Sebaceous gland neoplasms are uncommon cutaneous tumors that originate from the sebaceous glands, which can be benign (e.g., seborrheic keratosis, syringoma, trichofolliculoma) or malignant (e.g., sebaceous carcinoma, sebaceomatosis, mucoepidermoid carcinoma).
Small, sacculated organs found within the DERMIS. Each gland has a single duct that emerges from a cluster of oval alveoli. Each alveolus consists of a transparent BASEMENT MEMBRANE enclosing epithelial cells. The ducts from most sebaceous glands open into a HAIR FOLLICLE, but some open on the general surface of the SKIN. Sebaceous glands secrete SEBUM.
Tumors or cancer of the SALIVARY GLANDS.
Tumors or cancer of the anal gland.
The oily substance secreted by SEBACEOUS GLANDS. It is composed of KERATIN, fat, and cellular debris.
Perianal glands, also known as hepatoid glands, are sebaceous glands located in the perianal region of many mammals, including humans, that produce and secret lubricating oils for skin protection and cleanliness.
Neoplasms of the sublingual glands.
A benign, slow-growing tumor, most commonly of the salivary gland, occurring as a small, painless, firm nodule, usually of the parotid gland, but also found in any major or accessory salivary gland anywhere in the oral cavity. It is most often seen in women in the fifth decade. Histologically, the tumor presents a variety of cells: cuboidal, columnar, and squamous cells, showing all forms of epithelial growth. (Dorland, 27th ed)
Tumors or cancer of the PAROTID GLAND.
A tumor of both low- and high-grade malignancy. The low-grade grow slowly, appear in any age group, and are readily cured by excision. The high-grade behave aggressively, widely infiltrate the salivary gland and produce lymph node and distant metastases. Mucoepidermoid carcinomas account for about 21% of the malignant tumors of the parotid gland and 10% of the sublingual gland. They are the most common malignant tumor of the parotid. (From DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, p575; Holland et al., Cancer Medicine, 3d ed, p1240)
Diseases of the sebaceous glands such as sebaceous hyperplasia and sebaceous cell carcinoma (SEBACEOUS GLAND NEOPLASMS).
A chronic disorder of the pilosebaceous apparatus associated with an increase in sebum secretion. It is characterized by open comedones (blackheads), closed comedones (whiteheads), and pustular nodules. The cause is unknown, but heredity and age are predisposing factors.
Tumors or cancer of the PALATE, including those of the hard palate, soft palate and UVULA.
A malignant tumor composed of cells showing differentiation toward sebaceous epithelium. The tumor is solitary, firm, somewhat raised, more or less translucent, and covered with normal or slightly verrucose epidermis. It may be yellow or orange. The face and scalp are the commonest sites. The growth can be slow or rapid but metastasis is uncommon. Surgery cures most of the cases. (From Rook et al., Textbook of Dermatology, 4th ed, pp2403-4)
Toxic, possibly carcinogenic, monomer of neoprene, a synthetic rubber; causes damage to skin, lungs, CNS, kidneys, liver, blood cells and fetuses. Synonym: 2-chlorobutadiene.
Carcinoma characterized by bands or cylinders of hyalinized or mucinous stroma separating or surrounded by nests or cords of small epithelial cells. When the cylinders occur within masses of epithelial cells, they give the tissue a perforated, sievelike, or cribriform appearance. Such tumors occur in the mammary glands, the mucous glands of the upper and lower respiratory tract, and the salivary glands. They are malignant but slow-growing, and tend to spread locally via the nerves. (Dorland, 27th ed)
A tube-like invagination of the EPIDERMIS from which the hair shaft develops and into which SEBACEOUS GLANDS open. The hair follicle is lined by a cellular inner and outer root sheath of epidermal origin and is invested with a fibrous sheath derived from the dermis. (Stedman, 26th ed) Follicles of very long hairs extend into the subcutaneous layer of tissue under the SKIN.
A usually benign tumor made up predominantly of myoepithelial cells.
A benign tumor characterized histologically by tall columnar epithelium within a lymphoid tissue stroma. It is usually found in the salivary glands, especially the parotid.
Submandibular Gland Neoplasms are abnormal growths or tumors, which can be benign or malignant, originating from the glandular tissues of the submandibular salivary gland located beneath the mandible (jawbone).
Accessory salivary glands located in the lip, cheek, tongue, floor of mouth, palate and intramaxillary.
Large, branched, specialized sweat glands that empty into the upper portion of a HAIR FOLLICLE instead of directly onto the SKIN.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
Absence of hair from areas where it is normally present.
Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND).
A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body.
Tumors or cancer of the ENDOCRINE GLANDS.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
Sweat gland neoplasms are abnormal growths that can be benign or malignant, originating from the sweat glands (eccrine or apocrine) and found anywhere on the skin surface.
Sweat-producing structures that are embedded in the DERMIS. Each gland consists of a single tube, a coiled body, and a superficial duct.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Neoplasms composed of sebaceous or sweat gland tissue or tissue of other skin appendages. The concept does not refer to neoplasms located in the sebaceous or sweat glands or in the other skin appendages.
Simple sweat glands that secrete sweat directly onto the SKIN.
MAMMARY GLANDS in the non-human MAMMALS.
The sebaceous glands situated on the inner surface of the eyelids between the tarsal plates and CONJUNCTIVA.
Glands of external secretion that release its secretions to the body's cavities, organs, or surface, through a duct.
One of two salivary glands in the neck, located in the space bound by the two bellies of the digastric muscle and the angle of the mandible. It discharges through the submandibular duct. The secretory units are predominantly serous although a few mucous alveoli, some with serous demilunes, occur. (Stedman, 25th ed)
The outer covering of the calvaria. It is composed of several layers: SKIN; subcutaneous connective tissue; the occipitofrontal muscle which includes the tendinous galea aponeurotica; loose connective tissue; and the pericranium (the PERIOSTEUM of the SKULL).
The functions of the skin in the human and animal body. It includes the pigmentation of the skin.
Tumors or cancer of the SKIN.
Tumors of cancer of the EYELIDS.
An increase in the number of cells in a tissue or organ without tumor formation. It differs from HYPERTROPHY, which is an increase in bulk without an increase in the number of cells.
The outer covering of the body composed of the SKIN and the skin appendages, which are the HAIR, the NAILS; and the SEBACEOUS GLANDS and the SWEAT GLANDS and their ducts.
A chronic inflammatory disease of the skin with unknown etiology. It is characterized by moderate ERYTHEMA, dry, moist, or greasy (SEBACEOUS GLAND) scaling and yellow crusted patches on various areas, especially the scalp, that exfoliate as dandruff. Seborrheic dermatitis is common in children and adolescents with HIV INFECTIONS.
The largest of the three pairs of SALIVARY GLANDS. They lie on the sides of the FACE immediately below and in front of the EAR.
'Skin diseases' is a broad term for various conditions affecting the skin, including inflammatory disorders, infections, benign and malignant tumors, congenital abnormalities, and degenerative diseases, which can cause symptoms such as rashes, discoloration, eruptions, lesions, itching, or pain.

High frequency of codon 61 K-ras A-->T transversions in lung and Harderian gland neoplasms of B6C3F1 mice exposed to chloroprene (2-chloro-1,3-butadiene) for 2 years, and comparisons with the structurally related chemicals isoprene and 1,3-butadiene. (1/77)

Chloroprene is the 2-chloro analog of 1,3-butadiene, a potent carcinogen in laboratory animals. Following 2 years of inhalation exposure to 12.8, 32 or 80 p.p.m. chloroprene, increased incidences of lung and Harderian gland (HG) neoplasms were observed in B6C3F1 mice at all exposure concentrations. The present study was designed to characterize genetic alterations in the K- and H-ras proto-oncogenes in chloroprene-induced lung and HG neoplasms. K-ras mutations were detected in 80% of chloroprene-induced lung neoplasms (37/46) compared with only 30% in spontaneous lung neoplasms (25/82). Both K- and H-ras codon 61 A-->T transversions were identified in 100% of HG neoplasms (27/27) compared with a frequency of 56% (15/27) in spontaneous HG neoplasms. The predominant mutation in chloroprene-induced lung and HG neoplasms was an A-->T transversion at K-ras codon 61. This mutation has not been detected in spontaneous lung tumors of B6C3F1 mice and was identified in only 7% of spontaneous HG neoplasms. In lung neoplasms, greater percentages (80 and 71%) of A-->T transversions were observed at the lower exposures (12.8 and 32 p.p.m.), respectively, compared with 18% at the high exposure. In HG neoplasms, the percentage of A-->T transversions was the same at all exposure concentrations. The chloroprene-induced ras mutation spectra was similar to that seen with isoprene, where the predominant base change was an A-->T transversion at K-ras codon 61. This differed from 1,3-butadiene, where K-ras codon 13 G-->C transitions and H-ras codon 61 A-->G transitions were the predominant mutations. The major finding of K-ras A-->T transversions in lung and Harderian gland neoplasms suggests that this mutation may be important for tumor induction by this class of carcinogens.  (+info)

Microsatellite instability in benign skin lesions in hereditary non-polyposis colorectal cancer syndrome. (2/77)

The coexistence of cutaneous and extra-cutaneous malignancies within one family could be explained by shared genetic mechanisms such as common tumor suppressor gene mutations or oncogene activation, as well as mutations in DNA repair genes. Hereditary non-polyposis colorectal cancer syndrome (HNPCC) and its variant Muir-Torre syndrome (MTS) are caused by germline DNA mismatch repair gene mutations. Colonic and endometrial tumors from HNPCC patients exhibit microsatellite instability (MSI), as do sebaceous lesions in MTS. We recruited individuals from cancer prone families to determine if MSI is found in benign and malignant skin lesions and to assess whether MSI in the skin is predictive of genomic instability with susceptibility to tumors characteristic of HNPCC. One hundred and fifteen benign, dysplastic, and malignant skin lesions from 39 cancer prone families were analyzed. Thirteen benign skin lesions from three individuals belonging to two HNPCC pedigrees showed MSI. No mutations in hMSH2 and hMLH1 were found in two of the three individuals with RER + skin lesions. We found MSI in non-sebaceous non-dysplastic skin lesions in HNPCC pedigrees. MSI was not found in skin lesions within other family cancer syndromes. These results have important clinical implications as the detection of MSI in prevalent readily accessible skin lesions could form the basis of noninvasive screening for HNPCC families. It may also be a valuable tool in the search for new mismatch repair genes.  (+info)

Muir-Torre-like syndrome in Fhit-deficient mice. (3/77)

To investigate the role of the Fhit gene in carcinogen induction of neoplasia, we have inactivated one Fhit allele in mouse embryonic stem cells and produced (129/SvJ x C57BL/6J) F(1) mice with a Fhit allele inactivated (+/-). Fhit +/+ and +/- mice were treated intragastrically with nitrosomethylbenzylamine and observed for 10 wk posttreatment. A total of 25% of the +/+ mice developed adenoma or papilloma of the forestomach, whereas 100% of the +/- mice developed multiple tumors that were a mixture of adenomas, squamous papillomas, invasive carcinomas of the forestomach, as well as tumors of sebaceous glands. The visceral and sebaceous tumors, which lacked Fhit protein, were similar to those characteristic of Muir-Torre familial cancer syndrome.  (+info)

Microsatellite instability and expression of hMLH-1 and hMSH-2 in sebaceous gland carcinomas as markers for Muir-Torre syndrome. (4/77)

Sebaceous gland carcinomas (SGCs) are rare malignant skin tumors occurring sporadically or as a phenotypic feature of the Muir-Torre syndrome (MTS). A subset of patients with MTS have a variant of the hereditary nonpolyposis colorectal cancer syndrome caused by mutations in mismatch repair (MMR) genes, which lead to microsatellite instability (MSI). We evaluated the value of MSI and loss of expression of the MMR genes, hMLH-1 and hMSH-2, as a marker to identify and distinguish MTS from sporadic SGC. Using a nationwide pathology report database system, we identified patients with the MTS phenotype. SGCs from 10 MTS patients and the colorectal carcinomas from 3 additional MTS patients were collected. In addition, SGCs from eight patients without a history of visceral neoplasm were collected. MSI was detected in 9 of 13 MTS-associated tumors (69%) versus 0 of 8 sporadic SGCs (P = 0.002). Except for the age of onset of colorectal carcinoma [58 years in the MSI-positive group versus 69.8 years in the MSI-negative group (P = 0.17)], no differences were seen between the MSI-negative and the MSI-positive MTS patients. Loss of expression of hMLH-1 (n = 4) or hMSH-2 (n = 4) was found in MSI-positive patients only. MSI and loss of expression of MMR genes can be used as markers for MTS in patients with SGC. Consequently, MSI and loss of MMR gene expression in a patient presenting with SGC as the initial malignancy have important consequences for the patient and family. There are at least two variants of MTS with different molecular genetic mechanisms because 31% of the patients with the MTS phenotype had no MSI.  (+info)

Sebaceous carcinoma of the eyelids: frequent expression of c-erbB-2 oncoprotein. (5/77)

Ocular sebaceous carcinoma (OSC) is an uncommon malignancy with a potential to recur and metastasize. Some characteristics of sebaceous carcinoma, such as female preponderance, shown in the present series during 11-year period at Korea Cancer Center Hospital, led us to study their hormone receptors and c-erbB-2 expression. c-erbB-2 overexpression was very common (83%) in OSC, and was not associated with pathologic findings or clinical outcome. Interestingly, estrogen and progesterone receptor was detected in 4 and 2 cases, respectively, suggesting a role of hormonal influence on this neoplasm. Immunohistochemical and clinicopathologic features of 18 cases of OSC in Korea are presented.  (+info)

An association between sebaceous carcinoma and microsatellite instability in immunosuppressed organ transplant recipients. (6/77)

Sebaceous carcinomas are rare cutaneous appendageal tumors that may occur sporadically or in association with an internal malignancy in Muir-Torre syndrome. In Muir-Torre syndrome microsatellite instability can often be demonstrated in tumor DNA as a result of an inherited mutation in one of several known mismatch repair genes; however, the role of microsatellite instability in sporadic sebaceous carcinomas has not been previously studied. In this report we describe the clinicopathologic characteristics of a series of unselected sebaceous carcinomas and examine them for the presence of microsatellite instability. Of 10 consecutive tumors identified over a 10 y period, only one was from a patient known to have Muir-Torre syndrome. Of the nine presumed sporadic cases, five were from four renal transplant recipients and four from otherwise healthy individuals. Microsatellite instability was demonstrable in three cases: in the Muir-Torre syndrome-associated tumor and in two tumors from transplant patients. Microsatellite instability was subsequently also found in a sebaceous carcinoma from a further transplant patient prospectively sought from another institution. The presence of microsatellite instability in post-transplant sebaceous carcinomas was associated with loss of expression of the mismatch repair protein hMSH2. In summary, sebaceous gland carcinomas, while characteristic of Muir-Torre syndrome, are commonly found outside this context. Among presumed sporadic cases, our data suggest they may be over-represented in immunosuppressed renal transplant recipients. The presence of microsatellite instability in transplant-associated lesions, together with loss of hMSH2 expression suggests that immunosuppression might unmask a previously silent Muir-Torre syndrome phenotype in some cases. Alternatively, there is experimental evidence to suggest that immunosuppressive drugs, most plausibly azathioprine, could select for the emergence of a mutator phenotype and thus predispose to the development of sebaceous carcinomas. The role of mismatch repair defects in other post-transplant skin malignancies remains to be established.  (+info)

"Second hit" in sebaceous tumors from Muir-Torre patients with germline mutations in MSH2: allele loss is not the preferred mode of inactivation. (7/77)

Muir-Torre syndrome is an autosomal-dominant inherited disorder predisposing to both sebaceous skin tumors and internal neoplasms. In a significant proportion of Muir-Torre syndrome patients skin tumors exhibit microsatellite instability as a hallmark of hereditary nonpolyposis colorectal cancer. Most individuals predisposed to hereditary nonpolyposis colorectal cancer harbor a germline mutation in the DNA mismatch repair genes MSH2 or MLH1. In Muir-Torre syndrome the vast majority of germline mutations have been identified in MSH2. Microsatellite instability in tumor tissue develops after somatic inactivation of the corresponding second mismatch repair allele ("second hit"). So far, the mechanisms of somatic inactivation of the second allele in microsatellite instability positive tumors from patients with known mismatch repair germline mutations are not well understood. We examined whether allele loss (loss of heterozygosity) is a frequent mechanism for inactivation of the second MSH2 allele in a sample of nine microsatellite instability positive skin tumors from eight unrelated Muir-Torre patients with known MSH2 germline mutations. Loss of heterozygosity was determined using microsatellite markers or heteroduplex analysis, respectively. Only one of the nine skin tumors exhibited loss of heterozygosity at the MSH2 locus. Thus, we could show in a sample of sebaceous tumors from patients with genetically proven Muir-Torre syndrome that loss of heterozygosity most probably is not the preferred mode of somatic inactivation of the second MSH2 allele.  (+info)

15-Lipoxygenase-2 expression in benign and neoplastic sebaceous glands and other cutaneous adnexa. (8/77)

15-Lipoxygenase-2 has a limited tissue distribution in epithelial tissues, with mRNA detected in skin, cornea, lung, and prostate. It was originally cloned from human hair rootlets. In this study the distribution of 15-lipoxygenase-2 was characterized in human skin using immunohistochemistry and in situ hybridization. Strong uniform 15-lipoxygenase-2 in situ hybridization (n = 6) and immunostaining (n = 16) were observed in benign cutaneous sebaceous glands, with expression in differentiated secretory cells. Strong 15-lipoxygenase-2 immunostaining was also observed in secretory cells of apocrine and eccrine glands. Variable reduced immunostaining was observed in skin-derived sebaceous neoplasms (n = 8). In the eyelid, Meibomian glands were uniformly negative for 15-lipoxygenase-2 in all cases examined (n = 9), and sebaceous carcinomas apparently derived from Meibomian glands were also negative (n = 12). The mechanisms responsible for differential expression in cutaneous sebaceous vs eyelid Meibomian glands remain to be established. In epidermis, positive immunostaining was observed in the basal cell layer in normal skin, whereas five examined basal cell carcinomas were negative. Thus, the strongest 15-lipoxygenase-2 expression is in the androgen regulated secretory cells of sebaceous, apocrine, and eccrine glands. This compares with the prostate, in which 15-lipoxygenase-2 is expressed in differentiated prostate secretory cells (and reduced in the majority of prostate adenocarcinomas). The product of 15-lipoxygenase-2, 15-hydroxyeicosatetraenoic acid, may be a ligand for the nuclear receptor peroxisome proliferator activated receptor-gamma, which is expressed in sebocytes, and contribute to secretory differentiation in androgen regulated tissues such as prostate and sebaceous glands.  (+info)

Sebaceous gland neoplasms are abnormal growths or tumors that develop in the sebaceous glands, which are small oil-producing glands found in the skin. These glands are responsible for producing sebum, a natural oil that helps keep the skin and hair moisturized. Sebaceous gland neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign sebaceous gland neoplasms include:

* Seborrheic keratosis: These are common, harmless growths that appear as rough, scaly patches on the skin. They can be tan, brown, or black in color and vary in size from small to large.
* Sebaceous adenoma: This is a benign tumor that arises from the sebaceous glands. It typically appears as a small, yellowish bump on the skin.

Malignant sebaceous gland neoplasms include:

* Sebaceous carcinoma: This is a rare but aggressive form of skin cancer that arises from the sebaceous glands. It often appears as a hard, painless nodule on the eyelid or other areas of the face and can spread to other parts of the body if left untreated.
* Basal cell carcinoma: While not exclusively a sebaceous gland neoplasm, basal cell carcinomas can sometimes arise from the sebaceous glands. These are slow-growing but invasive skin cancers that typically appear as pearly or flesh-colored bumps on the skin.

It is important to have any new or changing growths on the skin evaluated by a healthcare professional to determine whether they are benign or malignant and to develop an appropriate treatment plan if necessary.

Sebaceous glands are microscopic, exocrine glands that are found in the dermis of mammalian skin. They are attached to hair follicles and produce an oily substance called sebum, which is composed of triglycerides, wax esters, squalene, and metabolites of fat-producing cells (fatty acids, cholesterol). Sebum is released through a duct onto the surface of the skin, where it forms a protective barrier that helps to prevent water loss, keeps the skin and hair moisturized, and has antibacterial properties.

Sebaceous glands are distributed throughout the body, but they are most numerous on the face, scalp, and upper trunk. They can also be found in other areas of the body such as the eyelids (where they are known as meibomian glands), the external ear canal, and the genital area.

Abnormalities in sebaceous gland function can lead to various skin conditions, including acne, seborrheic dermatitis, and certain types of skin cancer.

Salivary gland neoplasms refer to abnormal growths or tumors that develop in the salivary glands. These glands are responsible for producing saliva, which helps in digestion, lubrication of food and maintaining oral health. Salivary gland neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign neoplasms are slow-growing and typically do not spread to other parts of the body. They may cause symptoms such as swelling, painless lumps, or difficulty swallowing if they grow large enough to put pressure on surrounding tissues.

Malignant neoplasms, on the other hand, can be aggressive and have the potential to invade nearby structures and metastasize (spread) to distant organs. Symptoms of malignant salivary gland neoplasms may include rapid growth, pain, numbness, or paralysis of facial nerves.

Salivary gland neoplasms can occur in any of the major salivary glands (parotid, submandibular, and sublingual glands) or in the minor salivary glands located throughout the mouth and throat. The exact cause of these neoplasms is not fully understood, but risk factors may include exposure to radiation, certain viral infections, and genetic predisposition.

Anal gland neoplasms, also known as anal sac tumors, are abnormal growths that develop from the cells lining the anal glands. These glands are located on either side of the anus in dogs and some other animals, and they produce a scent used for marking territory.

Anal gland neoplasms can be benign or malignant (cancerous). Malignant tumors are more common and tend to grow quickly, invading surrounding tissues and spreading to other parts of the body (metastasis). Common symptoms of anal gland neoplasms include straining to defecate, bleeding from the rectum, and a firm mass that can be felt near the anus.

Treatment for anal gland neoplasms typically involves surgical removal of the tumor. In some cases, radiation therapy or chemotherapy may also be recommended. The prognosis for animals with anal gland neoplasms depends on several factors, including the size and location of the tumor, whether it has spread to other parts of the body, and the overall health of the animal.

Sebum is an oily, waxy substance that is produced by the sebaceous glands in the skin of mammals. It is composed mainly of triglycerides, wax esters, squalene, and free fatty acids, as well as smaller amounts of metabolites and other substances. Sebum plays an important role in the maintenance of the skin's barrier function and in the regulation of its moisture levels. It also has antimicrobial properties that help to protect the skin from infection. Excessive sebum production can contribute to the development of acne and other skin conditions.

Perianal glands, also known as hepatoid glands or circumanal glands, are specialized sebaceous glands located in the perianal region of many mammals, including dogs and cats. These glands are found in the skin around the anus and are responsible for producing a scent that is unique to each individual animal. The secretions from these glands play a role in territorial marking and communication.

In humans, there are no true perianal glands, but there are some sweat glands located in the perianal region that can sometimes become inflamed or infected, leading to conditions such as hidradenitis suppurativa or perianal abscesses. However, these conditions are not related to the perianal glands found in animals.

Sublingual gland neoplasms refer to the abnormal growths or tumors that develop in the sublingual salivary glands, which are located beneath the tongue in the floor of the mouth. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign sublingual gland neoplasms are typically slow-growing and cause little to no discomfort, although they may become large enough to interfere with speaking, swallowing, or breathing. Malignant sublingual gland neoplasms, on the other hand, can grow rapidly, invade surrounding tissues, and potentially spread (metastasize) to other parts of the body.

The most common type of benign sublingual gland neoplasm is a pleomorphic adenoma, while malignant tumors may include mucoepidermoid carcinoma, adenoid cystic carcinoma, or squamous cell carcinoma. Treatment options for sublingual gland neoplasms depend on the type, size, location, and stage of the tumor but often involve surgical excision, with or without radiation therapy or chemotherapy. Regular follow-up care is essential to monitor for recurrence or metastasis.

A pleomorphic adenoma is a type of benign (non-cancerous) tumor that typically develops in the salivary glands, although they can also occur in other areas such as the nasopharynx and skin. "Pleomorphic" refers to the diverse appearance of the cells within the tumor, which can vary in size, shape, and arrangement.

Pleomorphic adenomas are composed of a mixture of epithelial and mesenchymal cells, which can form glandular structures, squamous (scale-like) cells, and areas that resemble cartilage or bone. These tumors tend to grow slowly and usually do not spread to other parts of the body.

While pleomorphic adenomas are generally not dangerous, they can cause problems if they become large enough to press on surrounding tissues or structures. In some cases, these tumors may also undergo malignant transformation, leading to a cancerous growth known as carcinoma ex pleomorphic adenoma. Surgical removal is the standard treatment for pleomorphic adenomas, and the prognosis is generally good with proper management.

Parotid neoplasms refer to abnormal growths or tumors in the parotid gland, which is the largest of the salivary glands and is located in front of the ear and extends down the neck. These neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign parotid neoplasms are typically slow-growing, painless masses that may cause facial asymmetry or difficulty in chewing or swallowing if they become large enough to compress surrounding structures. The most common type of benign parotid tumor is a pleomorphic adenoma.

Malignant parotid neoplasms, on the other hand, are more aggressive and can invade nearby tissues and spread to other parts of the body. They may present as rapidly growing masses that are firm or fixed to surrounding structures. Common types of malignant parotid tumors include mucoepidermoid carcinoma, adenoid cystic carcinoma, and squamous cell carcinoma.

The diagnosis of parotid neoplasms typically involves a thorough clinical evaluation, imaging studies such as CT or MRI scans, and fine-needle aspiration biopsy (FNAB) to determine the nature of the tumor. Treatment options depend on the type, size, and location of the neoplasm but may include surgical excision, radiation therapy, and chemotherapy.

Mucoepidermoid carcinoma is a type of cancer that develops in the salivary glands or, less commonly, in other areas such as the lungs or skin. It is called "mucoepidermoid" because it contains two types of cells: mucus-secreting cells and squamous (or epidermoid) cells.

Mucoepidermoid carcinomas can vary in their behavior, ranging from low-grade tumors that grow slowly and rarely spread to other parts of the body, to high-grade tumors that are aggressive and can metastasize. The treatment and prognosis for mucoepidermoid carcinoma depend on several factors, including the grade and stage of the tumor, as well as the patient's overall health.

It is important to note that while I strive to provide accurate and up-to-date information, this definition may not capture all the nuances of this medical condition. Therefore, it is always best to consult with a healthcare professional for medical advice.

Sebaceous gland diseases refer to conditions that affect the sebaceous glands, which are small glands in the skin that produce an oily substance called sebum. Sebum helps keep the skin and hair moisturized. Sebaceous gland diseases can cause a variety of symptoms, including skin inflammation, redness, pain, and the formation of bumps or cysts.

Some common types of sebaceous gland diseases include:

1. Acne: A common skin condition that occurs when the hair follicles become plugged with oil and dead skin cells, leading to whiteheads, blackheads, or pimples.
2. Seborrheic dermatitis: A skin condition that causes red, itchy, and flaky skin, often on the scalp, face, or chest.
3. Rosacea: A chronic skin condition that causes redness, pimples, and visible blood vessels on the face.
4. Sebaceous hyperplasia: A benign growth of the sebaceous glands that appears as a small, yellowish bump on the skin.
5. Sebaceous adenitis: A rare inflammatory disease that affects the sebaceous glands, causing hair loss and scaly skin.
6. Sebaceous carcinoma: A rare and aggressive form of skin cancer that develops in the sebaceous glands.

Treatment for sebaceous gland diseases depends on the specific condition and its severity. Treatments may include topical or oral medications, light therapy, or surgical removal of affected tissue. It is important to consult a healthcare provider for an accurate diagnosis and treatment plan.

Acne vulgaris is a common skin condition characterized by the formation of various types of blemishes on the skin, such as blackheads, whiteheads, papules, pustules, and cysts or nodules. These lesions typically appear on areas of the body that have a high concentration of sebaceous glands, including the face, neck, chest, back, and shoulders.

Acne vulgaris occurs when hair follicles become clogged with dead skin cells and excess oil (sebum) produced by the sebaceous glands. This blockage provides an ideal environment for bacteria, particularly Propionibacterium acnes, to multiply, leading to inflammation and infection. The severity of acne vulgaris can range from mild with only a few scattered comedones (blackheads or whiteheads) to severe cystic acne, which can cause significant scarring and emotional distress.

The exact causes of acne vulgaris are not fully understood, but several factors contribute to its development, including:

1. Hormonal changes during puberty, menstruation, pregnancy, or due to conditions like polycystic ovary syndrome (PCOS)
2. Genetic predisposition
3. Use of certain medications, such as corticosteroids and lithium
4. Excessive production of sebum due to overactive sebaceous glands
5. Accumulation of dead skin cells that clog pores
6. Bacterial infection (particularly Propionibacterium acnes)
7. Inflammation caused by the body's immune response to bacterial infection and clogged pores

Treatment for acne vulgaris depends on its severity and can include over-the-counter or prescription topical treatments, oral medications, chemical peels, light therapies, or even hormonal therapies in some cases. It is essential to seek professional medical advice from a dermatologist or healthcare provider to determine the most appropriate treatment plan for individual needs.

Palatal neoplasms refer to abnormal growths or tumors that occur on the palate, which is the roof of the mouth. These growths can be benign (non-cancerous) or malignant (cancerous). Benign neoplasms are typically slower growing and less likely to spread, while malignant neoplasms are more aggressive and can invade nearby tissues and organs.

Palatal neoplasms can have various causes, including genetic factors, environmental exposures, and viral infections. They may present with symptoms such as mouth pain, difficulty swallowing, swelling or lumps in the mouth, bleeding, or numbness in the mouth or face.

The diagnosis of palatal neoplasms typically involves a thorough clinical examination, imaging studies, and sometimes biopsy to determine the type and extent of the growth. Treatment options depend on the type, size, location, and stage of the neoplasm but may include surgery, radiation therapy, chemotherapy, or a combination of these approaches. Regular follow-up care is essential to monitor for recurrence or spread of the neoplasm.

Adenocarcinoma, sebaceous is a type of cancer that develops from the sebaceous glands, which are glands in the skin that produce an oily substance called sebum. This type of cancer is a malignant tumor that forms in the glandular cells and can spread to other parts of the body. It most commonly occurs in the glands found in the eyelids (known as meibomian glands), but it can also occur in other areas of the body such as the genitals, breasts, and skin.

Sebaceous adenocarcinoma is a rare type of cancer, accounting for less than 1% of all skin cancers. It typically affects older adults and has been linked to exposure to radiation and certain genetic mutations. Treatment usually involves surgical removal of the tumor, along with radiation therapy or chemotherapy in some cases.

It is important to note that while I strive to provide accurate and up-to-date information, this definition may not be complete or fully comprehensive. If you have any concerns about your health or a medical condition, it is always best to consult with a qualified healthcare professional for personalized advice and treatment.

Chloroprene is a colorless liquid with a mild, rubbery odor. It is chemically known as 2-chlorobuta-1,3-diene and is primarily used in the industrial production of polychloroprene, a type of synthetic rubber that is resistant to heat, oil, and weathering.

In a medical context, chloroprene itself is not commonly used or encountered. However, exposure to chloroprene during its manufacture or use in industrial settings has been associated with an increased risk of certain health effects, including neurological damage, liver toxicity, and cancer. Therefore, occupational safety regulations exist to limit worker exposure to this chemical.

Adenoid cystic carcinoma (AdCC) is a rare type of cancer that can occur in various glands and tissues of the body, most commonly in the salivary glands. AdCC is characterized by its slow growth and tendency to spread along nerves. It typically forms solid, cystic, or mixed tumors with distinct histological features, including epithelial cells arranged in tubular, cribriform, or solid patterns.

The term "carcinoma" refers to a malignant tumor originating from the epithelial cells lining various organs and glands. In this case, adenoid cystic carcinoma is a specific type of carcinoma that arises in the salivary glands or other glandular tissues.

The primary treatment options for AdCC include surgical resection, radiation therapy, and sometimes chemotherapy. Despite its slow growth, adenoid cystic carcinoma has a propensity to recur locally and metastasize to distant sites such as the lungs, bones, and liver. Long-term follow-up is essential due to the risk of late recurrences.

A hair follicle is a part of the human skin from which hair grows. It is a complex organ that consists of several layers, including an outer root sheath, inner root sheath, and matrix. The hair follicle is located in the dermis, the second layer of the skin, and is surrounded by sebaceous glands and erector pili muscles.

The hair growth cycle includes three phases: anagen (growth phase), catagen (transitional phase), and telogen (resting phase). During the anagen phase, cells in the matrix divide rapidly to produce new hair fibers that grow out of the follicle. The hair fiber is made up of a protein called keratin, which also makes up the outer layers of the skin and nails.

Hair follicles are important for various biological functions, including thermoregulation, sensory perception, and social communication. They also play a role in wound healing and can serve as a source of stem cells that can differentiate into other cell types.

Myoepithelioma is a very rare, benign (non-cancerous) tumor that arises from the myoepithelial cells, which are found in various glands throughout the body, including salivary glands, sweat glands, and mammary glands. These tumors typically appear as slow-growing, painless masses. While they are usually benign, some myoepitheliomas can become malignant (cancerous) and invasive, leading to more serious health concerns. Treatment for myoepithelioma typically involves surgical removal of the tumor.

Adenolymphoma is a rare, benign tumor that arises from the lymphoid tissue found in glandular structures, such as the salivary glands. It is also known as Warthin's tumor or cystic papillary adenolymphoma.

The tumor is composed of multiple cyst-like spaces lined by columnar epithelial cells and surrounded by lymphoid tissue, which may contain lymphocytes, plasma cells, and occasionally, germinal centers. The etiology of adenolymphoma is unclear, but it has been associated with smoking and genetic factors.

Adenolymphomas are typically slow-growing and painless, although they can cause discomfort or facial asymmetry if they become large enough. They are usually diagnosed through imaging studies such as ultrasound, CT scan, or MRI, followed by a biopsy to confirm the diagnosis.

Treatment of adenolymphoma typically involves surgical excision, which is usually curative. Recurrence after surgery is rare, but long-term follow-up is recommended due to the potential for malignant transformation into squamous cell carcinoma or other malignancies.

Submandibular gland neoplasms refer to abnormal growths or tumors that develop in the submandibular glands. These are one of the three pairs of major salivary glands located beneath the jaw and produce saliva that helps in digestion. Submandibular gland neoplasms can be benign (non-cancerous) or malignant (cancerous).

Benign neoplasms are typically slow-growing, do not invade surrounding tissues, and rarely spread to other parts of the body. Common types of benign submandibular gland neoplasms include pleomorphic adenomas and monomorphic adenomas.

Malignant neoplasms, on the other hand, are aggressive and can invade nearby structures or metastasize (spread) to distant organs. Common types of malignant submandibular gland neoplasms include mucoepidermoid carcinoma, adenoid cystic carcinoma, and acinic cell carcinoma.

Symptoms of submandibular gland neoplasms may include a painless swelling or mass in the neck, difficulty swallowing, speaking, or breathing, numbness or tingling in the tongue or lips, and unexplained weight loss. Treatment options depend on the type, size, location, and stage of the tumor but often involve surgical excision, radiation therapy, and/or chemotherapy. Regular follow-up care is essential to monitor for recurrence or metastasis.

Minor salivary glands are numerous small exocrine glands that produce saliva and are distributed throughout the oral cavity, nasal cavity, pharynx, larynx, and paranasal sinuses. They are classified as "minor" due to their smaller size compared to the three pairs of major salivary glands (parotid, submandibular, and sublingual). The minor salivary glands are primarily mucous glands, although some contain serous cells. They are responsible for producing approximately 5-10% of the total saliva in the mouth. These glands help moisten the oral cavity, protect the mucosal lining, and facilitate speaking, chewing, and swallowing.

Apocrine glands are a type of sweat gland found in mammals, including humans. They are most concentrated in areas with dense hair follicles, such as the axillae (armpits) and genital region. These glands release their secretions into the hair follicle, which then reaches the skin surface through the pores.

Apocrine glands become active during puberty and are associated with the production of odorous sweat. The sweat produced by apocrine glands is initially odorless but can acquire a smell when it comes into contact with bacteria on the skin surface, which break down the organic compounds in the sweat. This can contribute to body odor.

It's important to note that while apocrine glands are often associated with body odor, they do not cause body odor directly. The odor is produced when the sweat from apocrine glands mixes with bacteria on the skin surface.

The epidermis is the outermost layer of the skin, composed mainly of stratified squamous epithelium. It forms a protective barrier that prevents water loss and inhibits the entry of microorganisms. The epidermis contains no blood vessels, and its cells are nourished by diffusion from the underlying dermis. The bottom-most layer of the epidermis, called the stratum basale, is responsible for generating new skin cells that eventually move up to replace dead cells on the surface. This process of cell turnover takes about 28 days in adults.

The most superficial part of the epidermis consists of dead cells called squames, which are constantly shed and replaced. The exact rate at which this happens varies depending on location; for example, it's faster on the palms and soles than elsewhere. Melanocytes, the pigment-producing cells, are also located in the epidermis, specifically within the stratum basale layer.

In summary, the epidermis is a vital part of our integumentary system, providing not only physical protection but also playing a crucial role in immunity and sensory perception through touch receptors called Pacinian corpuscles.

Alopecia is a medical term that refers to the loss of hair or baldness. It can occur in various parts of the body, but it's most commonly used to describe hair loss from the scalp. Alopecia can have several causes, including genetics, hormonal changes, medical conditions, and aging.

There are different types of alopecia, such as:

* Alopecia Areata: It is a condition that causes round patches of hair loss on the scalp or other parts of the body. The immune system attacks the hair follicles, causing the hair to fall out.
* Androgenetic Alopecia: Also known as male pattern baldness or female pattern baldness, it's a genetic condition that causes gradual hair thinning and eventual hair loss, typically following a specific pattern.
* Telogen Effluvium: It is a temporary hair loss condition caused by stress, medication, pregnancy, or other factors that can cause the hair follicles to enter a resting phase, leading to shedding and thinning of the hair.

The treatment for alopecia depends on the underlying cause. In some cases, such as with telogen effluvium, hair growth may resume without any treatment. However, other forms of alopecia may require medical intervention, including topical treatments, oral medications, or even hair transplant surgery in severe cases.

Salivary glands are exocrine glands that produce saliva, which is secreted into the oral cavity to keep the mouth and throat moist, aid in digestion by initiating food breakdown, and help maintain dental health. There are three major pairs of salivary glands: the parotid glands located in the cheeks, the submandibular glands found beneath the jaw, and the sublingual glands situated under the tongue. Additionally, there are numerous minor salivary glands distributed throughout the oral cavity lining. These glands release their secretions through a system of ducts into the mouth.

Medically, hair is defined as a threadlike structure that grows from the follicles found in the skin of mammals. It is primarily made up of a protein called keratin and consists of three parts: the medulla (the innermost part or core), the cortex (middle layer containing keratin filaments) and the cuticle (outer layer of overlapping scales).

Hair growth occurs in cycles, with each cycle consisting of a growth phase (anagen), a transitional phase (catagen), and a resting phase (telogen). The length of hair is determined by the duration of the anagen phase.

While hair plays a crucial role in protecting the skin from external factors like UV radiation, temperature changes, and physical damage, it also serves as an essential aspect of human aesthetics and identity.

Endocrine gland neoplasms refer to abnormal growths (tumors) that develop in the endocrine glands. These glands are responsible for producing hormones, which are chemical messengers that regulate various functions and processes in the body. Neoplasms can be benign or malignant (cancerous). Benign neoplasms tend to grow slowly and do not spread to other parts of the body. Malignant neoplasms, on the other hand, can invade nearby tissues and organs and may also metastasize (spread) to distant sites.

Endocrine gland neoplasms can occur in any of the endocrine glands, including:

1. Pituitary gland: located at the base of the brain, it produces several hormones that regulate growth and development, as well as other bodily functions.
2. Thyroid gland: located in the neck, it produces thyroid hormones that regulate metabolism and calcium balance.
3. Parathyroid glands: located near the thyroid gland, they produce parathyroid hormone that regulates calcium levels in the blood.
4. Adrenal glands: located on top of each kidney, they produce hormones such as adrenaline, cortisol, and aldosterone that regulate stress response, metabolism, and blood pressure.
5. Pancreas: located behind the stomach, it produces insulin and glucagon, which regulate blood sugar levels, and digestive enzymes that help break down food.
6. Pineal gland: located in the brain, it produces melatonin, a hormone that regulates sleep-wake cycles.
7. Gonads (ovaries and testicles): located in the pelvis (ovaries) and scrotum (testicles), they produce sex hormones such as estrogen, progesterone, and testosterone that regulate reproductive function and secondary sexual characteristics.

Endocrine gland neoplasms can cause various symptoms depending on the type and location of the tumor. For example, a pituitary gland neoplasm may cause headaches, vision problems, or hormonal imbalances, while an adrenal gland neoplasm may cause high blood pressure, weight gain, or mood changes.

Diagnosis of endocrine gland neoplasms typically involves a combination of medical history, physical examination, imaging studies such as CT or MRI scans, and laboratory tests to measure hormone levels. Treatment options may include surgery, radiation therapy, chemotherapy, or hormonal therapy, depending on the type and stage of the tumor.

In medical terms, the skin is the largest organ of the human body. It consists of two main layers: the epidermis (outer layer) and dermis (inner layer), as well as accessory structures like hair follicles, sweat glands, and oil glands. The skin plays a crucial role in protecting us from external factors such as bacteria, viruses, and environmental hazards, while also regulating body temperature and enabling the sense of touch.

Sweat gland neoplasms are abnormal growths that develop in the sweat glands. These growths can be benign (noncancerous) or malignant (cancerous). Benign sweat gland neoplasms include hidradenomas and syringomas, which are usually slow-growing and cause little to no symptoms. Malignant sweat gland neoplasms, also known as sweat gland carcinomas, are rare but aggressive cancers that can spread to other parts of the body. They may cause symptoms such as a lump or mass under the skin, pain, swelling, and redness. Treatment typically involves surgical removal of the growth.

Sweat glands are specialized tubular structures in the skin that produce and secrete sweat, also known as perspiration. They are part of the body's thermoregulatory system, helping to maintain optimal body temperature by releasing water and heat through evaporation. There are two main types of sweat glands: eccrine and apocrine.

1. Eccrine sweat glands: These are distributed throughout the body, with a higher concentration on areas like the palms, soles, and forehead. They are responsible for producing a watery, odorless sweat that primarily helps to cool down the body through evaporation.

2. Apocrine sweat glands: These are mainly found in the axillary (armpit) region and around the anogenital area. They become active during puberty and produce a thick, milky fluid that does not have a strong odor on its own but can mix with bacteria on the skin's surface, leading to body odor.

Sweat glands are controlled by the autonomic nervous system, meaning they function involuntarily in response to various stimuli such as emotions, physical activity, or changes in environmental temperature.

Immunohistochemistry (IHC) is a technique used in pathology and laboratory medicine to identify specific proteins or antigens in tissue sections. It combines the principles of immunology and histology to detect the presence and location of these target molecules within cells and tissues. This technique utilizes antibodies that are specific to the protein or antigen of interest, which are then tagged with a detection system such as a chromogen or fluorophore. The stained tissue sections can be examined under a microscope, allowing for the visualization and analysis of the distribution and expression patterns of the target molecule in the context of the tissue architecture. Immunohistochemistry is widely used in diagnostic pathology to help identify various diseases, including cancer, infectious diseases, and immune-mediated disorders.

Neoplasms, adnexal and skin appendage refer to abnormal growths or tumors that develop in the sweat glands, hair follicles, or other structures associated with the skin. These growths can be benign (non-cancerous) or malignant (cancerous), and they can occur anywhere on the body.

Adnexal neoplasms are tumors that arise from the sweat glands or hair follicles, including the sebaceous glands, eccrine glands, and apocrine glands. These tumors can range in size and severity, and they may cause symptoms such as pain, itching, or changes in the appearance of the skin.

Skin appendage neoplasms are similar to adnexal neoplasms, but they specifically refer to tumors that arise from structures such as hair follicles, nails, and sweat glands. Examples of skin appendage neoplasms include pilomatricomas (tumors of the hair follicle), trichilemmomas (tumors of the outer root sheath of the hair follicle), and sebaceous adenomas (tumors of the sebaceous glands).

It is important to note that while many adnexal and skin appendage neoplasms are benign, some can be malignant and may require aggressive treatment. If you notice any unusual growths or changes in your skin, it is important to consult with a healthcare professional for further evaluation and care.

Eccrine glands are the most numerous type of sweat glands in the human body, found in virtually all skin locations. They play a crucial role in thermoregulation by producing a watery sweat that cools the body when it evaporates on the skin surface. These glands are distributed over the entire body, with a higher concentration on the soles of the feet, palms of the hands, and forehead.

Structurally, eccrine glands consist of two main parts: the coiled secretory portion located in the dermis and the straight duct that extends through the dermis and epidermis to reach the skin surface. The secretory portion is lined with a simple cuboidal epithelium, while the duct is lined with a simple squamous or low cuboidal epithelium.

Eccrine glands are stimulated to produce sweat by the activation of the sympathetic nervous system, particularly through the release of acetylcholine at the neuro-glandular junction. The sweat produced is primarily water with small amounts of electrolytes, such as sodium, chloride, and potassium. This composition helps maintain the body's electrolyte balance while facilitating heat loss during physical exertion or in hot environments.

Mammary glands are specialized exocrine glands found in mammals, including humans and other animals. These glands are responsible for producing milk, which is used to nurse offspring after birth. The mammary glands are located in the breast region of female mammals and are usually rudimentary or absent in males.

In animals, mammary glands can vary in number and location depending on the species. For example, humans and other primates have two mammary glands, one in each breast. Cows, goats, and sheep, on the other hand, have multiple pairs of mammary glands located in their lower abdominal region.

Mammary glands are made up of several structures, including lobules, ducts, and connective tissue. The lobules contain clusters of milk-secreting cells called alveoli, which produce and store milk. The ducts transport the milk from the lobules to the nipple, where it is released during lactation.

Mammary glands are an essential feature of mammals, as they provide a source of nutrition for newborn offspring. They also play a role in the development and maintenance of the mother-infant bond, as nursing provides opportunities for physical contact and bonding between the mother and her young.

Meibomian glands are sebaceous glands located in the eyelids, specifically at the rim of the eyelid near the lashes. They produce an oily substance called meibum that forms the outermost layer of the tear film, helping to prevent evaporation and keep the eye surface lubricated. The Meibomian glands play a crucial role in maintaining the health and comfort of the eyes by providing stability to the tear film and protecting the eye from irritants and dryness.

Exocrine glands are a type of gland in the human body that produce and release substances through ducts onto an external or internal surface. These glands are responsible for secreting various substances such as enzymes, hormones, and lubricants that help in digestion, protection, and other bodily functions.

Exocrine glands can be further classified into three types based on their mode of secretion:

1. Merocrine glands: These glands release their secretions by exocytosis, where the secretory product is enclosed in a vesicle that fuses with the cell membrane and releases its contents outside the cell. Examples include sweat glands and mucous glands.
2. Apocrine glands: These glands release their secretions by pinching off a portion of the cytoplasm along with the secretory product. An example is the apocrine sweat gland found in the armpits and genital area.
3. Holocrine glands: These glands release their secretions by disintegrating and releasing the entire cell, including its organelles and secretory products. An example is the sebaceous gland found in the skin, which releases an oily substance called sebum.

The submandibular glands are one of the major salivary glands in the human body. They are located beneath the mandible (jawbone) and produce saliva that helps in digestion, lubrication, and protection of the oral cavity. The saliva produced by the submandibular glands contains enzymes like amylase and mucin, which aid in the digestion of carbohydrates and provide moisture to the mouth and throat. Any medical condition or disease that affects the submandibular gland may impact its function and could lead to problems such as dry mouth (xerostomia), swelling, pain, or infection.

The scalp is the anatomical region located at the upper part of the human head, covering the skull except for the face and the ears. It is made up of several layers: the skin, the connective tissue, the galea aponeurotica (a strong, flat, tendinous sheet), loose areolar tissue, and the periosteum (the highly vascularized innermost layer that attaches directly to the skull bones). The scalp has a rich blood supply and is home to numerous sensory receptors, including those for touch, pain, and temperature. It also contains hair follicles, sebaceous glands, and sweat glands.

"Skin physiological phenomena" is not a standard medical term with a specific definition. However, I can provide some information about the general concepts that might be encompassed by this term.

Physiological phenomena refer to the functions and processes that occur in living organisms. When it comes to the skin, there are many different physiological phenomena that take place, including:

1. Barrier function: The skin acts as a barrier to protect the body from external elements such as bacteria, viruses, chemicals, and UV radiation.
2. Temperature regulation: The skin helps regulate body temperature through sweat production and blood flow.
3. Sensation: The skin contains nerve endings that allow us to feel touch, pressure, pain, and temperature.
4. Vitamin D synthesis: The skin can produce vitamin D when exposed to sunlight.
5. Moisture regulation: The skin helps maintain the body's moisture balance by producing sweat and preventing water loss.
6. Immunological function: The skin plays a role in the immune system by providing a physical barrier and containing immune cells that help fight off infections.
7. Excretion: The skin eliminates waste products through sweat.
8. Wound healing: The skin has the ability to repair itself after injury, through a complex process involving inflammation, tissue regeneration, and remodeling.

Therefore, "skin physiological phenomena" could refer to any or all of these functions and processes that take place in the skin.

Skin neoplasms refer to abnormal growths or tumors in the skin that can be benign (non-cancerous) or malignant (cancerous). They result from uncontrolled multiplication of skin cells, which can form various types of lesions. These growths may appear as lumps, bumps, sores, patches, or discolored areas on the skin.

Benign skin neoplasms include conditions such as moles, warts, and seborrheic keratoses, while malignant skin neoplasms are primarily classified into melanoma, squamous cell carcinoma, and basal cell carcinoma. These three types of cancerous skin growths are collectively known as non-melanoma skin cancers (NMSCs). Melanoma is the most aggressive and dangerous form of skin cancer, while NMSCs tend to be less invasive but more common.

It's essential to monitor any changes in existing skin lesions or the appearance of new growths and consult a healthcare professional for proper evaluation and treatment if needed.

Eyelid neoplasms refer to abnormal growths or tumors that develop in the tissues of the eyelids. These growths can be benign (non-cancerous) or malignant (cancerous). Common types of benign eyelid neoplasms include papillomas, hemangiomas, and nevi. Malignant eyelid neoplasms are typically classified as basal cell carcinomas, squamous cell carcinomas, or melanomas. These malignant tumors can be aggressive and may spread to other parts of the body if left untreated. Treatment options for eyelid neoplasms depend on the type, size, and location of the growth, as well as the patient's overall health. Surgical excision is often the preferred treatment approach, although radiation therapy and chemotherapy may also be used in some cases. Regular follow-up care is important to monitor for recurrence or new growths.

Hyperplasia is a medical term that refers to an abnormal increase in the number of cells in an organ or tissue, leading to an enlargement of the affected area. It's a response to various stimuli such as hormones, chronic irritation, or inflammation. Hyperplasia can be physiological, like the growth of breast tissue during pregnancy, or pathological, like in the case of benign or malignant tumors. The process is generally reversible if the stimulus is removed. It's important to note that hyperplasia itself is not cancerous, but some forms of hyperplasia can increase the risk of developing cancer over time.

The integumentary system is the largest organ system in the human body, encompassing the skin, hair, nails, and various glands. Its primary function is to act as a barrier, protecting the body from external damage, radiation, and pathogens while also helping regulate body temperature, prevent water loss, and maintain fluid balance. The integumentary system plays crucial roles in sensory perception through nerve endings in the skin, synthesizing vitamin D via sunlight exposure, and excreting waste products through sweat. Overall, it serves as a vital organ system that ensures the body's integrity and homeostasis.

Seborrheic dermatitis is a common, inflammatory skin condition that mainly affects the scalp, face, and upper part of the body. It causes skin irritation, flaking, and redness, often in areas where the skin is oily or greasy. The exact cause of seborrheic dermatitis is not fully understood, but it appears to be related to a combination of genetic, environmental, and microbial factors.

The symptoms of seborrheic dermatitis can vary in severity and may include:

* Greasy or flaky scales on the scalp, eyebrows, eyelashes, ears, or beard
* Redness and inflammation of the skin
* Itching, burning, or stinging sensations
* Yellow or white crusty patches on the scalp or other affected areas
* Hair loss (in severe cases)

Seborrheic dermatitis is a chronic condition that tends to flare up and then subside over time. While there is no cure for seborrheic dermatitis, various treatments can help manage the symptoms and prevent complications. These may include medicated shampoos, topical creams or ointments, and lifestyle changes such as stress reduction and avoiding triggers that worsen symptoms.

It is important to note that seborrheic dermatitis should not be confused with other skin conditions, such as psoriasis or eczema, which may have similar symptoms. A healthcare professional can provide a proper diagnosis and recommend appropriate treatment options based on the individual's specific needs.

The parotid gland is the largest of the major salivary glands. It is a bilobed, accessory digestive organ that secretes serous saliva into the mouth via the parotid duct (Stensen's duct), located near the upper second molar tooth. The parotid gland is primarily responsible for moistening and lubricating food to aid in swallowing and digestion.

Anatomically, the parotid gland is located in the preauricular region, extending from the zygomatic arch superiorly to the angle of the mandible inferiorly, and from the masseter muscle anteriorly to the sternocleidomastoid muscle posteriorly. It is enclosed within a fascial capsule and has a rich blood supply from the external carotid artery and a complex innervation pattern involving both parasympathetic and sympathetic fibers.

Parotid gland disorders can include salivary gland stones (sialolithiasis), infections, inflammatory conditions, benign or malignant tumors, and autoimmune diseases such as Sjögren's syndrome.

Skin diseases, also known as dermatological conditions, refer to any medical condition that affects the skin, which is the largest organ of the human body. These diseases can affect the skin's function, appearance, or overall health. They can be caused by various factors, including genetics, infections, allergies, environmental factors, and aging.

Skin diseases can present in many different forms, such as rashes, blisters, sores, discolorations, growths, or changes in texture. Some common examples of skin diseases include acne, eczema, psoriasis, dermatitis, fungal infections, viral infections, bacterial infections, and skin cancer.

The symptoms and severity of skin diseases can vary widely depending on the specific condition and individual factors. Some skin diseases are mild and can be treated with over-the-counter medications or topical creams, while others may require more intensive treatments such as prescription medications, light therapy, or even surgery.

It is important to seek medical attention if you experience any unusual or persistent changes in your skin, as some skin diseases can be serious or indicative of other underlying health conditions. A dermatologist is a medical doctor who specializes in the diagnosis and treatment of skin diseases.

No FAQ available that match "sebaceous gland neoplasms"

No images available that match "sebaceous gland neoplasms"