platelets and white blood cells are stored there.
2. The spleen also helps to control the amount of blood in the body by removing excess red blood cells and storing platelets.
3. It has an important role in immune function, producing antibodies and removing microorganisms and damaged red blood cells from the bloodstream.

The spleen can be removed without causing any significant problems, as other organs take over its functions. This is known as a splenectomy and may be necessary if the spleen is damaged or diseased.

Surface properties in the context of medical science refer to the characteristics and features of the outermost layer or surface of a biological material or structure, such as cells, tissues, organs, or medical devices. These properties can include physical attributes like roughness, smoothness, hydrophobicity or hydrophilicity, and electrical conductivity, as well as chemical properties like charge, reactivity, and composition.

In the field of biomaterials science, understanding surface properties is crucial for designing medical implants, devices, and drug delivery systems that can interact safely and effectively with biological tissues and fluids. Surface modifications, such as coatings or chemical treatments, can be used to alter surface properties and enhance biocompatibility, improve lubricity, reduce fouling, or promote specific cellular responses like adhesion, proliferation, or differentiation.

Similarly, in the field of cell biology, understanding surface properties is essential for studying cell-cell interactions, cell signaling, and cell behavior. Cells can sense and respond to changes in their environment, including variations in surface properties, which can influence cell shape, motility, and function. Therefore, characterizing and manipulating surface properties can provide valuable insights into the mechanisms of cellular processes and offer new strategies for developing therapies and treatments for various diseases.

Carrier proteins, also known as transport proteins, are a type of protein that facilitates the movement of molecules across cell membranes. They are responsible for the selective and active transport of ions, sugars, amino acids, and other molecules from one side of the membrane to the other, against their concentration gradient. This process requires energy, usually in the form of ATP (adenosine triphosphate).

Carrier proteins have a specific binding site for the molecule they transport, and undergo conformational changes upon binding, which allows them to move the molecule across the membrane. Once the molecule has been transported, the carrier protein returns to its original conformation, ready to bind and transport another molecule.

Carrier proteins play a crucial role in maintaining the balance of ions and other molecules inside and outside of cells, and are essential for many physiological processes, including nerve impulse transmission, muscle contraction, and nutrient uptake.

Carbonates are a class of chemical compounds that consist of a metal or metalloid combined with carbonate ions (CO32-). These compounds form when carbon dioxide (CO2) reacts with a base, such as a metal hydroxide. The reaction produces water (H2O), carbonic acid (H2CO3), and the corresponding carbonate.

Carbonates are important in many biological and geological processes. In the body, for example, calcium carbonate is a major component of bones and teeth. It also plays a role in maintaining pH balance by reacting with excess acid in the stomach to form carbon dioxide and water.

In nature, carbonates are common minerals found in rocks such as limestone and dolomite. They can also be found in mineral waters and in the shells of marine organisms. Carbonate rocks play an important role in the global carbon cycle, as they can dissolve or precipitate depending on environmental conditions, which affects the amount of carbon dioxide in the atmosphere.

An epitope is a specific region on the surface of an antigen (a molecule that can trigger an immune response) that is recognized by an antibody, B-cell receptor, or T-cell receptor. It is also commonly referred to as an antigenic determinant. Epitopes are typically composed of linear amino acid sequences or conformational structures made up of discontinuous amino acids in the antigen. They play a crucial role in the immune system's ability to differentiate between self and non-self molecules, leading to the targeted destruction of foreign substances like viruses and bacteria. Understanding epitopes is essential for developing vaccines, diagnostic tests, and immunotherapies.

In the context of medicine, "chemistry" often refers to the field of study concerned with the properties, composition, and structure of elements and compounds, as well as their reactions with one another. It is a fundamental science that underlies much of modern medicine, including pharmacology (the study of drugs), toxicology (the study of poisons), and biochemistry (the study of the chemical processes that occur within living organisms).

In addition to its role as a basic science, chemistry is also used in medical testing and diagnosis. For example, clinical chemistry involves the analysis of bodily fluids such as blood and urine to detect and measure various substances, such as glucose, cholesterol, and electrolytes, that can provide important information about a person's health status.

Overall, chemistry plays a critical role in understanding the mechanisms of diseases, developing new treatments, and improving diagnostic tests and techniques.

Povidone, also known as PVP or polyvinylpyrrolidone, is not a medication itself but rather a pharmaceutical ingredient used in various medical and healthcare products. It is a water-soluble synthetic polymer that has the ability to bind to and carry other substances, such as drugs or iodine.

In medical applications, povidone is often used as a binder or coating agent in pharmaceutical tablets and capsules. It can also be found in some topical antiseptic solutions, such as those containing iodine, where it helps to stabilize and control the release of the active ingredient.

It's important to note that while povidone is a widely used pharmaceutical ingredient, it is not typically considered a medication on its own.

Dinitrobenzenes are a group of organic compounds that contain two nitro groups (-NO2) attached to a benzene ring. There are three isomers of dinitrobenzenes, depending on the position of the nitro groups on the benzene ring:
1. 1,2-Dinitrobenzene: This isomer has both nitro groups attached to adjacent carbon atoms on the benzene ring. It is a yellow crystalline solid with a melting point of 89-90°C and is soluble in organic solvents such as ethanol, ether, and benzene.
2. 1,3-Dinitrobenzene: This isomer has the nitro groups attached to carbon atoms separated by one carbon atom on the benzene ring. It is a white crystalline solid with a melting point of 90°C and is soluble in organic solvents such as ethanol, ether, and benzene.
3. 1,4-Dinitrobenzene: This isomer has the nitro groups attached to opposite carbon atoms on the benzene ring. It is a white crystalline solid with a melting point of 169°C and is soluble in organic solvents such as ethanol, ether, and benzene.
Dinitrobenzenes are used in chemical synthesis, particularly in the production of dyes, pharmaceuticals, and explosives. However, they are also known to be toxic and can cause skin irritation, respiratory problems, and damage to the liver and kidneys if ingested or inhaled in large quantities. Therefore, handling and use of these compounds should be done with caution and appropriate safety measures.

In the context of medical terminology, "solutions" refers to a homogeneous mixture of two or more substances, in which one substance (the solute) is uniformly distributed within another substance (the solvent). The solvent is typically the greater component of the solution and is capable of dissolving the solute.

Solutions can be classified based on the physical state of the solvent and solute. For instance, a solution in which both the solvent and solute are liquids is called a liquid solution or simply a solution. A solid solution is one where the solvent is a solid and the solute is either a gas, liquid, or solid. Similarly, a gas solution refers to a mixture where the solvent is a gas and the solute can be a gas, liquid, or solid.

In medical applications, solutions are often used as vehicles for administering medications, such as intravenous (IV) fluids, oral rehydration solutions, eye drops, and topical creams or ointments. The composition of these solutions is carefully controlled to ensure the appropriate concentration and delivery of the active ingredients.

Testosterone is a steroid hormone that belongs to androsten class of hormones. It is primarily secreted by the Leydig cells in the testes of males and, to a lesser extent, by the ovaries and adrenal glands in females. Testosterone is the main male sex hormone and anabolic steroid. It plays a key role in the development of masculine characteristics, such as body hair and muscle mass, and contributes to bone density, fat distribution, red cell production, and sex drive. In females, testosterone contributes to sexual desire and bone health. Testosterone is synthesized from cholesterol and its production is regulated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH).

In the context of medical definitions, polymers are large molecules composed of repeating subunits called monomers. These long chains of monomers can have various structures and properties, depending on the type of monomer units and how they are linked together. In medicine, polymers are used in a wide range of applications, including drug delivery systems, medical devices, and tissue engineering scaffolds. Some examples of polymers used in medicine include polyethylene, polypropylene, polystyrene, polyvinyl chloride (PVC), and biodegradable polymers such as polylactic acid (PLA) and polycaprolactone (PCL).

Technetium Tc 99m Pentetate is a radioactive pharmaceutical preparation used as a radiopharmaceutical agent in medical imaging. It is a salt of technetium-99m, a metastable nuclear isomer of technetium-99, which emits gamma rays and has a half-life of 6 hours.

Technetium Tc 99m Pentetate is used in various diagnostic procedures, including renal imaging, brain scans, lung perfusion studies, and bone scans. It is distributed throughout the body after intravenous injection and is excreted primarily by the kidneys, making it useful for evaluating renal function and detecting abnormalities in the urinary tract.

The compound itself is a colorless, sterile, pyrogen-free solution that is typically supplied in a lead shielded container to protect against radiation exposure. It should be used promptly after preparation and handled with care to minimize radiation exposure to healthcare workers and patients.

Chemical phenomena refer to the changes and interactions that occur at the molecular or atomic level when chemicals are involved. These phenomena can include chemical reactions, in which one or more substances (reactants) are converted into different substances (products), as well as physical properties that change as a result of chemical interactions, such as color, state of matter, and solubility. Chemical phenomena can be studied through various scientific disciplines, including chemistry, biochemistry, and physics.

I believe there might be a misunderstanding in your question. "Dogs" is not a medical term or condition. It is the common name for a domesticated carnivore of the family Canidae, specifically the genus Canis, which includes wolves, foxes, and other extant and extinct species of mammals. Dogs are often kept as pets and companions, and they have been bred in a wide variety of forms and sizes for different purposes, such as hunting, herding, guarding, assisting police and military forces, and providing companionship and emotional support.

If you meant to ask about a specific medical condition or term related to dogs, please provide more context so I can give you an accurate answer.

Dinitrophenols (DNP) are a class of chemical compounds that contain two nitro groups (-NO2) attached to a phenol group. Dinitrophenols have been used in the past as industrial dyes, wood preservatives, and pesticides. However, they have also been misused as weight loss supplements due to their ability to increase metabolic rate and cause weight loss.

The use of DNP for weight loss is dangerous and has been linked to several fatalities. DNP works by disrupting the normal functioning of the mitochondria in cells, which are responsible for producing energy. This disruption causes an increase in metabolic rate, leading to a rapid breakdown of fat and carbohydrates, and ultimately weight loss. However, this increased metabolism can also produce excessive heat, leading to hyperthermia, dehydration, and damage to organs such as the heart, liver, and kidneys.

Due to their potential for serious harm, DNP-containing products are banned in many countries, including the United States. Medical professionals should be aware of the dangers associated with DNP use and advise patients accordingly.

Glomerulonephritis is a medical condition that involves inflammation of the glomeruli, which are the tiny blood vessel clusters in the kidneys that filter waste and excess fluids from the blood. This inflammation can impair the kidney's ability to filter blood properly, leading to symptoms such as proteinuria (protein in the urine), hematuria (blood in the urine), edema (swelling), hypertension (high blood pressure), and eventually kidney failure.

Glomerulonephritis can be acute or chronic, and it may occur as a primary kidney disease or secondary to other medical conditions such as infections, autoimmune disorders, or vasculitis. The diagnosis of glomerulonephritis typically involves a combination of medical history, physical examination, urinalysis, blood tests, and imaging studies, with confirmation often requiring a kidney biopsy. Treatment depends on the underlying cause and severity of the disease but may include medications to suppress inflammation, control blood pressure, and manage symptoms.

Liver diseases refer to a wide range of conditions that affect the normal functioning of the liver. The liver is a vital organ responsible for various critical functions such as detoxification, protein synthesis, and production of biochemicals necessary for digestion.

Liver diseases can be categorized into acute and chronic forms. Acute liver disease comes on rapidly and can be caused by factors like viral infections (hepatitis A, B, C, D, E), drug-induced liver injury, or exposure to toxic substances. Chronic liver disease develops slowly over time, often due to long-term exposure to harmful agents or inherent disorders of the liver.

Common examples of liver diseases include hepatitis, cirrhosis (scarring of the liver tissue), fatty liver disease, alcoholic liver disease, autoimmune liver diseases, genetic/hereditary liver disorders (like Wilson's disease and hemochromatosis), and liver cancers. Symptoms may vary widely depending on the type and stage of the disease but could include jaundice, abdominal pain, fatigue, loss of appetite, nausea, and weight loss.

Early diagnosis and treatment are essential to prevent progression and potential complications associated with liver diseases.

Serum albumin is widely distributed in mammals. The human version is human serum albumin. Bovine serum albumin, or BSA, is ... Serum albumin, often referred to simply as blood albumin, is an albumin (a type of globular protein) found in vertebrate blood ... Human serum albumin is encoded by the ALB gene. Other mammalian forms, such as bovine serum albumin, are chemically similar. ... Blood plasma fractionation Bovine serum albumin Chromatography in blood processing Human serum albumin Lactalbumin Ovalbumin ...
A serum albumin test measures the amount of this protein in the clear liquid portion of the blood. ... A serum albumin test measures the amount of this protein in the clear liquid portion of the blood. ... Albumin is a protein made by the liver. ... Albumin is a protein made by the liver. ... Albumin is a protein made by the liver. A serum albumin test measures the amount of this protein in the clear liquid portion of ...
The serum ascites albumin gradient (SAAG) is a formula used to assist in determining the etiology of ascites. Also see ... encoded search term (Serum Ascites Albumin Gradient (SAAG) Interpretation) and Serum Ascites Albumin Gradient (SAAG) ... Serum Ascites Albumin Gradient (SAAG) = [Albumin]serum - [Albumin]ascites. Oxford Medical Education. Available at https:// ... SAAG = serum albumin - ascites albumin. A high gradient (SAAG ,1.1 g/dL) indicates portal hypertension and suggests a ...
Human serum albumin complexed with myristate and AZT ... Serum albumin. A. 585. Homo sapiens. Mutation(s): 0 Gene Names ... Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. Yang, F.,& ... A new drug binding subsite on human serum albumin and drug-drug interaction studied by X-ray crystallography. Zhu, L., Yang, F. ... The drug interaction with human serum albumin (HSA) has been an important component in understanding its mechanism of action, ...
Bovine Serum Albumin Sulfhydryl Modified pack of 10 g; find Sigma-Aldrich-81024N MSDS, related peer-reviewed papers, technical ...
The panel includes tests for total serum bilirubin, albumin, direct bilirubin, and glucose-6-phosphate dehydrogenase (G6PD) on ... Baebies Announces Assays for FINDER Launch Panel: G6PD, Total Serum Bilirubin, Albumin and Direct Bilirubin. ...
Bovine Serum Albumin (negative control). Electron Microscopy NOTE: Empty cells in the product table below denote items that are ...
Although PPL is present in the bloodstream, no information is found on the interaction between PPL and rat serum albumin (RSA ... Biophysical insight into furosemide binding to human serum albumin: a study to unveil its impaired albumin binding in uremia. J ... Investigation of the interaction between flavonoids and human serum albumin. J. Mol. Struct. 703, 37-45 (2004). ... The molar ratios employed for rat serum albumin and PPL were 1:0 and 1:8, with buffer spectrum subtracted. The ellipticity θ ...
The presence of other potentially life‐threatening conditions should be sought, as reduced serum albumin concentration is a ... Serum albumin concentration normalized with antibiotic therapy despite minimal restoration of body weight. ... The Paradox of Normal Serum Albumin in Anorexia Nervosa: A Case Report. International Journal of Eating Disorders 37(3):278-280 ...
... World J Hepatol 2017; 9(22): 959-966 [ ... Importantly, the unique finding from our study is that low serum albumin level is an independent predictive factor for ... Low serum albumin predicts early mortality in patients with severe hypoxic hepatitis ... with a five-fold increase in risk of death in patients with serum albumin less than 28 g/L. ...
... were enrolled to evaluate the prognostic value of serum albumin (ALB), serum lactate (SLA), and lactate dehydrogenase (LDH) in ... and serum ALB on the patients with mCRC.,i, Results,/i,. Compared with the non-mCRC group, the patients with mCRC had an ... were enrolled to evaluate the prognostic value of serum albumin (ALB), serum lactate (SLA), and lactate dehydrogenase (LDH) in ... Serum albumin is closely correlated with the degree of malnutrition and is a regularly used marker of nutrition status [8]. An ...
The effect of solute concentration on morphology was discussed and the interaction of particles with bovine serum albumin ... "Effect of Langmuir Monolayer of Bovine Serum Albumin Protein on the Morphology of Calcium Carbonate" written by Zhonghui Xue, ...
Pre-albumin: extraction from serum by Remazol Yellow GGL-Sepharose SUE COPPING; SUE COPPING ... SUE COPPING, PETER G. H. BYFIELD; Pre-albumin: extraction from serum by Remazol Yellow GGL-Sepharose. Biochem Soc Trans 1 April ...
Shop MilliporeSigma SIGMA Albumin from bovine serum, lyophilized powder, =96% (agarose gel electrophoresis) at Thomas ... SIGMA Albumin from bovine serum, lyophilized powder, =96% (agarose gel electrophoresis). * PRODUCT AVAILABILITY: Did you know ... SIGMA Albumin from bovine serum, lyophilized powder, =96% (agarose gel electrophoresis), 10 g. ... SIGMA Albumin from bovine serum, lyophilized powder, =96% (agarose gel electrophoresis), 50 g. ...
Human Serum Albumin is available in bulk quantities for in vitro diagnostic manufacturing and research uses - Inquire for ... Serum albumin is the most abundant blood plasma protein and is produced in the liver and forms a large proportion of all plasma ... Albumin is readily coagulated with heat.. Application: Used to solublize lipids and albumin can be used as a blocking agent in ... The human version is human serum albumin, and it normally constitutes about 60% of human plasma protein. ...
... on glycosylated serum albumin, a model protein in diabetic patients, its secondary structure and chemical stability using ... Interaction of Gold Nanoparticle with Glycated Human Serum Albumin: Impact of Morphology and Different Surface ... on glycosylated serum albumin, a model protein in diabetic patients, its secondary structure and chemical stability using ...
Diazymes Glycated Serum Protein (Glycated Albumin) enzymatic assay is a 2-part liquid stable reagent that can be used with ... "Diazymes new Glycated Serum Protein (Glycated Albumin) enzymatic assay provides additional diagnostic value to clinical ... Diazyme Receives 510(k) FDA Approval for Enzymatic Glycated Serum Protein (Glycated Albumin) Assay Kit. FOR IMMEDIATE RELEASE ... clearance to market its Enzymatic Glycated Serum Protein (GSP, Glycated Albumin) Assay Kit. ...
About Serum Albumin:. Human serum albumin (HSA) and bovine serum albumin (BSA) are proteins that are produced by the liver and ... In addition, recombinant serum albumin is more homogeneous than plasma-derived serum albumin and lacks immunogenicity and ... and virus-free and is structurally equivalent to plasma-derived serum albumin. Recombinant serum albumin provides high-quality ... Increasingly, recombinant serum albumin is being used as an alternative to plasma-derived albumin in human therapeutics, cell ...
C(H)-C6H4OH-o, o-phen = 1,10-phenanthroline, and OAc = CH3COO−) with human serum albumin (HSA) was studied using fluorescence ... Protein binding studies with human serum albumin, molecular docking and in vitro cytotoxicity studies using HeLa cervical ... Protein binding studies with human serum albumin, molecular docking and in vitro cytotoxicity studies using HeLa cervical ...
Evaluation of its serum-albumin interaction with molecular modeling studies. Publication Type : Journal Article ... Evaluation of its serum-albumin interaction with molecular modeling studies", Journal of Molecular Liquids, vol. 260, pp. 186- ... human serum albumin (HSA) interaction studies by multi-spectroscopic techniques (circular dichroism, steady state, time- ... In addition, MTF1 can cause weak perturbations on the secondary structure of the albumin, while MTF2 and MTF3 cause moderate ...
The Introduction of Bromocresol Purple for the Determination of Serum Albumin on SMAC and ACA, and the Standardization ...
The Binding Sites on Human Serum Albumin for Some Nonsteroidal Antiinflammatory Drugs. ANITA KOBER and INGVAR SJÖHOLM ... The Binding Sites on Human Serum Albumin for Some Nonsteroidal Antiinflammatory Drugs. ANITA KOBER and INGVAR SJÖHOLM ... The Binding Sites on Human Serum Albumin for Some Nonsteroidal Antiinflammatory Drugs. ANITA KOBER and INGVAR SJÖHOLM ... The four antiinflammatory drugs azapropazone, flurbiprofen, ibuprofen, and naproxen all bind very strongly to serum albumin ...
Exbumin is the only recombinant human serum albumin excipient available to improve viral stability for vaccines & gene ... Why Select Exbumin® Over Yeast- and Plasma-Derived Albumin?. EXBUMIN® (Plant-derived). Yeast-derived. ALBUMIN. Plasma-derived. ... Exbumin® is a recombinant human serum albumin that is manufactured using good manufacturing practices at an ISO9001:2015 ... High-Quality Recombinant Human Serum Albumin (rHSA), Exbumin™, for Improved Cell Wash Buffer Preparation ...
Serum albumin level and physical disability as predictors of mortality in older persons. JAMA. 1994; 272(13):1036-1042. PubMed ... We sought to validate the independent prognostic value of pre-conditioning serum CRP, ferritin, and albumin in a large, ... The prognostic value of serum C-reactive protein, ferritin, and albumin prior to allogeneic transplantation for acute myeloid ... We sought to confirm the prognostic importance of simple clinically available biomarkers of C-reactive protein, serum albumin, ...
bovine serum albumin. 3D. three-dimensional. HEK. human embryonic kidney. HLM. human liver microsomes. HPLC. high-performance ... Bovine Serum Albumin Decreases Km Values of Human UDP-Glucuronosyltransferases 1A9 and 2B7 and Increases Vmax Values of UGT1A9 ... The presence of bovine serum albumin (BSA) during in vitro assays was recently reported to lower the Km values of both these ... Bovine Serum Albumin Decreases Km Values of Human UDP-Glucuronosyltransferases 1A9 and 2B7 and Increases Vmax Values of UGT1A9 ...
Human Serum, Fraction V CAS 70024-90-7 - Find MSDS or SDS, a COA, data sheets and more information. ... Albumin, Human Serum, Fraction V MSDS (material safety data sheet) or SDS, CoA and CoQ, dossiers, brochures and other available ... Prepared from serum that has been shown by certified tests to be negative for HBsAg and for antibodies to HIV and HCV.. ... Albumin, Human Serum, Fraction V. 12668 Sigma-AldrichAlbumin, Human Serum, Fraction V. ...
Tag: bovine serum albumin. Aav2 / bcl2l11 / Blog / Bovine / Canine / ChiP / coli recombinant / colorimetric / pla2 antibody / ... bovine collagen peptides bovine colostrum bovine definition bovine elite bovine gelatin bovine pinkeye bovine serum albumin ... bovine collagen peptides bovine colostrum bovine definition bovine elite bovine gelatin bovine pinkeye bovine serum albumin ...
Bovine Serum, Fraction V, Low Heavy Metals CAS 9048-46-8 - Find MSDS or SDS, a COA, data sheets and more information. ... Albumin, Bovine Serum, Fraction V, Low Heavy Metals Certificates of Analysis. Title. Lot Number. ... or nuclease when determining the purity of reagent grade albumins.. ... Albumin, Bovine Serum, Fraction V, Low Heavy Metals. 12659 Sigma-AldrichAlbumin, Bovine Serum, Fraction V, Low Heavy Metals. ...
Few studies are available on the non-linear association between serum albumin (S-Alb) level and prognosis in maintenance ... serum iPTH was 211(115.1, 369.2)pg/mL, serum TG was 1.14(0.88, 1.56) mmol/L, serum CH was 4.28(3.34,4.98) mmol/L, serum LDL was ... relationships between serum albumin level and mortality or hospitalization, negative linear relationship between serum albumin ... Inflammation and reduced albumin synthesis associated with stable decline in serum albumin in hemodialysis patients. Kidney ...
  • Considering the lipophilic characteristics of PPL, its transport through plasma must be assisted by carrier proteins, such as albumin. (nature.com)
  • Human serum albumin (HSA) and bovine serum albumin (BSA) are proteins that are produced by the liver and extracted from blood plasma. (itbusinessnet.com)
  • Albumin, prealbumin, and transferrin are regarded as "negative" acute phase reactants (ie, these proteins decrease with acute inflammatory/infectious processes). (unitedlabservice.com)
  • Albumin?s are water soluble proteins which are found in both plant & animal tissues. (entrepreneurindia.co)
  • Albumin comprises >50% of plasma proteins in plasma, CSF and urine, and therefore is a key contributor 2. (web.app)
  • Albumin is responsible for much of the colloidal osmotic pressure of the blood, and thus is a very important factor in regulating the exchange of water between the plasma and the interstitial Human serum albumin (HSA) is the most abundant protein in human blood, constituting approximately half of the total plasma proteins. (web.app)
  • Human serum albumin (HSA) is the most abundant protein in human blood, constituting approximately half of the total plasma proteins. (albumedix.com)
  • Several albumin binding proteins and receptors have been identified, and it has been demonstrated that these play an important role in the transport of albumin between different compartments, as well as its internalization, degradation, salvage and recycling. (albumedix.com)
  • Albumin is a major circulating protein produced by the liver, accounting for ~60% of total serum proteins and playing important roles in maintaining physiological pH and osmotic pressure. (bmrservice.com)
  • Albumin composes 50%-60% of blood plasma proteins. (medscape.com)
  • Albumin in the urine usually denotes the presence of kidney disease. (wikipedia.org)
  • Occasionally albumin appears in the urine of normal persons following long periods of standing (postural albuminuria). (wikipedia.org)
  • some studies suggest that this prevents the filtration of albumin in the urine. (wikipedia.org)
  • A defect in this property results in nephrotic syndrome leading to albumin loss in the urine. (wikipedia.org)
  • Albumin can also be measured in the urine . (medlineplus.gov)
  • Albumin immunoturbidimetric assay urine serum plasma standard microalbumin 0.4-500mg/L Sentinel Diagnostics. (web.app)
  • The Serum Albumin Assay Kit is designed to measure albumin directly without any pretreatment of samples (serum, plasma, and urine). (bmrservice.com)
  • Albumin - serum, urine, and 24-hour urine. (ufhealth.org)
  • Hepatorenal syndrome is diagnosed when a creatinine clearance rate of less than 40 mL/min is present or when a serum creatinine level of greater than 1.5 mg/dL, a urine volume of less than 500 mL/day, and a urine sodium level of less than 10 mEq/L are present. (medscape.com)
  • Coskun AF, Nagi R, Sadeghi K, Phillips S, Ozcan A. Albumin testing in urine using a smart-phone. (medscape.com)
  • As such, in clinical applications it is necessary to adjust serum total calcium concentration upward or downward if hypoalbuminemia or hyperalbuminemia is present, respectively (measured serum total calcium decreases by 0.8 mg/dL per unit decrease in albumin concentration below 4 g/dL). (wikipedia.org)
  • Serum albumin concentration normalized with antibiotic therapy despite minimal restoration of body weight. (denverhealth.org)
  • The presence of other potentially life ‐ threatening conditions should be sought, as reduced serum albumin concentration is a marker of inflammation in AN. (denverhealth.org)
  • The difference between the actual measured HbA1c concentration and the predicted HbA1c from glycated serum protein test results is called the glycation gap. (ga.com)
  • Bovine Serum Albumin can also be used as a protein concentration standard in Bradford assay for protein quantification. (bio-techne.com)
  • Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. (nebraska.edu)
  • The protocol only requires 5-minute incubation, following which the intensity of a blue color is measured at 610 nm, which is directly proportional to the albumin concentration. (bmrservice.com)
  • Serum phosphorus concentration can be elevated in milk-alkali syndrome due to a low PTH level, although this finding is less prevalent in the present era than it was when ingestion of milk and bicarbonate caused the syndrome. (medscape.com)
  • Its concentration ranges from 7 to 33 per cent in the serum, but levels decrease in liver disease. (bvsalud.org)
  • Other mammalian forms, such as bovine serum albumin, are chemically similar. (wikipedia.org)
  • Bovine serum albumin, or BSA, is commonly used in immunodiagnostic procedures, clinical chemistry reagents, cell culture media, protein chemistry research (including venom toxicity), and molecular biology laboratories (usually to leverage its non-specific protein binding properties). (wikipedia.org)
  • Blood plasma fractionation Bovine serum albumin Chromatography in blood processing Human serum albumin Lactalbumin Ovalbumin Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K (June 1999). (wikipedia.org)
  • Using Dyadic's proprietary filamentous fungal based microbial protein production platforms, the Company has been able to successfully develop stable cell lines to produce animal-free recombinant bovine serum albumin and recombinant human serum albumin at high levels. (itbusinessnet.com)
  • The presence of bovine serum albumin (BSA) during in vitro assays was recently reported to lower the K m values of both these UGTs for their aglycone substrates without affecting the corresponding V max values. (aspetjournals.org)
  • Bovine Serum Albumin (BSA) is a widely used blocking reagent for use in immunohistochemistry (IHC), immunocytochemistry (ICC), ELISAs and Western blotting. (bio-techne.com)
  • Bovine serum albumin is separated by dialysis. (entrepreneurindia.co)
  • آلبومین سرم گاوی (Bovine Serum Albumin) پروتئینی است که از سرم گاوی به دست می آید. (parstous.com)
  • Bovine Serum Albumin (BSA) is supplied with some restriction enzymes to prevent adhesion of the enzyme to reaction tubes and pipette surfaces. (seraglob.com)
  • Developing Biologics Tablets: The Effects of Compression on the Structure and Stability of Bovine Serum Albumin and Lysozyme. (uchicago.edu)
  • Heat Shocked Bovine Serum Albumin powdered uses a process of heat and pH adjustments to purify the product. (equitech-bio.com)
  • Bovine Serum Laboratories manufactures the % bovine serum albumin thermo fisher reagents distributed by Genprice. (cd1234567890.com)
  • The % Bovine Serum Albumin Thermo Fisher reagent is RUO (Research Use Only) to test human serum or cell culture lab samples. (cd1234567890.com)
  • The panel includes tests for total serum bilirubin, albumin, direct bilirubin, and glucose-6-phosphate dehydrogenase (G6PD) on a single cartridge, making it the first comprehensive, rapid and near-patient testing solution for hyperbilirubinemia. (newswise.com)
  • Decreases in serum bilirubin and albumin levels are associated with poorer prognoses in some types of cancer. (oncotarget.com)
  • Here, we examined the predictive value of serum bilirubin and albumin levels in 778 gastric cancer patients from a single hospital in China who were divided among prospective training and retrospective validation cohorts. (oncotarget.com)
  • X-tile software was used to identify optimal cutoff values for separating training cohort patients into higher and lower overall survival (OS) groups, based on total bilirubin (TBIL) and albumin levels. (oncotarget.com)
  • Albumin binds water, cations (such as Ca2+, Na+ and K+), fatty acids, hormones, bilirubin, thyroxine (T4) and pharmaceuticals (including barbiturates): its main function is to regulate the oncotic pressure of blood. (web.app)
  • Normally, bilirubin bound to serum albumin stays in the intravascular space. (msdmanuals.com)
  • The requirement of high dosage of serum albumin in clinical applications is expected to continue to drive demand for economical large-scale production of animal-free recombinant serum albumin which provides us the opportunity to leverage our microbial expression platforms to potentially develop and commercialize multiple end-market serum albumin products in both pharmaceutical and non-pharmaceutical applications. (itbusinessnet.com)
  • Recombinant serum albumin is purified, bacteria-free, animal component-free, and virus-free and is structurally equivalent to plasma-derived serum albumin. (itbusinessnet.com)
  • Recombinant serum albumin provides high-quality consistency reducing time and offering high-grade performance for applications where protein contaminants are undesirable. (itbusinessnet.com)
  • In addition, recombinant serum albumin is more homogeneous than plasma-derived serum albumin and lacks immunogenicity and toxicity while offering a distinct and uniform medium. (itbusinessnet.com)
  • Increasingly, recombinant serum albumin is being used as an alternative to plasma-derived albumin in human therapeutics, cell culture media, diagnostic test kits, and research & development. (itbusinessnet.com)
  • The primary end users of recombinant serum albumin are biotech and pharmaceutical companies, especially those in vaccine development, hospitals and medical clinics, and research and development organizations. (itbusinessnet.com)
  • RCSB Protein Data Bank : Molecule of the Month - Serum Albumin Albumin binding prediction Overview of all the structural information available in the PDB for UniProt: P02768 (Human Serum albumin) at the PDBe-KB. (wikipedia.org)
  • Ibuprofen, flurbiprofen, and naproxen are primarily bound to the diazepam site on the albumin molecule as shown in interaction studies with albumin immobilized in microparticles. (aspetjournals.org)
  • With more than 30 years of experience working with albumin and its biology, we can safely say that we have only just begun to unlock the vast potential of this unique molecule and its exceptional biological relevance. (albumedix.com)
  • 69 patients with nonmetastatic colorectal cancer (non-mCRC) and 57 with metastatic CRC (mCRC) were enrolled to evaluate the prognostic value of serum albumin (ALB), serum lactate (SLA), and lactate dehydrogenase (LDH) in patients with metastatic CRC. (hindawi.com)
  • Application: Used to solublize lipids and albumin can be used as a blocking agent in Western blots and ELISA applications. (leebio.com)
  • C-reactive protein and ferritin were centrally quantified by ELISA from cryopreserved plasma whereas each center provided pre-transplant albumin. (haematologica.org)
  • Serum betatrophin levels of 109 T2DM patients and 32 healthy subjects were determined by enzyme-linked immunosorbent assay (ELISA). (biomedcentral.com)
  • MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. (nebraska.edu)
  • Determination of the toluene diisocyanate binding sites on human serum albumin by tandem mass spectrometry. (cdc.gov)
  • To better understand the chemical species produced when diisocyanates react with protein, tandem mass spectrometry was employed to unambiguously identify the binding sites of the industrially important isomers, 2,4- and 2,6-toluene diisocyanate on human serum albumin at varying diisocyanate:protein ratios. (cdc.gov)
  • In the absence of I.V. fluid therapy and in patients without liver or renal disease, low albumin may be regarded as an indication of inadequate body protein reserves. (unitedlabservice.com)
  • Although dysregulated lipid metabolism results in diabetic nephropathy (DN) development in patients with type 2 diabetes mellitus (T2DM), it is not understood whether betatrophin is associated with urinary albumin excretion and renal function. (biomedcentral.com)
  • The combination of severe renal impairment and a high serum PTH level suggests secondary or tertiary hyperparathyroidism. (medscape.com)
  • Renal function should be monitored through daily measurements of serum creatinine. (janusinfo.se)
  • The general structure of albumin is characterized by several long α helices allowing it to maintain a relatively static shape, which is essential for regulating blood pressure. (wikipedia.org)
  • The structure of albumin gives it excellent stability, making it resilient to environmental stress both outside and inside the body. (albumedix.com)
  • Secreted protein acidic and rich in cysteine (SPARC) induces lipotoxicity in neuroblastoma by regulating transport of albumin complexed with fatty acids. (uchicago.edu)
  • Several methods exist for determining albumin levels, including dye-binding methods, electrophoresis, and immunochemical methods, as well as dipstick methods for urinary albumin. (medscape.com)
  • Albumin functions primarily as a carrier protein for steroids, fatty acids, and thyroid hormones in the blood and plays a major role in stabilizing extracellular fluid volume by contributing to oncotic pressure (known also as colloid osmotic pressure) of plasma. (wikipedia.org)
  • LP6118-6 Albumin A non-glycosylated protein that is synthesized in the liver parenchymal cells, regulated by colloid osmotic pressure from interstitial fluid surrounding hepatocytes, and catabolized in nearly all organs. (web.app)
  • See Related Products Mar 4, 2019 Serum albumin is synthesized solely by the liver and has several Plasma albumin levels are low in neonates, typically between 28 and 44 Jul 15, 2016 Albumin, the major serum protein, has multiple important physiological functions including maintenance of colloidal osmotic pressure, binding of serum albumin. (web.app)
  • SAN DIEGO, CA--(Marketwire - May 24, 2011) - Diazyme Laboratories announced today that the U.S. Food and Drug Administration (FDA) has granted Diazyme 510(k) clearance to market its Enzymatic Glycated Serum Protein (GSP, Glycated Albumin) Assay Kit. (ga.com)
  • Because it is the main protein in human blood, decreases in albumin due to decreased synthesis or losses result in impaired regulation of intravascular oncotic pressure and manifests as edema. (medscape.com)
  • In this study, the effects of gold nanoparticle morphology (spheres and rods) and surface functionalization (PEG and GSH) on glycosylated serum albumin, a model protein in diabetic patients, its secondary structure and chemical stability using circular dimorphism technique were investigated.PEG-AuNPs exhibit a larger hydrodynamic radius than GSH-AuNPs due to their large hydrophilic tails. (magiran.com)
  • Recent studies have shown that blood HbA1c levels alone may not accurately reflect serum glucose concentrations in all diabetic patients. (ga.com)
  • Insulin stimulates albumin gene expression and albumin secretion from hepatocyte in both healthy subjects and diabetic patients. (biomedcentral.com)
  • In multivariate analysis, transplant-related mortality was associated with the pre-specified thresholds of C-reactive protein more than 10 mg/L ( P =0.008) and albumin less than 3.5 g/dL ( P =0.01) but not ferritin more than 2500 ng/mL. (haematologica.org)
  • Only low albumin independently influenced overall mortality. (haematologica.org)
  • Optimal thresholds affecting transplant-related mortality were defined as: C-reactive protein more than 3.67 mg/L, log(ferritin), and albumin less than 3.4 g/dL. (haematologica.org)
  • In maintenance hemodialysis patients, there were "U-shaped" relationships between serum albumin level and mortality or hospitalization, negative linear relationship between serum albumin level and hospitalization for infection. (researchsquare.com)
  • The combination of increased age and low albumin level was most predictive of infection and mortality. (wustl.edu)
  • Since serum albumin is a reliable prognostic indicator for morbidity and mortality, an albumin assay is routinely included in the panels of tests known as Comprehensive Metabolic Panel (CMP) . (bmrservice.com)
  • The serum ascites albumin gradient (SAAG) is a formula used to assist in determining the etiology of ascites . (medscape.com)
  • Also see Medscape's Ascites Albumin Gradient Calculator . (medscape.com)
  • Lee Biosolutions supplies and produces HUMAN SERUM ALBUMIN for medical research and in vitro diagnostic manufacturing. (leebio.com)
  • Serum albumin from cows, commonly used in in vitro biological studies. (uchicago.edu)
  • Albumin in plasma and serum is measured in routine practice exclusively by dye-binding methods, usually with bromocresol green or bromocresol purple. (web.app)
  • Serum albumin is produced by the liver, occurs dissolved in blood plasma and is the most abundant blood protein in mammals. (wikipedia.org)
  • Albumin is synthesized in the liver as preproalbumin which has an N-terminal peptide that is removed before the nascent protein is released from the rough endoplasmic reticulum. (wikipedia.org)
  • Albumin is a protein made by the liver. (medlineplus.gov)
  • Serum albumin is the most abundant blood plasma protein and is produced in the liver and forms a large proportion of all plasma protein. (leebio.com)
  • The main serum protein of the blood in humans and other vertebrates, produced in the liver and active in the maintenance of blood osmotic May 8, 2017 Human serum albumin (HSA) is the most abundant plasma protein synthesized exclusively in the liver. (web.app)
  • Serum calcium levels must be interpreted with regard to serum albumin levels, although use of the formula for correction of calcium for hypoalbuminemia is validated only in cirrhosis of the liver. (medscape.com)
  • Albumin is a blood plasma protein synthesized in the liver. (medscape.com)
  • The albumin test helps to determine if the patient has liver or kidney disease or if the body is not absorbing enough protein. (medscape.com)
  • Cone Bioproducts' Human Serum Albumin Powder is obtained via Cohn fractionation of Human plasma. (conebio.com)
  • Albumin is a globular, water-soluble, un-glycosylated serum protein of approximate molecular weight of 65,000 Daltons. (wikipedia.org)
  • Nephrotic syndrome patients are sometimes given albumin to replace the lost albumin. (wikipedia.org)
  • Albumin levels ≤2.0-2.5 g/dL may be the cause of edema (eg, nephrotic syndrome, protein-losing enteropathies). (unitedlabservice.com)
  • The T test, Chi square test, Kaplan-Meier survival analysis model, and Multivariate Cox proportional hazards regression model were applied to assess the prognostic significance of SLA, LDH, and serum ALB on the patients with mCRC. (hindawi.com)
  • We sought to confirm the prognostic importance of simple clinically available biomarkers of C-reactive protein, serum albumin, and ferritin prior to allogeneic hematopoietic cell transplantation. (haematologica.org)
  • Three fluorinated metformin derivatives (MTF1, MTF2 and MTF3) were synthesized and investigated for their human bloodstream - human serum albumin (HSA) interaction studies by multi-spectroscopic techniques (circular dichroism, steady state, time-resolved and synchronous fluorescence), combined with molecular docking and quantum chemical calculation. (amrita.edu)
  • Proteína tetramérica, de peso molecular comprendido entre 50.000 y 70.000, que consta de 4 cadenas iguales y que migra en la electroforesis en 3 fracciones más móviles que la albúmina sérica. (bvsalud.org)
  • A tetrameric protein, molecular weight between 50,000 and 70,000, consisting of 4 equal chains, and migrating on electrophoresis in 3 fractions more mobile than serum albumin. (bvsalud.org)
  • As an anionic protein, albumin binds readily to calcium in blood serum and contributes greatly to plasma calcium levels. (wikipedia.org)
  • After adjusting for tumor grade and TNM stage, TBIL and albumin levels were still clearly associated with OS. (oncotarget.com)
  • A nomogram based on TBIL and albumin levels was more accurate than the TNM staging system for predicting prognosis in both cohorts. (oncotarget.com)
  • These results suggest that serum TBIL and albumin levels are independent predictors of OS in gastric cancer patients, and that an index that combines TBIL and albumin levels with the TNM staging system might have more predictive value than any of these measures alone. (oncotarget.com)
  • Serum calcium levels can range from a mild elevation to a severe, life-threatening elevation of higher than 18 mg/dL. (medscape.com)
  • Hyperthyroidism can cause elevated serum calcium levels due to high bone turnover. (medscape.com)
  • Adrenal failure also can be associated with high serum calcium levels, although the mechanism has not been fully explained. (medscape.com)
  • If serum PTH is measured after treatment has started, the levels will be unpredictable and the results will be confusing. (medscape.com)
  • About half (54.3%) of the patients had elevated alanine aminotransfe- rase levels and detectable serum HBV DNA. (who.int)
  • The human version is human serum albumin, and it normally constitutes about 60% of human plasma protein. (leebio.com)
  • Today, serum albumin can be manufactured without blood plasma through recombinant protein production technology. (itbusinessnet.com)
  • Why Select Exbumin ® Over Yeast- and Plasma-Derived Albumin? (invitria.com)
  • Separate serum or plasma from cells within 45 minutes of collection. (unitedlabservice.com)
  • Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25°C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31 P NMR, and mass spectrometry. (nebraska.edu)
  • Draw blood in a plain, red-top tube(s) or a serum gel tube(s). 2018-03-05 2017-03-15 1751-7 Albumin [Mass/volume] in Serum or Plasma Active Part Description. (web.app)
  • Koncentrationen af albumin i plasma måles i gram per liter (g/l). (web.app)
  • Albumin udgør omkring 60 % af proteinindholdet i plasma Serum albumin is the largest protein component of human blood (50-60%), and is an important factor in the regulation of plasma volume and tissue fluid balance. (web.app)
  • Pooled-source human serum albumin is used extensively in the USA for plasma volume expansion and for maintaining cardiac output in the treatment of hypovolemic shock ( Bowman et al. (web.app)
  • Discover the range of Biowest Human Origin Products: Human Serum HIV tested, Human Serum AB male HIV tested, pooled Human Plasma, Human Serum Albumin. (web.app)
  • Human Serum, Plasma & Albumin. (web.app)
  • Hög aktivitet i Plasma/Serum. (web.app)
  • Albumin is responsible for maintaining oncotic pressure, plasma pH and distribution of a variety of molecules, making it a very well-studied protein. (albumedix.com)
  • HSA prepared from plasma present different genetic variants and exhibit varying degrees of N-terminal truncation, glycation and oxidation due to the extracted albumins extended residence time in the body. (albumedix.com)
  • Cone Bioproducts is a third generation family business developing and delivering exceptional human plasma and serum products to the IVD market. (conebio.com)
  • Hydrolytic Metabolism of Withangulatin A Mediated by Serum Albumin Instead of Common Esterases in Plasma. (bvsalud.org)
  • Serum albumin rather than common esterases primarily contributed to the hydrolytic metabolism of WA in plasma . (bvsalud.org)
  • The chief functions of albumin are to transport a wide variety of ligands, to maintain plasma oncotic pressure, and to serve as a source for endogenous amino acids. (medscape.com)
  • We have imaged GaP nanowires (NWs) incubated with human laminin, serum albumin (HSA), and blood plasma using both cryo-transmission electron microscopy and synchrotron based X-ray photoemission electron microscopy. (lu.se)
  • Albumin binds these dyes with high affinity and the respective complexes absorb light at 628 nm and 600 nm. (web.app)
  • without albumin, the high pressure in the blood vessels would force more fluids out into the tissues. (wikipedia.org)
  • We are developing bovine and human animal-free serum albumin, both of which were successfully expressed efficiently with high purity. (itbusinessnet.com)
  • Unlike HSA, recombinant human albumin (rAlb) products have a remarkably high and consistent quality profile. (albumedix.com)
  • Driven by the desire for high quality, human- and animal-component free albumin products, structurally and functionally equivalent recombinant versions to HSA have been developed over the past decades. (albumedix.com)
  • An abnormally low or high albumin level may reflect a temporary condition that will resolve itself or may suggest an acute or chronic condition that requires medical intervention. (bmrservice.com)
  • Given its intrinsic biochemical and biophysical properties, albumin has been successfully employed for many years in the development and manufacturing of biopharmaceutical drugs. (albumedix.com)
  • Background: Few studies are available on the non-linear association between serum albumin (S-Alb) level and prognosis in maintenance hemodialysis (MHD) patients. (researchsquare.com)
  • since then, the S-Alb target of more than 4.0 g/dl is still being used today for MHD patients, few studies have discussed whether the upper limit should be set for S-Alb in MHD patients, few data are available on the non-linear association between serum albumin (S-Alb) level and prognosis in MHD patients. (researchsquare.com)
  • 1. Anderson CF, Wochos DN, "The Utility of Serum Albumin Values in the Nutritional Assessment of Hospitalized Patients," Mayo Clin Proc , 1982, 57(3):181-4. (unitedlabservice.com)
  • There is a paucity of data evaluating serum albumin on admission as a predictor of outcome in adult trauma patients. (wustl.edu)
  • An elevated arterial or free venous serum ammonia level is the classic laboratory abnormality reported in patients with hepatic encephalopathy. (medscape.com)
  • Because smaller animals (for example rats) function at a lower blood pressure, they need less oncotic pressure to balance this[citation needed], and thus need less albumin to maintain proper fluid distribution. (wikipedia.org)
  • Factors driving market growth include increase in the adoption of albumin products, growth in awareness about recombinant albumin products, and increasing use of albumin in other applications such as an excipient and drug formulating agent. (itbusinessnet.com)
  • Initial independent analytical testing of the Company's recombinant bovine albumin demonstrated it is structurally equivalent to commercial animal derived product. (itbusinessnet.com)
  • An elevated serum calcium level should initiate a workup that includes the possibility of milk-alkali syndrome. (medscape.com)
  • The product of serum calcium and phosphorus is an important predictor of the risk of metastatic calcification. (medscape.com)
  • The four antiinflammatory drugs azapropazone, flurbiprofen, ibuprofen, and naproxen all bind very strongly to serum albumin with association constants, K a , of 5.0 x 10 5 , 5.0 x 10 6 , 1.3 x 10 6 , and 1.8 x 10 6 M -1 , respectively. (aspetjournals.org)
  • In the pharmaceutical market, albumin is commonly used to increase blood volume to treat various conditions such as surgical blood loss, hemorrhage, or trauma. (itbusinessnet.com)
  • The 2,4- isomer results in approximately two-fold higher conjugation product ion abundances than does the 2,6- isomer, suggesting the 2,4- isomer has a higher reactivity towards albumin. (cdc.gov)
  • Binding sites observed at the lowest conjugation ratios are conserved at higher binding ratios suggesting a subset of five to ten preferential binding sites on albumin. (cdc.gov)
  • Serum albumin is closely correlated with the degree of malnutrition and is a regularly used marker of nutrition status [ 8 ]. (hindawi.com)
  • Studies have demonstrated that the glycation gap information provided by measuring HbA1c and glycated albumin together offers improved diagnostic value by more reliably predicting complications of diabetes including coronary artery and kidney disease. (ga.com)

No images available that match "serum albumin"