A sequence-ready BAC clone contig of a 2.2-Mb segment of human chromosome 1q24. (1/680)

Human chromosomal region 1q24 encodes two cloned disease genes and lies within large genetic inclusion intervals for several disease genes that have yet to be identified. We have constructed a single bacterial artificial chromosome (BAC) clone contig that spans over 2 Mb of 1q24 and consists of 78 clones connected by 100 STSs. The average density of mapped STSs is one of the highest described for a multimegabase region of the human genome. The contig was efficiently constructed by generating STSs from clone ends, followed by library walking. Distance information was added by determining the insert sizes of all clones, and expressed sequence tags (ESTs) and genes were incorporated to create a partial transcript map of the region, providing candidate genes for local disease loci. The gene order and content of the region provide insight into ancient duplication events that have occurred on proximal 1q. The stage is now set for further elucidation of this interesting region through large-scale sequencing.  (+info)

Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11. (2/680)

Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  (+info)

GABA- and glutamate-activated channels in green fluorescent protein-tagged gonadotropin-releasing hormone neurons in transgenic mice. (3/680)

Mice were generated expressing green fluorescent protein (GFP) under the control of the gonadotropin-releasing hormone (GnRH) promoter. Green fluorescence was observed in, and restricted to, GnRH-immunopositive neuronal somata in the olfactory bulb, ganglion terminale, septal nuclei, diagonal band of Broca (DBB), preoptic area (POA), and caudal hypothalamus, as well as GnRH neuronal dendrites and axons, including axon terminals in the median eminence and organum vasculosum of the lamina terminalis (OVLT). Whole-cell recordings from GFP-expressing GnRH neurons in the OVLT-POA-DBB region revealed a firing pattern among GFP-expressing GnRH neurons distinct from that of nonfluorescent neurons. Nucleated patches of GFP-expressing GnRH neurons exhibited pronounced responses to fast application of GABA and smaller responses to L-glutamate and AMPA. One-fifth of the nucleated patches responded to NMDA. The GABA-A, AMPA, and NMDA receptor channels on GnRH neurons mediating these responses may play a role in the modulation of GnRH secretory oscillations.  (+info)

Analysis of sequence-tagged-connector strategies for DNA sequencing. (4/680)

The BAC-end sequencing, or sequence-tagged-connector (STC), approach to genome sequencing involves sequencing the ends of BAC inserts to scatter sequence tags (STCs) randomly across the genome. Once any BAC or other large segment of DNA is sequenced to completion by conventional shotgun approaches, these STC tags can be used to identify a minimum tiling path of BAC clones overlapping the nucleation sequence for sequence extension. Here, we explore the properties of STC-sequencing strategies within a mathematical model of a random target with homologous repeats and imperfect sequencing technology to understand the consequences of varying various parameters on the incidence of problem clones and the cost of the sequencing project. Problem clones are defined as clones for which either (A) there is no identifiable overlapping STC to extend the sequence in a particular direction or (B) the identified STC with minimum overlap comes from a nonoverlapping clone, either owing to random false matches or repeat-family homology. Based on the minimum overlap, we estimate the number of clones to be entirely sequenced and, then, using cost estimates, identify the decision rule (the degree of sequence similarity required before a match is declared between an STC and a clone) to minimize overall sequencing cost. A method to optimize the overlap decision rule is highly desirable, because both the total cost and the number of problem clones are shown to be highly sensitive to this choice. For a target of 3 Gb containing approximately 800 Mb of repeats with 85%-90% identity, we expect <10 problem clones with 15 times coverage by 150-kb clones. We derive the optimal redundancy and insert sizes of clone libraries for sequencing genomes of various sizes, from microbial to human. We estimate that establishing the resource of STCs as a means of identifying minimally overlapping clones represents only 1%-3% of the total cost of sequencing the human genome, and, up to a point of diminishing returns, a larger STC resource is associated with a smaller total sequencing cost.  (+info)

An integrated map of chromosome 18 CAG trinucleotide repeat loci. (5/680)

Expansions of trinucleotide CAG repeats have been demonstrated in at least eight neurodegenerative disorders, and suggested to occur in several others, including bipolar disorder and schizophrenia. Chromosome 18 loci have been implicated in bipolar disorder pedigrees by linkage analysis. To address this putative link between chromosome 18 CAG trinucleotide repeats and neuropsychiatric illness, we have screened a chromosome 18 cosmid library (LL18NCO2" AD") and identified 14 novel candidate loci. Characterisation of these loci involved repeat flank sequencing, estimation of polymorphism frequency and mapping using FISH as well as radiation hybrid panels. These mapped trinucleotide loci will be useful in the investigation of chromosome 18 in neurodegenerative or psychiatric conditions, and will serve to integrate physical and radiation hybrid maps of chromosome 18.  (+info)

A contiguous 3-Mb sequence-ready map in the S3-MX region on 21q22.2 based on high- throughput nonisotopic library screenings. (6/680)

Progress in complete genomic sequencing of human chromosome 21 relies on the construction of high-quality bacterial clone maps spanning large chromosomal regions. To achieve this goal, we have applied a strategy based on nonradioactive hybridizations to contig building. A contiguous sequence-ready map was constructed in the Down syndrome congenital heart disease (DS-CHD) region in 21q22.2, as a framework for large-scale genomic sequencing and positional candidate gene approach. Contig assembly was performed essentially by high throughput nonisotopic screenings of genomic libraries, prior to clone validation by (1) restriction digest fingerprinting, (2) STS analysis, (3) Southern hybridizations, and (4) FISH analysis. The contig contains a total of 50 STSs, of which 13 were newly isolated. A minimum tiling path (MTP) was subsequently defined that consists of 20 PACs, 2 BACs, and 5 cosmids covering 3 Mb between D21S3 and MX1. Gene distribution in the region includes 9 known genes (c21-LRP, WRB, SH3BGR, HMG14, PCP4, DSCAM, MX2, MX1, and TMPRSS2) and 14 new additional gene signatures consisting of cDNA selection products and ESTs. Forthcoming genomic sequence information will unravel the structural organization of potential candidate genes involved in specific features of Down syndrome pathogenesis.  (+info)

Angiopoietin-3, a novel member of the angiopoietin family. (7/680)

A cDNA clone encoding angiopoietin-3 protein (Ang3), a novel member of the angiopoietin family, was identified. Ang3 cDNA was cloned from a human aorta cDNA library. Ang3 is a 503 amino acid protein having 45.1% and 44.7% identity with human angiopoietin-1 and human angiopoietin-2, respectively. Ang3 mRNA is expressed in lung and cultured human umbilical vein endothelial cells (HUVECs). Ang3 mRNA expression in HUVECs was slightly decreased by vascular endothelial cell growth factor treatment, suggesting that the regulation of Ang3 mRNA expression is different from that of Ang2.  (+info)

Revealing hidden interval graph structure in STS-content data. (8/680)

MOTIVATION: STS-content data for genomic mapping contain numerous errors and anomalies resulting in cross-links among distant regions of the genome. Identification of contigs within the data is an important and difficult problem. RESULTS: This paper introduces a graph algorithm which creates a simplified view of STS-content data. The shape of the resulting structure graph provides a quality check - coherent data produce a straight line, while anomalous data produce branches and loops. In the latter case, it is sometimes possible to disentangle the various paths into subsets of the data covering contiguous regions of the genome, i.e. contigs. These straight subgraphs can then be analyzed in standard ways to construct a physical map. A theoretical basis for the method is presented along with examples of its application to current STS data from human genome centers. AVAILABILITY: Freely available on request.  (+info)

No FAQ available that match "sequence tagged sites"

No images available that match "sequence tagged sites"